
On the use of sequence-quality
information in OTU clustering
Robert Müller* and Markus Nebel*

Faculty of Technology, Bielefeld University, Bielefeld, Germany
* These authors contributed equally to this work.

ABSTRACT
Background: High-throughput sequencing has become an essential technology in
life science research. Despite continuous improvements in technology, the produced
sequences are still not entirely accurate. Consequently, the sequences are usually
equipped with error probabilities. The quality information is already employed to
find better solutions to a number of bioinformatics problems (e.g. read mapping).
Data processing pipelines benefit in particular (especially when incorporating the
quality information early), since enhanced outcomes of one step can improve all
subsequent ones. Preprocessing steps, thus, quite regularly consider the sequence
quality to fix errors or discard low-quality data. Other steps, however, like clustering
sequences into operational taxonomic units (OTUs), a common task in the analysis
of microbial communities, are typically performed without making use of the
available quality information.
Results: In this paper, we present quality-aware clustering methods inspired by
quality-weighted alignments and model-based denoising, and explore their
applicability to OTU clustering. We implemented the quality-aware methods in a
revised version of our de novo clustering toolGeFaST and evaluated their clustering
quality and performance on mock-community data sets. Quality-weighted
alignments were able to improve the clustering quality of GeFaST by up to 10%.
The examination of the model-supported methods provided a more diverse picture,
hinting at a narrower applicability, but they were able to attain similar
improvements. Considering the quality information enlarged both runtime and
memory consumption, even though the increase of the former depended heavily on
the applied method and clustering threshold.
Conclusions: The quality-aware methods expand the iterative, de novo clustering
approach by new clustering and cluster refinement methods. Our results indicate that
OTU clustering constitutes yet another analysis step benefiting from the integration
of quality information. Beyond the shown potential, the quality-aware methods offer
a range of opportunities for fine-tuning and further extensions.

Subjects Bioinformatics, Molecular Biology
Keywords Sequence clustering, Operational taxonomic units, Sequence quality information

INTRODUCTION
The development of high-throughput sequencing has radically changed the way research is
conducted in various biological and medical disciplines, ranging from microbial ecology
to personalised medicine. Ongoing advances in sequencing technology have vastly

How to cite this article Müller R, Nebel M. 2021. On the use of sequence-quality information in OTU clustering. PeerJ 9:e11717
DOI 10.7717/peerj.11717

Submitted 16 November 2020
Accepted 11 June 2021
Published 16 August 2021

Corresponding author
Robert Müller,
romueller@techfak.uni-bielefeld.de

Academic editor
Joseph Gillespie

Additional Information and
Declarations can be found on
page 34

DOI 10.7717/peerj.11717

Copyright
2021 Müller and Nebel

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.11717
mailto:romueller@�techfak.uni-bielefeld.de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11717
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

improved the sequencing capacity and read length. However, short-read (e.g. SOLiD,
Illumina) and especially long-read (e.g. PacBio, Oxford Nanopore) technologies are still
not error-free. For example, short-read sequencing typically involves error rates between
0.1% and 1%, with the amount and types of errors strongly depending on the used
technology (Salk, Schmitt & Loeb, 2018). Illumina sequencing, as an example, suffers
mostly from substitutions, i.e. base miscalls, caused by similarities between the intensity of
the different fluorophores and (pre-)phasing effects (Schirmer et al., 2015). Sequencing
machines typically associate the nucleotide sequences with Phred-style quality scores,
expressing the estimated error probability at base level, and error-profile analyses have
shown that low quality scores can serve as reliable indicators for sequencing errors
(Schirmer et al., 2016).

Quality information has been recognised as a valuable resource in order to improve
solutions to a range of bioinformatics problems, including sequence assembly, read
mapping and denoising. Assembly tools such as Phrap (De la Bastide & McCombie, 2007)
use the quality scores to obtain more accurate consensus sequences, while read mappers
like BBMap (Bushnell, 2014) and Bowtie 2 (Langmead & Salzberg, 2012) utilise the
quality information in the alignment computation or in the assessment of the mapping
quality. Denoising algorithms, which aim for distinguishing between biological variation
and sequencing errors in order to identify the real biological sequences among the
sequenced reads, represent another application area of quality information. For example,
DADA2 (Callahan et al., 2016) infers these sequences by employing an error model
that integrates both the abundances and quality scores of the reads. Moreover, several
alignment methods that directly incorporate quality scores have been proposed over the
years; often in (but not necessarily restricted to) the context of read mapping (Clement
et al., 2009; Frith, Wan & Horton, 2010; Kim, Kim & Woo, 2008; Malde, 2008). On top of
that, whole bioinformatics data processing pipelines can be improved by considering
quality information, since downstream analysis steps benefit from an increased data
quality. The preprocessing step can include basic quality filters, e.g. trimming or even
discarding sequences based on the quality scores. More involved pipelines, such as mothur
(Schloss et al., 2009), might even use the quality scores to fix errors in the sequences when
merging paired-end data.

Clustering sequences into operational taxonomic units (OTUs) constitutes another
common step in data analysis pipelines and, thus, already benefits from such quality
consideration. The clustering step itself, however, typically ignores the available quality
information, leaving room for further improvements. Since the advent of sequencing
technologies, OTUs are often used to describe groups of similar nucleotide sequences.
In the absence of an agreed-upon bacterial species concept, they also serve as stand-ins for
actual taxonomic groups when based on ubiquitous genetic material like the 16S rRNA
gene and have become a crucial element in the study of microbial communities (Schmidt,
Matias Rodrigues & Von Mering, 2014). OTUs depend heavily on the chosen clustering
method and a wide range of approaches with their respective strengths and weaknesses
have been proposed over the years (Westcott & Schloss, 2015). Another influential factor is
the clustering threshold determining when two sequences are considered similar. Popular

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 2/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

thresholds (such as 97% and 99% sequence identity) often used to delineate OTUs at
specific taxonomic levels have been derived empirically, but they are controversial and
their meaning has evolved over time (Edgar, 2018). Due to these limitations, OTU
clustering methods are at risk of combining sequences with different origins, possibly
impairing downstream analyses. Addressing this issue, exact sequence variants (ESVs, also
known as amplicon sequence variants or zero-radius OTUs) derived from denoising the
sequence data have been proposed as an alternative to or even replacement of OTUs
(Callahan, McMurdie & Holmes, 2017). Even though ESV methods also cluster sequences
in some way, they pursue a quite different approach as inferred exact sequences are only
grouped with those reads expected to have occurred solely due to sequencing errors.

In this paper, we present two groups of quality-aware clustering techniques for classic
(non-zero-radius) OTUs. The first group comprises adapted and new quality-weighted
alignment methods influencing the similarity computation and, thus, results in a
straightforward extension of the OTU clustering approach. The second group also aims
at the computation of OTUs but it is inspired by the model-based denoising approach
of DADA2 and explores whether—despite their differences—the computation of
OTUs can benefit from incorporating ideas underlying ESV methods. In order to assess
the impact of incorporating quality information on the computation of OTUs, we
implemented the quality-aware methods in a revised version of our iterative, de novo
clustering tool GeFaST. We then evaluated their clustering quality and performance on a
range of mock-community data sets in comparison to the quality-unaware methods of
GeFaST and other de novo clustering tools.

BASIC CONCEPTS AND PREVIOUS WORK
We provide a brief description of the basic concepts underlying our work. Subsequently,
we introduce the essential techniques and algorithms constituting the origins of our
quality-aware clustering methods presented in the next section.

The focus of this work is the problem of de novo sequence clustering, i.e. the grouping of
sequences based on their distances among each other. In contrast to other major clustering
approaches (closed- and open-reference clustering), the de novo approach does not
depend on (the existence of) a reference database. We apply the de novo clustering to
amplicons and, in the following, an amplicon refers to a nucleotide sequence (or read) with
an identifier and an abundance value (i.e. the number of copies of that amplicon). For the
sake of the presentation of the quality-aware methods, we further assume that each
nucleotide in the sequence of an amplicon is associated with a Phred-style quality score as
provided in the FASTQ format. Depending on, e.g., the sequencing machine, the quality
scores can be stored using different encodings. For example, the Illumina 1.8+ encoding
allows quality scores between 0 and 41 and adds an offset of 33 to create the encoded scores
found in FASTQ files. In the following, we typically refer to the actual quality scores
without the offset. As mentioned before, the Phred score (Ewing & Green, 1998) can be
converted into an error probability of the corresponding nucleotide and these error
probabilities are incorporated into the distance between two amplicons. Here, we use the
notion of distance functions based on pairwise global alignments to formally describe the

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 3/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

idea that we derive certain characteristics of such alignments to measure the distance
between the involved sequences. Such a distance function could, e.g., count the number of
edit operations in an optimal alignment or just report its alignment score. We score
alignments using affine gap costs, assigning a gap of length k (i.e. a consecutive run of k gap
symbols in one of the aligned sequences) a score of go + k · ge, for go and ge the costs of
opening and extending a gap, respectively.

Iterative de novo clustering
While de novo clustering is a popular clustering approach, traditional methods depend on
an arbitrary fixed global clustering threshold (Edgar, 2010; Fu et al., 2012), which can be
insufficient to accommodate the varying evolutionary speed of different lineages (Mahé
et al., 2014). In order to overcome this conceptual issue, the two-phased, agglomerative de
novo clustering algorithm Swarm (Mahé et al., 2015) was proposed. In contrast to the
traditional methods, Swarm uses a (small) local clustering threshold t for the number of
differences in an optimal alignment and extends a cluster iteratively. In order to cluster
a pool (i.e. a collection) of amplicons, Swarm proceeds as follows (Fig. 1A): First, the most
abundant amplicon is removed from the pool and forms the seed s of a new cluster
(also referred to as a swarm). Next, all amplicons with at most t differences to s in an
optimal pairwise alignment are also moved from the pool to the current cluster, where they

A

t

B

light cluster

virtual amplicon

Figure 1 Schematic view of Swarm’s clustering strategy. (A) Starting from a seed, Swarm extends
a cluster by iteratively adding amplicons based on a small local threshold t until there are no further
amplicons which can be connected to it. (B) Light clusters are grafted onto heavy ones during the fastidious
step by bridging the gap between them through the assumed existence of virtual linking amplicons. Adapted
from Mahé et al. (2015, Fig. 1). Full-size DOI: 10.7717/peerj.11717/fig-1

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 4/37

http://dx.doi.org/10.7717/peerj.11717/fig-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

constitute the first generation of subseeds. Subsequently, the same is done for each
such subseed to determine the second generation of subseeds and the extension step is
iterated until there are no further amplicons which can be added to the swarm. At this
point, the current cluster is closed and the overall procedure is repeated on the remaining
amplicon pool, again choosing the most abundant amplicon as the seed of the next cluster.

This procedure can lead to long chains of consecutive links and, eventually,
over-grouping when connecting different centres of abundance. In order to address this
issue, Swarm offers an optional breaking mechanism, prohibiting the connection of two
amplicons through less abundant amplicons. To this end, the clustering threshold is
complemented by the restriction that the partners (i.e. similar amplicons) of the
current subseed are also not allowed to have a higher abundance than the subseed itself.

In addition to the clustering phase, Swarm offers a so-called fastidious option for t = 1,
which refines the initially obtained clustering. To this end, Swarm distinguishes
between light and heavy swarms based on their mass (i.e. the sum of the abundances of the
comprised amplicons) and grafts light swarms onto heavy ones by postulating the
existence of a (virtual) linking amplicon (Fig. 1B). If such a virtual amplicon bridges the
gap of size at most tf = 2 (with tf being the fastidious threshold) between the clusters, then
all amplicons of the light swarm (but not the virtual amplicon itself) are added to the
heavy one.

GeFaST (Generalised Fastidious Swarming Tool), introduced by Müller & Nebel
(2018), reimplements the iterative clustering approach of Swarm (including its breaking
mechanism) and generalises its fastidious option. On the one hand, the fastidious
refinement is no longer restricted to input threshold t = 1. In order to preserve the idea of a
virtual linking amplicon, the fastidious threshold tf = 2 · t is used as the default setting.
On the other hand, GeFaST offers a more flexible refinement by making the fastidious
threshold freely adjustable and independent of t. This allows more or less conservative
fastidious refinement as needed.

Incorporating sequence quality per nucleotide
Traditional alignment methods like the Needleman–Wunsch and the Smith–Waterman
algorithm (Needleman & Wunsch, 1970; Smith & Waterman, 1981) were developed in
a biological context but consider only the nucleotide sequences themselves as they
predate the introduction of quality scores (Dear & Staden, 1992). In order to remedy this
shortcoming, a range of methods directly incorporating the quality information into the
alignment process have been proposed.

Their approaches differ widely, ranging from the assignment of probabilities to different
edit operations and adding up the weighted costs (Kim, Kim & Woo, 2008) to using an
alternative scoring matrix derived solely from error probabilities (Malde, 2008). Besides
the exact way in which the quality information is applied, the methods can also be
distinguished in broader terms. Some focus on substitutions because they are the dominant
error type in sequences from popular sequencing technologies such as Illumina and, thus,
are considered more significant (Schirmer et al., 2016), while others also consider the
rarer insertions and deletions. Moreover, not all methods make use of the quality

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 5/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

information of both aligned sequences. Especially those developed in a read-mapping
context tend to consider only the quality of the read to be mapped. While some methods
have been designed for full scoring matrices, others just use more simple scoring functions
with fixed costs for an operation (regardless of the participating nucleotides). Lastly, the
methods can be distinguished based on the existence of parameters to adjust them to
particular use cases. Table 1 provides an overview of major characteristics of the original
quality-weighted alignment methods considered for the use in our quality-aware clustering
framework.

Model-based variation detection
Callahan et al. (2016) developed the software package DADA2 for modelling and
correcting errors in Illumina-sequenced amplicons. The package implements an improved
version of an algorithm called DADA (Divisive Amplicon Denoising Algorithm) for
inferring the ESVs from a collection of amplicons (Rosen et al., 2012). The algorithm uses a
model-based approach for correcting amplicon errors by dividing the collection of
dereplicated amplicons into partitions until all of them are consistent with the error model
(Algorithm 1). At its core, the algorithm repeatedly searches for the amplicon most
inconsistent with its current partition. This amplicon forms the centre of a new partition
and other amplicons are allowed to join it when the error model indicates that the new
centre is a more likely origin for them. These centres form the representatives of the
partitions and are then considered as the ESVs or sample sequences.

In the following, we describe the formal details of the error model underlying DADA2.
The error model depends on transition probabilities pða ! b; qÞ between nucleotides a
and b, with q being the quality score associated with b. These transition probabilities are
used to determine error rates λc,r between two amplicons, a partition centre c and a
non-centre read r, quantifying the rate at which r is produced from c. To that end, a
pairwise sequence alignment between c and r is computed and the substitutions (i.e.
matches and mismatches) between the amplicons are collected. Let S be the set of
substitutions in the alignment between c and r and let each substitution be represented by a
triple (a, b, q), with a and b a nucleotide from c and r, respectively, and q the quality score
of b. Assuming that errors occur independently both within and between reads, the
computation of the error rate reduces to the product of the transition probabilities of the
substitutions in the alignment:

Table 1 Overview of major characteristics of the considered quality-weighted alignment methods. One-sided methods use the quality infor-
mation of only one sequence. The methods either adapt a provided scoring scheme or completely replace it by an alternative one.

Clement et al. (2009) Frith, Wan & Horton (2010) Kim, Kim & Woo (2008) Malde (2008)

Weighted operations Substitutions Substitutions All Substitutions

Use of quality information One-sided One-sided Two-sided Two-sided

Designed for scoring matrix Yes Yes No Yes

Type of modification Adaptation Adaptation Adaptation Replacement

Parameter-free Yes No Yes No

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 6/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

�c;r ¼
Y

ða;b;qÞ2S
pða ! b; qÞ: (1)

The error rate λc,r is then used to set up a Poisson model for the abundance of read r
(denoted as ab(r)). For independent errors, the number of copies of r obtained from c is
Poisson-distributed with an expectation equal to the product of the error rate and the
expected number of reads of c. Here, the total abundance of the partition with centre c
(denoted as nc) is used as that expected number. Using the Poisson model, the abundance
p-value pA(m, n), describing the probability of obtaining at least m copies of r when
amplifying and sequencing n copies of centre c, is defined as

pAðm; nÞ :¼ 1
1� poisð0; nÞ �

X1
k¼m

poisðk; nÞ; (2)

for pois(k ; n) the probability mass function of the Poisson distribution with expected value
n. Parameter k describes the number of events occurring within an interval (in our case,
copies obtained from amplification and sequencing). Thus, the abundance p-value for
read r and centre c is then computed as pA(ab(r), nc · λc,r). A (Bonferroni-corrected)
abundance p-value below a given threshold �A indicates that r is not consistent with
the error model, as the abundance of r is too high to be explained by errors in the

Algorithm 1 The divisive partitioning algorithm of DADA2 for inferring the composition of a read
sample. The dereplicated amplicons are associated with aggregated abundance values and consensus
quality profiles.

Input: R = collection of dereplicated amplicon reads, ΩA = abundance p-value threshold

Output: Collection of inferred sample sequences

1 Place all reads in the initial partition P0 = R;

2 Set centre c0 of P0 to the most abundant read;

3 for r ∈ R do

4 Compute error rate and abundance p-value of r w.r.t. c0;

5 end
/* Let pA(r) be the abundance p-value of read r w.r.t. to the centre of its current

partition. */

6 i = 0;

7 while min{pA(r) |r ∈ R} < ΩA do

8 i = i + 1;

9 Determine read s = arg min{pA(r) |r ∈ R};

10 Initialise new partition Pi = {s} with ci = s;

11 Compute error rate for each non-centre read from R w.r.t. ci;

12 Shuffle each non-centre read to its most likely partition;

13 end

14 return {c0, . . . , ci};

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 7/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

sequencing process. Consequently, the read r is moved to its own partition if it is the most
inconsistent one in the current iteration of the partitioning process in Algorithm 1. In the
subsequent shuffling step, the partition might attract other reads if it is the one with the
highest expected number of copies of those reads. Once the abundance p-values of all
reads are above the threshold �A, the whole partitioning is considered consistent and the
iterative division process stops. By default, DADA2 employs the empirically derived
threshold �A = 10−40. While this default value is very small, it was found to be appropriate
in a range of sequencing experiments by the authors of DADA2 and others (Tsuji et al.,
2020).

QUALITY-AWARE CLUSTERING METHODS
As outlined above, sequencing is not an error-free process and traditional alignment
algorithms use only the called bases and disregard the (typically available) quality
information associated with them. Thus, they do not consider the possible reasons for the
observed operation in an alignment and, instead, always score it in the same way.
Therefore, we want to consider the quality of the called bases with the following intuition:
If both bases have high quality scores, we are rather confident in the called bases and the
quality weighting should have little effect on the alignment score. On the other hand,
consider the case in which we observe, e.g., a mismatch between a high-quality and
low-quality base. Usual alignment algorithms would apply the full mismatch penalty. With
quality weighting, the penalty should, however, be reduced as the chance is increased
that the mismatch was caused by a sequencing error in the read with the base of lower
quality and that it, possibly, hides an actual match between the sequences. Such a penalty
reduction can make the difference between satisfying and exceeding a clustering threshold,
especially in clustering scenarios with strict (i.e. low) thresholds.

We complement this nucleotide-wise quality awareness by a second, model-supported
approach inspired by the denoising method of DADA2. The presented methods
incorporate similar consistency checks to explore whether OTU clustering can be
enhanced by adopting ideas from the computation of ESVs. By considering quality and
abundance information in addition to the sequences themselves, they aim for supporting
the decision on whether amplicons should be clustered together. Finally, we describe how
the quality-aware methods are implemented in GeFaST.

Quality-weighted alignments
Our first quality-aware technique comprises a group of methods that directly incorporate
the sequence quality into the alignment score. To this end, the scoring functions consider
the quality of the participating bases during the alignment process.

In order to simplify the presentation of our quality-weighted methods, we first fix some
notations regarding the used scoring functions and the conversion between quality
scores and error probabilities. We refer to the sequence alphabet (e.g. the set of nucleotides
A, C, G and T) as Σ and denote its size by |Σ|. We further denote the quality score of a
character c in an aligned sequence as q(c). Here, the gap symbol-has, by definition, a
quality score of zero (i.e. q(−) = 0). As mentioned earlier, the quality score q(c) of each

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 8/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

character in a sequence can be translated into the (base-calling) error probability p(c),
which is given by p(c) : = 10−q(c)/10. Conversely, the quality score corresponding to an error
probability p can be expressed as score(p): = − 10 · log10(p).

Some of the original methods that we adapt have been developed with respect to
maximising scoring functions (i.e. the optimal alignment is the one with the highest score).
Therefore, if not stated otherwise, we assume that we are initially given a scoring function,
which is affine, maximising and has fixed costs for the operations independent on the
involved nucleotides. We formally represent the scoring function as a tuple δ = (r, m, go,
ge), consisting of match reward r, mismatch penalty m, gap-opening penalty go and
gap-extension penalty ge. Smith, Waterman & Fitch (1981) established a transformation
between maximising and minimising scoring functions and, as in Swarm (Mahé et al.,
2014), we use this transformation to obtain an equivalent scoring function, producing
pairwise alignments identical to the ones found by the original scoring function.
The corresponding transformed, minimising scoring function is then similarly represented
by δ′ = (0, m′, go′, ge′). In the definition of our quality-weighted scoring functions, we also
want to incorporate the affine gap-opening penalty and, thus, have to identify positions
in an alignment at which a new gap starts (in order to apply the gap-opening penalty).
Let the pair (X′, Y′) be an alignment of two sequences X and Y. Both aligned sequences X′
and Y′ can contain gap symbols, and we use a helper function open(X′, Y′, i), which returns
1 if and only if a new gap starts at position i in the alignment and 0 otherwise. More
formally, the function is given by

openðX0;Y 0; iÞ :¼
1; i ¼ 1 ^ ðX0

i ¼ � _ Y 0
i ¼ �Þ

1; i. 1 ^ ððX0
i ¼ � ^ X0

i�1 6¼ �Þ _ ðY 0
i ¼ � ^ Y 0

i�1 6¼ �ÞÞ
0; otherwise

8<
:

where X′i and Y′i denote the i-th character in X′ and Y′, respectively.
Our quality-weighted approach rests on two key components: the quality-weighted

alignment score based on a quality-weighted cost function and a boosting function.
Boosting functions.The quality-weighted cost functions use error probabilities derived

from Phred-style quality scores. Due to the exponential decay of the error probability
with increasing quality score, the effect of differences in the quality score can become
almost negligible when directly applying the error probabilities as weights in the scoring
function. The aim of a boosting function is, thus, to emphasise these differences (especially
for higher quality scores) without leaving the range of valid values between 0 and 1.

Definition 1 (Boosting function) Let a probability value p ∈ [0, 1] be given. A boosting
function bðp; hÞ : ½0; 1� ! ½0; 1� maps the value p to another, typically higher probability.
Such a mapping can depend on additional parameters, which are listed after a semicolon.
The collection of parameters (collectively denoted by θ) can be empty.

GeFaST currently offers several parameterised boosting functions, which are applied to
the (error) probabilities during the computation of the quality-weighted scores.

No boosting. If boosted error probabilities are not desired, the identity function can be
used to directly hand over the probabilities to the quality-weighted cost function. Thus, the
boosting function does not require any parameters: unboosted(p) : = p.

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 9/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

Multiplicative reinforcement. Boosting by multiplicative reinforcement involves the
multiplication of the error probability with a constant numeric factor c. In addition, the
multiplied value is restrained from leaving the range of valid probabilities by capping it at
one: mult(p; c) : = min(c · p, 1). As a consequence, the exponential decay of the error
probability is delayed to higher quality scores.

Extracting roots and shifting. In order to keep the exponential decay over the whole
range of quality scores but still dampen its effect, the d-th root of p is computed and the
resulting value is shifted by a constant s towards zero: rootshiftðp; d; sÞ :¼ maxð ffiffiffi

pd
p � s; 0Þ.

Without shifting, especially higher degrees can lead to notably large boosted error
probabilities for the highest quality scores in the used encoding. Shifting by s allows to
reduce this effect, while still benefiting from the weakened exponential decay. We denote a
shift as full if s ¼ ffiffiffiffiffiffiffiffiffi

pmax
d
p

, with pmax the error probability associated with the highest quality
score of the encoding used in the input files. Thus, the roots are shifted such that the
boosted error probability for the highest quality score is zero. Moreover, we denote the
boosting function for s = 0 as root(p; d) : = rootshift(p; d, 0).

Partially linear decay. Differences between error probabilities for higher quality scores
quickly become very small and, thus, changes of the quality score have almost no effect in
that range. Therefore, this boosting function keeps the exponential decay only up to a
quality score s and switches to a linear decay for higher scores in order to emphasise
differences in the quality scores for the higher range. This two-part behaviour can be
formally described by

linearðp; sÞ ¼ p; r < s
ps � l�1�s�ðr�sÞ

l�1�s ; otherwise

�
with ps the error probability of the quality score at which the behaviour changes, l the

number of quality levels in the used encoding, and r the rank of the quality level
corresponding to probability p in the encoding.

Figure 2 depicts the effect of the different boosting functions for exemplary parameters.
Quality-weighted alignment scores. Similar to the traditional definition of alignment

scores, the quality-weighted score is defined as the sum of the scores of the alignment

A

0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

Quality score Q

E
rr

or
pr

ob
ab

ili
ty

10
−Q

/1
0

unboosted
mult (c = 5)
mult (c = 10)

B

0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

Quality score Q

E
rr

or
pr

ob
ab

ili
ty

10
−Q

/1
0

unboosted
root (d = 2)
rootshift (d = 2, full)
root (d = 3)
rootshift (d = 3, full)

C

0 5 10 15 20 25 30 35 40 45

0

0.2

0.4

0.6

0.8

1

Quality score Q

E
rr

or
pr

ob
ab

ili
ty

10
−Q

/
10

unboosted
linear, s = 5
linear, s = 10

Figure 2 Probability boosting. The effect of (A) multiplicative reinforcement, (B) extracting roots (and shifting) and (C) using a partially linear
function on the error probabilities is shown for the Illumina 1.8+ encoding and exemplary boosting parameters.

Full-size DOI: 10.7717/peerj.11717/fig-2

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 10/37

http://dx.doi.org/10.7717/peerj.11717/fig-2
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

columns. However, the score of an alignment column should now depend on the
operation, the participating bases and their quality scores. These quality scores
(respectively the error probabilities obtained from them) are used to compute the
probability of the observed operation (possibly after boosting) and the score of the
alignment column is adapted accordingly. We formalise this notion by extending the
traditional column-wise definition of the alignment score as follows:

Definition 2 (Quality-weighted alignment score) Let an alphabet Σ, a scoring function
δ and two strings S and T over the alphabet Σ be given. The quality-weighted score of an
alignment (S′, T′) of length l of S and T is then defined as the sum of the scores of the
alignment columns

dwðS0;T 0Þ :¼
Xl
i¼1

wðS0;T 0; i; d; bI; bO; hÞ

for a quality-weighted cost function w, which is parameterised by the scoring function δ,
an inner boosting function βI, an outer boosting function βO and a possibly empty collection
θ of parameters specific to w.

The definition allows two boosting functions in order to apply the boosting at different
levels. The inner boosting function directly processes the individual error probabilities of
the nucleotides, while the outer boosting function applies to combined probabilities
associated with observing an operation.

Table 2 provides an overview of all quality-weighted cost functions considered in
this paper, differing in the alignment operations affected by the quality weighting and
their parameterisation. Contrary to some of the original methods shown in Table 1,
all adapted versions consider the quality information of both sequences. In this
section, we exemplarily describe one of our quality-weighted cost functions in detail
and provide its formal definition. Details of the remaining cost functions, including
their definitions and how they have been derived, can be found in the supplement
(Section A.1).

Convergence of operation costs. The following quality-weighting technique considers
the quality of both sequences and affects substitutions as well as insertions and deletions.
The underlying idea, which—to the best of our knowledge—has not been described before,
is that the match score on the one side and the scores of the actual edit operations on the
other side should converge towards each other with decreasing sequence quality.
Consequently, matches start to incur costs, while mismatches, insertions and deletions are
penalised less when using a minimising scoring function.

In order to implement the convergence idea, we have to specify by how much the costs
can change at most and how the deviations are related to the sequence quality.
For substitutions, the latter is addressed by making the deviations proportional to the
probability of the opposite operation. We can compute the probability of an actual
mismatch based on the observed agreement of the bases a and b as

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 11/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

Prðmismatch j a ¼ bÞ ¼ 1� Prðmatch j a ¼ bÞ
¼ 1� ðð1� paÞð1� pbÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

correctly called

þðj�j � 1Þ pa
j�j � 1

pb
j�j � 1|ffl{zffl}

consistently miscalled

Þ

¼ pa þ pb � papbj�j
j�j � 1

and, similarly, the probability of a match when observing a mismatch as

Prðmatch ja 6¼ bÞ ¼ ð1� paÞpb
j�j � 1

þ pað1� pbÞ
j�j � 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

single miscall

þðj�j � 2Þ papb
ðj�j � 1Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

two different miscalls

¼ ðpa þ pb � papbÞj�j � pa � pb
ðj�j � 1Þ2

for pa and pb the error probabilities of a and b, respectively. For insertions and deletions,
the deviation is proportional to the error probability of the single participating base.

In the following, we present two implementations of our method, differing in how the
maximum deviation per operation is determined. The first version considers a balance cost

Table 2 Summary of the quality-weighted cost functions implemented in GeFaST. Provides, for each method, the function name (in par-
entheses), a short description of the underlying idea, the affected operations (‘all’ comprises substitutions, insertions and deletions) and the available
parameters.

Method Synopsis Subject Parameters

Clement (wCL) Score a (mis)match by the linear combination of all possible
substitutions, weighted by probabilities.

Substitutions –

Frith (wFR) Modify the provided scoring matrix by incorporating error
probabilities into the underlying likelihood ratios.

Substitutions Scaling factor

Malde-A (wMA) Compute alternative scoring matrix by only using combined
error probabilities.

Substitutions Scaling factor

Malde-B (wMB) Weight substitution costs directly by the combined error
probabilities.

Substitutions –

Malde-C (wMC) Weight substitution, insertion and deletion costs directly by the
(combined) error probabilities.

All operations –

Kim-A (wKA) Score an operation by the linear combination of all possible
substitutions, insertions and deletions, weighted by
approximated probabilities.

All operations –

Kim-B (wKB) Score an operation by the linear combination of all possible
substitutions, insertions and deletions, weighted by precise
probabilities.

All operations –

Converge-A (wCA) Let the costs of the operations converge with decreasing quality
against a balance cost positioned between the match reward
and the penalties of the other edit operations.

All operations Balance factor

Converge-B (wCB) Let the costs of the operations converge with decreasing quality
against each other, up to an operation-specific amount.

All operations Maximum deviations

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 12/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

that lies between zero and the smallest penalty in the transformed scoring function δ′.
The scores of each operation converge towards this balance cost with decreasing quality.
The balance cost can be positioned closer to zero (match) or to the penalties, thus
determining the maximum deviations, through a balance factor between 0 and 1. Formally,
this leads to the following cost function:

Definition 3 (Converge cost function, Version A) Let an alphabet Σ, a scoring function
δ, an inner boosting function βI, an outer boosting function βO and an alignment (X′, Y′) ∈
(Σ ∪ { − }) � × (Σ ∪ { − }) � be given. Further, let b ∈ [0,1] be a balance factor and cb = b ·min
{m′, g′o, g′e} the corresponding balance cost. The quality-weighted Converge-A cost function
for an alignment column is then defined as

wCAðX0;Y 0; i; d; bI ; bO; bÞ

¼

cb � bO pX0þpY 0�pX0pY 0 j�j
j�j�1

� �
; X0

i ¼ Y 0
i

m0 � ðm0 � cbÞ � bO ðpX0þpY0�pX0pY0 Þj�j�pX0�pY0
ðj�j�1Þ2

� �
; X0

i 6¼ Y 0
i ;X

0
i ;Y

0
i 2 �

gðpY 0 ; iÞ; X0
i ¼ �

gðpX0 ; iÞ; Y 0
i ¼ �

8>>>>><
>>>>>:

for pX0 ¼ bIðpðX0
iÞÞ and pY 0 ¼ bIðpðY 0

i ÞÞ the error probabilities of X0
i and Y 0

i and

gðp; iÞ ¼ ðg 0e � ðg 0eÞ � cb � bOðpÞÞ þ openðX0;Y 0; iÞ � ðg 0o � ðg 0oÞ � cb � bOðpÞÞ:
The second version of our convergence cost function does not use a balance factor.

Instead, it allows to specify a maximum deviation per operation explicitly and, thus, is
more flexible as this can, e.g., specifically exclude certain operations from the convergence.
The corresponding cost function is then formally defined as follows:

Definition 4 (Converge cost function, Version B) Let an alphabet Σ, a scoring
function δ, an inner boosting function βI, an outer boosting function βO and an alignment
(X′, Y′) ∈ (Σ ∪ { − }) � × (Σ ∪ { − }) � be given. Further, let mma;mmi;mgo;mge 2 Rþ

0 be
the maximum quality-dependent score deviations for matching, mismatching, opening and
extending a gap, respectively. The quality-weighted Converge-B cost function for an
alignment column is then defined as

wCBðX0;Y 0; i; d;bI ;bO;mma;mmi;mgo;mgeÞ

¼

mma � bO pX0 þ pY 0 � pX0pY 0 j�j
j�j � 1

� �
; X0

i ¼ Y 0
i

m0 �mmi � bO
ðpX0 þ pY 0 � pX0pY 0 Þj�j � pX0 � pY 0

ðj�j � 1Þ2
 !

; X0
i 6¼ Y 0

i ; X
0
i ;Y

0
i 2 �

gðpY 0 ; iÞ; X0
i ¼ �

gðpX0 ; iÞ; Y 0
i ¼ �

8>>>>>>>>><
>>>>>>>>>:

for pX0 ¼ bIðpðX0
iÞÞ and pY 0 ¼ bIðpðY 0

i ÞÞ the error probabilities of X0
i and Y 0

i and

gðp; iÞ ¼ ðg 0e �mge � bOðpÞÞ þ openðX0;Y 0; iÞ � ðg 0o �mgo � bOðpÞÞ:

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 13/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

Model-supported methods
Our second group of quality-aware methods considers the sequence quality in the
clustering and refinement phase of the iterative clustering framework in a more general
way. Instead of using the quality information to weight alignment scores, these methods
are inspired by DADA2’s model-based approach for the inference of ESVs and try to
improve OTU clustering by drawing on the notion of consistency.

As previously described, the main idea of DADA2 can be summarised as a split-and-
shuffle strategy. Based on the abundance p-value, a new partition is created for an
amplicon if it is not consistent with its current partition. Subsequently, amplicons are
shuffled to the partition that has produced it most likely (based on the expected number of
copies of that sequence).

The key idea for using the approach of DADA2 in our OTU clustering scenario is to
reverse its strategy in order to help deciding whether (and where) to add amplicons to
clusters. While DADA2 removes an amplicon when it is not consistent with its current
partition, we check whether, e.g., an amplicon is consistent with a cluster to which we
would like to add it. If the amplicon is not consistent (i.e. DADA2 would rather put it in a
separate partition), we abstain from adding it to the cluster (even though it might be
similar to the current subseed based on their sequences). Similarly, if there are multiple
consistent clusters, we choose the one with the highest expected number of copies.

Here, we focus on the conceptual description of the model-supported clustering and
refinement methods. Additional information, including pseudocode descriptions, is
available in the supplement (Section A.2).

Consistency-checked clustering
The central idea underlying consistency-checked clustering is to complement (or even
replace) the purely distance-based decision on whether an amplicon is added to a cluster
by an evaluation of the consistency between the current subseed and the candidate
amplicon. The aim is to avoid possibly erroneous additions to the cluster by also consulting
the consistency model, which involves the sequences and abundances as well as quality
information. Algorithm 2 outlines the main steps of the consistency check, whose details
have been provided in the description of DADA2. As mentioned there, the default
abundance p-value threshold of DADA2 was found to be a robust choice. Consequently,
we consider it a sensible starting point and also use ΩA = 10−40 as the default value in
GeFaST. In contrast to DADA2, however, GeFaST does not derive the transition
probabilities pða ! b; qÞ in Eq. (1) from the data (but from quality score q) and, by default,
only distinguishes between match and mismatch. This simplification reduces the number
of parameters and avoids the problem of overfitting the model to the data.

Clustering amplicons by similarity and consistency. Our first model-supported
clustering method (Algorithm S1) is a direct extension of the classic iterative clustering
strategy. As before, an unswarmed amplicon has to be similar to the current (sub)seed with
respect to clustering threshold tc and the used notion of distance (e.g. the number of
differences in an optimal alignment). In addition, an amplicon deemed similar is now also
checked for consistency with respect to the subseed (Algorithm 2). Consequently, only

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 14/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

those amplicons that are similar to and consistent with the current subseed are added.
Besides the clustering threshold, the method also depends on the abundance p-value
threshold �A and can be customised by providing alternative transition probabilities.

Clustering amplicons by consistency. The second model-supported clustering method
modifies the classic iterative clustering strategy by replacing the distance-based
comparison with the consistency check (Algorithm S2). Consequently, this method does
not depend on a clustering threshold to determine similar amplicons as candidates. Instead
of first determining partners, it directly considers the consistency between the current
subseed and each unswarmed amplicon (again Algorithm 2) in order to decide whether it
should be added to the current cluster. Thus, the abundance p-value threshold ΩA

effectively replaces the distance threshold tc here. Analogous to the previous method,
custom transition probabilities can be specified to adapt the error model.

Amplicons with abundance one are kept as separate clusters. The Poisson model (Eq.
(2)) borrowed from DADA2 always produces an abundance p-value of one for those
amplicons. Consequently, all of them would be found consistent with the first seed,
possibly distorting the clustering. Since each of the singleton clusters is also a light cluster
(from the perspective of the fastidious refinement idea), the amplicons can be assigned to
the other clusters by using one of the refinement methods presented below.

Consistency-guided cluster refinement
Next, we present alternatives to the generalised fastidious refinement method. Similarly,
the methods distinguish between light and heavy clusters based on a mass boundary and
attempt to attach light clusters to heavy ones. However, the proposed consistency-guided
refinement methods do not depend on a distance-based refinement threshold. Instead,
a light cluster can only be grafted onto a heavy one if a consistency is detected. Since a light
cluster can be consistent with multiple heavy clusters, the final grafting target is
determined by choosing the one with the highest expected abundance.

In contrast to the fastidious refinement, some of the consistency-guided refinement
methods also offer several options for the handling of light clusters still unattached after

Algorithm 2 Consistency check. Additional test in the consistency-checked clustering methods to
decide whether a candidate amplicon a, similar to the current subseed s, should be added to the current
cluster.

ISCONSISTENT (s, a, E, ΩA, N)

Input: s = subseed amplicon, a = candidate amplicon, E = error matrix (transition probabilities),
ΩA = abundance p-value threshold, N = number of all amplicons

Output: Boolean value indicating whether a is consistent with s

1 Align s and a to determine the set of substitutions S;

2 Calculate λs,a from S and E; // Equation (1)

3 Determine abundance p-value pA(ab(a),λs,a·ab(s)); // Equation (2)

4 Compute Bonferroni-corrected abundance p-value p′A = pA(ab(a),λs,a·ab(s))·N;

5 return p′A ≥ ΩA;

6 end

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 15/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

the refinement. As outlined in Algorithm S3, the light clusters can be kept as unattached
light clusters, discarded, united into a single cluster or reorganised by applying DADA2’s
split-and-shuffle strategy to them.

Attaching light swarms as a whole. Similar to the distance-based refiners, the first
consistency-guided refinement method handles the light clusters as indivisible units.
For each light swarm, only its seed l is considered and compared to the seeds of the heavy
clusters (Algorithm S4). The one showing the highest expected number of copies of l is
recorded and eventually checked for consistency. The unattached light clusters are then
processed by Algorithm S3 according to the chosen option and, subsequently, returned
together with the heavy clusters.

Attaching light-swarm amplicons independently. The second refinement method
does not consider light clusters as indivisible units. Instead, the given light clusters are
disassembled in order to reassign the amplicons individually. Algorithm S5 outlines how
the method proceeds: For each obtained amplicon, the heavy cluster with the highest
expected number of copies of it is determined. The amplicon is attached to that cluster if it
is consistent with it. Otherwise the amplicon forms a new, unattached light cluster.
Thus, the amplicons are attached independently from the seed and other amplicons that
have been in the same light cluster. Analogous to the previous method, the unattached
light clusters are processed by Algorithm S3 and then returned together with the heavy
clusters.

Shuffling light-swarm amplicons. The last refinement method presented here
considers light clusters as loosely coupled groups that can be modified (Algorithm S6).
The amplicons in a light cluster are again processed individually, with the seed being
considered last, but in contrast to the previous method, the cluster is not disassembled
right away. For each amplicon, the heavy cluster with the highest expected number of
copies is determined. If the amplicon is consistent with that cluster, it is moved to it.
Otherwise the amplicon remains in the light cluster. The seed is subject to the additional
constraint that it can only leave its cluster if all other members have already been moved to
others, then effectively resolving the cluster. When an amplicon leaves the cluster, it
might cause a gap in the chain of links underlying the cluster. Thus, if a light cluster is not
resolved, the remaining members are rearranged into a new star-shaped cluster with the
seed as its centre. In contrast to the other two methods, the new light clusters are not
processed subsequently.

Quality-aware clustering in GeFaST
In order to incorporate the quality-aware methods presented above into GeFaST, its
structure has been extensively revised. However, its usage has remained largely unchanged
and the tool still provides a command-line interface very similar to Swarm. We outline the
new structure of GeFaST in the following.

The workflow of GeFaST, producing (structured) clusters from a set of amplicons,
comprises up to four now clearly separated phases: preprocessing, clustering, cluster
refinement (optional), and output generation (Fig. 3). Each phase is managed by and
encapsulated in a different component of GeFaST in order to hide the inner workings

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 16/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

from the other phases. Consequently, the components serve as blackboxes to the other
components and the major data storages containing the amplicons and clusters, allowing
only a predefined collection of intended interactions. Besides the restructured workflow,
GeFaST now offers different modes in order to group related clustering techniques
and notions of distance between amplicons. The chosenmode influences the Configuration
component, which guides the execution of GeFaST and provides the parameters to the
different phases. Moreover, the configuration is responsible for managing the construction of
the components executing the phases, configuring them appropriately and injecting them
into the workflow in order to run GeFaST in the selected mode. Taken together, the new
structure allows to exchange implementations and to add new methods like the quality-aware
ones more easily.

Sequence file(s) Configuration file Command-line parameters

Configuration

Preprocessor

AmpliconStorage

Clusterer

SwarmStorage

ClusterRefiner

SwarmStorage

OutputGenerator

Output files

informs con-
struction and
behaviour

Figure 3 Clustering workflow of GeFaST. The workflow consists of the four phases preprocessing,
clustering, cluster refinement (optional) and output generation. The overall execution of each phase is
managed by a single, exchangeable component. The different phases communicate only through the
amplicon and cluster representations. The actual implementations and their parameters are chosen
according to the configuration. Full-size DOI: 10.7717/peerj.11717/fig-3

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 17/37

http://dx.doi.org/10.7717/peerj.11717/fig-3
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

The two previously available notions of distance based on the number of edit
operations, i.e. the Levenshtein (or edit) distance and the score-based Levenshtein distance
(as used in Swarm), are now grouped into the Levenshtein mode. In preparation for the
quality-weighted alignment methods, we added the alignment-score mode, which uses
the score of an optimal alignment (instead of the number of edit operations in it) as the
distance between two amplicons. Moreover, clustering amplicons solely by consistency
is encapsulated in the consistency mode as it does not depend on a distance threshold
like the other two modes. The classic iterative clustering strategy as well as its two
consistency-checked variants are incorporated as Clusterer implementations.
Similarly, the refinement methods are added as ClusterRefiner implementations.
The distance-based clusterers and refiners are designed independent of particular
distance functions, rather using them as blackboxes. We make use of this flexibility by
implementing the quality-weighted alignment methods as distance functions that can be
combined with these clusterers and refiners. These distance functions come with
several additional parameters and in order to make their use more explicit, we included
them in quality-weighted variations of the Levenshtein and alignment-score mode,
respectively. The quality Levenshtein mode uses the score-based Levenshtein distance
with a quality-weighted cost function and computes the distance between amplicons
as the number of edit operations in an optimal alignment. Similarly, the quality
alignment-score mode involves a quality-weighted cost function as well but considers the
score of the resulting alignment as the distance.

Detailed information on the usage of the different components and a more technical
description of GeFaST are available in the supplement (Section B).

EVALUATION OF QUALITY-AWARE OTU CLUSTERING
In order to evaluate the effect of incorporating quality information into the OTU clustering
process, we conducted several comparative analyses on a range of mock-community
data sets. To this end, we determined the clustering quality of our new quality-aware
methods on both synthetic and laboratory-determined amplicon data sets covering
different hypervariable regions of the 16S rRNA gene and compared it to both
quality-unaware iterative clustering and traditional de novomethods. The full evaluation
workflow, including the commands to prepare the data and execute the analyses, is
available in the evaluation repository accompanying the paper.

Data sets. The synthetic data sets were obtained as described by Franzén et al. (2015)
through in silico sequencing using ART (Huang et al., 2011; VanillaIceCream release),
simulating paired-end sequencing with the Illumina MiSeq platform. The mock
communities assembled by Franzén et al. consist of references from the phylum
Bacteroidetes, randomly selected from the Greengenes database (DeSantis et al., 2006,
release 13_5) at three different levels of complexity: low (LC, containing 100 references),
medium (MC, 250) and high (HC, 500). At each level, 10 mock communities were generated
and each mock community was used to obtain two amplicon data sets covering the
V3-V4 region (2 × 250 bp reads) and the V4 region (2 × 150 bp reads), respectively.

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 18/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

Following the procedure described by Franzén et al., each read pair was turned into a single
sequence by concatenating the reverse complement of the second read to the first read.

Moreover, we included two mock communities that were also used by Callahan et al.
(2016) in the evaluation of DADA2. The associated amplicons were actually sequenced
using the MiSeq platform (2 × 250 bp reads). The balancedmock community contains 59
bacterial and archaeal organisms (represented by 128 reference sequences), with reads
coming from the V4 region. In contrast, the hmp community involves reads from the V3-V4,
V4 and V4-V5 region, obtained from genomic isolates of 21 bacteria (115 reference
sequences). The amplicons of each mock community were used to generate two data sets:
single (using only the forward reads) and paired (merging forward and reverse reads).

Table 3 provides further statistics on the data sets. In addition, a more detailed
description of the data sets and how they have been generated can be found in the
supplement (Section C).

Comparison of traditional and quality-weighted alignments. Our first evaluation
analysed the effect of incorporating quality-weighted cost functions into the alignment
process. To this end, we compared the clustering quality of GeFaST (v2.0.1) in the
different quality-unaware and quality-weighted modes. Consequently, the evaluation was
divided into two parts. First, we compared the alignment-score mode with the quality
alignment-score mode and, then, repeated the analysis for the Levenshtein mode and its
quality-weighted counterpart.

In both parts, we combined the respective quality mode with each of the nine
quality-weighted cost functions listed in Table 2. Similar to previous analyses, we used
Swarm’s and GeFaST’s default scoring function δ = (5, −4, −12, −4) throughout this
evaluation to investigate the general behaviour of the iterative clustering approach. This
default is then transformed into the minimising scoring function δ′ = (0, 18, 24, 13) as
outlined in description of the quality-weighted alignment methods. In practice, the scoring
function should be adapted to the research question and data at hand (States, Gish &
Altschul, 1991; Pearson, 2013). We evaluated all cost functions with default parameters in

Table 3 Overview of the size and quality of the mock-community data sets used in the evaluation.
For the different kinds of synthetic data sets, the values are averaged over the respective ten data sets
of each kind.

Data set(s) Number of reads Average length Average quality

Synthetic LC_V3-V4 1,988 500.0 33.9

LC_V4 1,988 300.0 35.4

MC_V3-V4 4,966 500.0 33.9

MC_V4 4,966 300.0 35.4

HC_V3-V4 9,958 500.0 33.9

HC_V4 9,958 300.0 35.4

Laboratory balanced_single 33,523 220.0 36.8

balanced_paired 21,808 250.8 40.4

hmp_single 73,071 220.0 33.6

hmp_paired 19,882 296.5 37.9

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 19/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

their unboosted form as well as in various boosted variants. Each cost function was
combined with the different boosting functions and parameters as follows: linear (s = 0, 5,
…, 35), mult (c = 5, 10, 15, 20, 50, 100, 250, 500, 1000), root (d = 2, 3,…, 10) and rootshift
(full shift, d = 2, 3, … 10.) In addition, each unboosted cost function was used in two
variants (with weighted and unweighted matches). Thus, there were four variants of each
combination of cost function and boosting function (with set parameters), which differed
in their handling of the matches as well as in whether the boosting function was used
for inner or outer boosting. Consequently, each cost function was considered in 142
variants. For the purpose of a more thorough evaluation, we also included Swarm (v3.0.0)
and the classic de novo clustering toolsUSEARCH (Edgar, 2010) and VSEARCH (Rognes
et al., 2016). Since GeFaST sorts the input by decreasing abundance, we ran USEARCH
(v11.0.667) with the command cluster_fast and option -sort size and used the
cluster_size command of VSEARCH (v2.14.2). In addition, we included the
UPARSE-OTU algorithm, the recommended OTU clustering method in USEARCH,
through the cluster_otus command. Hereinafter, we refer to USEARCH with the
cluster_otus command asUPARSE. In order to assess the performance, we considered
the variants of GeFaST shown in Table 4 and the other tools as listed above. For the sake
of a fair comparison, all tools were run using a single thread.

All tools (except UPARSE) were executed with 10 different clustering thresholds on all
the data sets described above, assuming an Illumina 1.8+ quality encoding. The threshold
was varied between 1 and 10 when running Swarm or GeFaST in (quality) Levenshtein
mode and between 20 and 200 (in steps of 20) in (quality) alignment-score mode.
USEARCH and VSEARCH were run with thresholds from 0.99 to 0.90 with a step size of
0.01. UPARSE was used with an identity threshold of 0.97, which cannot be changed.

Clustering and refinement with a consistency model. The second evaluation
investigated the impact of the consistency model on the iterative clustering strategy in
order to assess whether OTU clustering can benefit from ideas coming from the inference
of ESVs. The clustering quality of the model-supported clustering and refinement methods
was evaluated by running GeFaST in three modes and with different combinations of
Clusterer and ClusterRefiner implementations. Both the alignment-score and the
Levenshtein mode used the ClassicSwarmer or ConsistentClassicSwarmer in the
clustering phase, while the refinement was performed by the FastidiousRefiner, the
LightSwarmAppender (LSA), the LightSwarmRefiner (LSR) or the
LightSwarmShuffler (LSS). We refer to variants using the ClassicSwarmer and
ConsistentClassicSwarmer as unchecked and checked clustering, respectively. LSA and
LSR were evaluated for all four processing options and, when using the
FastidiousRefiner, the refinement threshold tr was obtained by either incrementing or
doubling the clustering threshold tc. The consistency mode employed the
ConsistencySwarmer in the clustering phase and all the refiners stated above (except the
FastidiousRefiner) in the refinement phase. In total, 58 combinations of mode,
clusterer and cluster refiner were evaluated. As in the first evaluation, we also included
Swarm, USEARCH (cluster_fast command with the option -sort size),
VSEARCH (cluster_size command) and UPARSE. While designed for the inference

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 20/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

of exact sequences, we also ran DADA2 (v1.10.1) on the data sets and reconstructed the
clusters from the inferred sequences and intermediate information on the partitions.
Together with the results of the quality-unaware variants of GeFaST, these reconstructed
clusters primarily served the assessment of the consistency-based variants combining
concepts from both OTU clustering and sequence inference. All variants of GeFaST and
the other tools described above were included in the performance evaluation (again using a
single thread in each case).

GeFaST, Swarm, USEARCH and VSEARCH were again executed with 10 different
clustering thresholds on all the data sets. The clustering threshold ranged from 1 to 10 for
Swarm and in Levenshtein mode and from 20 to 200 (with increments of 20) in

Table 4 Overview of the unboosted and boosted variant considered as the best choice for the
different quality-weighted cost functions in quality alignment-score and quality Levenshtein
mode. Indicates whether matches are quality-weighted and, for the boosted variant, states the boost-
ing type and function (with the used parameter in parentheses).

Cost function Quality alignment-score mode Quality Levenshtein mode

Matches Type Function Matches Type Function

Clement

– unboosted unweighted – – weighted – –

– boosted unweighted inner mult (15) weighted inner mult (1000)

Converge-A

– unboosted unweighted – – weighted – –

– boosted unweighted outer mult (15) weighted outer mult (1000)

Converge-B

– unboosted unweighted – – weighted – –

– boosted unweighted outer mult (15) weighted outer mult (1000)

Frith

– unboosted unweighted – – weighted – –

– boosted weighted outer rootshift (2) weighted inner linear (0)

Kim-A

– unboosted unweighted – – weighted – –

– boosted unweighted inner root (9) weighted inner root (10)

Kim-B

– unboosted unweighted – – weighted – –

– boosted unweighted outer linear (20) weighted inner root (10)

Malde-A

– unboosted weighted – – weighted – –

– boosted weighted outer root (3) weighted outer mult (100)

Malde-B

– unboosted unweighted – – weighted – –

– boosted unweighted outer mult (20) weighted inner mult (1000)

Malde-C

– unboosted unweighted – – weighted – –

– boosted unweighted outer mult (10) weighted inner rootshift (8)

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 21/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

alignment-score mode. USEARCH and VSEARCH were run with thresholds from 0.99
to 0.90 with a step size of 0.01. DADA2 was executed only once with default parameters
on each data set because it does not use a distance threshold, whileUPARSE again used its
fixed threshold of 0.97.

Measurement of clustering quality and performance. We assessed the clustering
quality using ground truths and three metrics analogous to previous evaluations of the
iterative OTU clustering strategy (Mahé et al., 2014; Müller & Nebel, 2018). As in these
previous works, we mainly considered the adjusted Rand index (Rand, 1971; Hubert &
Arabie, 1985), which measures the agreement between the clusters and the taxonomic
assignment and corrects for chance. In addition, we also evaluated the precision,
quantifying how much amplicons in a cluster also agree in their taxonomic assignment,
and the recall, measuring the extent to which amplicons with the same taxonomic
assignment are clustered together.

The ground truths were derived from the references provided with the data sets.
For each synthetic data set, it is obtained by keeping track of the origins of the reads
throughout the sequencing simulation. The ground truths of the mock communities were
determined by matching the reads against the respective reference sequences using
VSEARCH (usearch_global command) with a 97% identity threshold. Section C of the
supplement provides additional details on the procedures.

We compared the clustering quality of the different variants (and tools) in terms of their
peak performance and their robustness. In order to assess themaximum clustering quality
of a variant on a given data set, we determined the run leading to the highest adjusted
Rand index and recorded the corresponding precision, recall and adjusted Rand index.
With respect to the robustness, we first considered the average clustering quality over the
whole threshold range, recording the average precision, recall and adjusted Rand index
over all 10 runs. Since the threshold range was chosen to be quite broad, it might have
already contained some thresholds beyond the range viable for the examined variants.
Therefore, we also determined the N-best average clustering quality, which averages the
three quality metrics over the runs with the N highest adjusted Rand index values.
We considered the N-best average for N = 5 in our evaluations.

While focusing on the clustering quality of the presented methods, we also evaluated
their performance by measuring the runtime and memory consumption. To this end, we
used the GNU time program with the resource specifiers e and M. Specifier e returns
the elapsed wall clock time, while M provides the maximum resident set, describing the
largest amount of main memory assigned to a program over the course of its execution.

Clustering based on quality-weighted alignments
In the following, we present the main results of our first evaluation analysing the effect
of incorporating quality information directly into the alignment computation. The
description of the results is split into two parts, addressing the quality alignment-score and
quality Levenshtein mode separately. Table 4 lists the best unboosted and boosted variant
per cost function and mode. These are also the variants shown in the quality plots

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 22/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

accompanying the descriptions. Additional plots and more detailed results on the different
cost functions are provided in the supplement (Section C.2).

Quality alignment-score mode
An overview of the clustering quality ofGeFaST on the different data sets when using the
quality-weighted cost functions to directly compute the distance between amplicons is
provided in Fig. 4. In contrast to the Franzén data sets covered below, the alignment-score
mode and its quality-weighted counterpart were mostly identical in terms of the
maximum clustering quality on the Callahan data sets, almost regardless of the used
quality-weighted cost function. With the exception of a few occasional and small
improvements (e.g. using the Kim-A cost function on the balanced_paired data set),
most variants did not change or (slightly) lowered the clustering quality. The effect on the
average clustering quality was similar.

On all Franzén data sets, however, the clustering quality of the unboosted
quality-weighted cost functions (in terms of the maximum adjusted Rand index) was
already as good as or better than the one of the alignment-score mode. Among the
unboosted variants, Frith and Malde-A attained a distinctly higher clustering quality,

Figure 4 Clustering quality of GeFaST (modes: as, qas), USEARCH, VSEARCH, UPARSE and Swarm on the Callahan and Franzén data sets.
Shows the maximum adjusted Rand index of each tool or variant (see Table 4) per data set. For Franzén data, the maxima of the 10 actual data sets
per combination of complexity and read type have been averaged. Full-size DOI: 10.7717/peerj.11717/fig-4

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 23/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/fig-4
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

improving it on average by 4.2% and 2.8%, respectively. The best boosted variant of almost
each cost function tended to provide another, even more notable improvement on top
of its unboosted counterpart. Frith and Malde-A also showed the highest clustering quality
of the boosted variants, increasing the maximum adjusted Rand index on average by 8.3%
and 10.4%, respectively, compared to the alignment-score mode. Most of the other cost
functions led to increases between 3% and 5%. The unboosted and boosted variant of the
Kim-B cost function trailed behind notably, being the only cost function that did not
improve on the alignment-score mode. Overall, using the quality-weighted cost functions
increased the clustering quality more strongly on the V3-V4 data sets compared to the
V4 data sets (at least one and a half times as strong for most cost functions). The observed
gains in the adjusted Rand index were typically associated with an increased precision and,
on LC and MC data sets, with an at least stable recall. On HC data sets, the recall tended
to decrease more often but did not outweigh the increases in precision. The clustering
quality of both the alignment-score mode and its quality-weighted equivalent decreased in
a similar way with increasing mock-community complexity, but the absolute
improvements on the V3-V4 and V4 data sets were relatively stable or grew even slightly.

The quality-weighted cost functions, especially in their boosted variants, also increased
the average clustering quality, in particular on the V3-V4 data sets. While V3-V4 and
V4 data sets showed a quite similar maximum clustering quality of the alignment-score
mode on each level of complexity, the average quality differed considerably due to a large
decline on V3-V4 data sets. The boosted quality-weighted cost functions shared this
tendency with the alignment-score mode, but most of them were able to reduce the effect
by at least half.

From Table 4 it is evident that the different cost functions also favoured different
variants to attain their maximum clustering quality. Except for Frith and Malde-A, all
cost functions required to exclude matches from the quality weighting to produce
meaningful results. Frith and Malde-A, in contrast, were able to handle both weighted and
unweighted matches (preferring different boosting functions in each case) but benefited
more from including them. The majority of the cost functions worked best with outer
boosting and while some cost functions (e.g. all Malde versions) attained similar results for
inner and outer boosting, others (including the Kim cost functions) were heavily affected
by the choice. Multiplicative reinforcement and extracting roots were the most popular
boosting functions. The three occurrences of the latter were associated with inner boosting
and a high degree (Kim-A) or outer boosting and a small degree (Frith, Malde-A).
The multiplicative reinforcement, in turn, was used as an outer boosting function four
out of five times and the best boosting parameter lay in a narrow range around 15.

In contrast to the alignment-score mode,GeFaST with quality-weighted cost functions
(above all Frith and Malde-A) achieved a similar or even better maximum adjusted Rand
index compared to USEARCH and VSEARCH on the different Franzén data sets.
These improvements were accompanied by a reduction of the gap to these tools in terms of
the precision and, partly, by an additional increase of the already higher recall. Compared
to UPARSE and Swarm, the clustering quality of the quality-unware alignment-score
mode was already similar or higher and, thus, the quality-weighted cost functions further

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 24/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

increased the margins. In addition to the maximum clustering quality, the
quality-weighted cost functions led to a similarly improved N-best average adjusted Rand
index (in particular on the V3-V4 data sets). However, USEARCH, VSEARCH and
UPARSE attained, in total, a higher clustering quality on the Callahan data sets. While
GeFaST in quality alignment-score mode (as well as in alignment-score mode) showed a
similar maximum and average clustering quality on the balanced data sets, it scored
notably lower on the hmp data sets (especially on the paired one). The clustering quality
of GeFaST and Swarm was essentially the same on the Callahan data sets, except for a
small advantage of Swarm on the balanced_paired data set due to a higher recall.

Quality Levenshtein mode

In the second part of the analysis, we considered the clustering quality of GeFaST on the
different data sets when using the number of edit operations in alignments based on the
quality-weighted cost functions as the distance between amplicons. Similar to the first
part, the clustering quality of the quality Levenshtein mode was almost identical to the
one of the (quality-unaware) Levenshtein mode on the Callahan data sets. The vast
majority of the examined variants did not affect the clustering quality (neither the
maximum one nor on average). While we did observe some small improvements, these
tended to be rather occasional or were accompanied by adverse results on other data sets.

On the contrary, the maximum clustering quality of all unboosted quality-weighted cost
functions was equally good or slightly better compared to the Levenshtein mode on
Franzén data (Fig. 5). Whereas the unboosted cost functions increased the maximum
adjusted Rand index on average by only 0.2%, the best boosted variants improved it up to
3.1%. Malde-A provided the largest gains, followed by Clement and Malde-B with an
average increase of 1.8% and Frith with 1.0%. The higher adjusted Rand index usually
involved an increased precision and a slightly reduced recall. On the HC_V4 data set,
however, the trade-off tended to be in the opposite direction. Both the Levenshtein and the
quality Levenshtein mode decreased similarly with increasing mock-community
complexity, but the absolute improvements were at least stable for most cost functions
(even though the overall differences were small). In addition, the quality Levenshtein mode
improved the average clustering quality on Franzén data, especially when using boosted
cost functions and on the V4 data sets.

The quality-weighted cost functions again required different variants in order to attain
their maximum clustering quality (Table 4). All cost functions worked with both weighted
and unweighted matches, but all tended to benefit slightly more from including them.
Inner boosting was the preferred choice of the majority of the cost functions, even though
the differences between the best variants with inner respectively outer boosting were quite
small for most of them. Multiplicative reinforcement and extracting roots (both with
and without shifting) were again the preferred boosting functions. The multiplicative
boosting function worked best with the highest parameters (except when combined with
Malde-A) but showed no clear preference for inner or outer boosting. The root boosting
functions were usually associated with high degrees and inner boosting.

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 25/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

Even though the quality Levenshtein mode increased the maximum clustering quality of
GeFaST compared to the Levenshtein mode on the Franzén data sets, it was still notably
lower than the one ofUSEARCH andVSEARCH in most cases (in particular on the V3-V4
data sets). In contrast, the maximum clustering quality of the Levenshtein mode was already
similar to the one of Swarm and higher than the one of UPARSE. As a consequence, the
quality-weighted cost functions created an (even larger) advantage compared to these two
tools. Similarly, the (N-best) average clustering quality improved by using quality-weighted
cost functions. While the improvements enhanced the advantage of GeFaST on the V4
data sets, USEARCH, VSEARCH and UPARSE continued to be considerably better on
the V3-V4 data sets. Overall, they also attained a higher clustering quality on Callahan data.
GeFaST (in both Levenshtein modes) achieved a comparable maximum and average
clustering quality on the balanced data sets but fell behind USEARCH, VSEARCH and
UPARSE on the hmp data sets (especially on the paired one).

Performance
GeFaST in Levenshtein mode was faster than Swarm, USEARCH and VSEARCH for
large parts of the considered threshold range and outperformed UPARSE notably

Figure 5 Clustering quality of GeFaST (modes: lev, qlev), USEARCH, VSEARCH, UPARSE and Swarm on the Callahan and Franzén data
sets. Shows the maximum adjusted Rand index of each tool or variant (see Table 4) per data set. For Franzén data, the maxima of the 10 actual data
sets per combination of complexity and read type have been averaged. Full-size DOI: 10.7717/peerj.11717/fig-5

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 26/37

http://dx.doi.org/10.7717/peerj.11717/fig-5
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

irrespective of the used threshold (see Fig. S25 in the supplement). The alignment-score
mode of GeFaST was notably slower than the Levenshtein mode, especially for larger
thresholds. Consequently, it was comparable to the other tools only for the first three to
four threshold steps. As expected, using quality-weighted cost functions tended to increase
the runtime of GeFaST. Therefore, the quality Levenshtein and quality alignment-score
mode typically approached and surpassed the other tools earlier. However, there were
notable differences between the cost functions and the two quality modes. Except for the
few largest thresholds, most unboosted variants incurred similar and relatively moderate
runtime penalties. Averaged over the whole threshold range, all unboosted variants of the
quality Levenshtein mode increased the runtime between 10% and 27%. Similarly, the
unboosted variants of the quality alignment-score mode led to increases between 14% and
45%. The only exception was Malde-A, which lowered the runtime by more than one
third. The boosted variants of the quality Levenshtein mode were slower than their
unboosted counterparts. Except for Clement, Malde-B and to some extent Malde-A, their
runtime remained quite comparable to the variants without boosting. Compared to the
Levenshtein mode, the runtime of the boosted variants was between 14% and 70% higher
(not including Clement and Malde-B). In the quality alignment-score mode, however, the
boosted variants behaved differently. While Malde-A remained the fastest variant for
most thresholds, there are now several variants which were faster than the alignment-score
mode for large parts of the threshold range. On average, the boosted variants of Converge-A,
Converge-B, Kim-B, Malde-A and Malde-C were between 1% and 40% faster, while the
ones of the remaining cost functions increased the runtime by 8% to 22%.

The memory consumption of GeFaST was essentially the same in quality Levenshtein
and quality alignment-score mode and was not influenced by the chosen quality-weighted
cost function (Fig. S26). The two quality-unaware modes required less memory, with
the difference corresponding to the memory occupied by the quality scores. The other
tools, especially Swarm and UPARSE, had a considerably lower memory consumption
than GeFaST. However, much of the difference was due to the memory-intensive
preprocessing of the FASTQ file. When run with the same FASTA file provided to the
other tools, the memory consumption of GeFaST was comparable to the one of
USEARCH and VSEARCH.

Clustering with model-supported methods

Next, we describe the main results of our second evaluation analysing the effect of using
the consistency model during the clustering and refinement phases. The supplement
(Section C.3) provides additional plots and more detailed results on the different modes.

Figure 6 shows that the model-supported methods were often able to improve the
clustering quality compared to the purely distance-based variants of GeFaST, even
though there were distinct differences between some of the examined methods. While the
consistency mode differed notably from the two distance-based modes, the choice between
the alignment-score and the Levenshtein mode did not play a decisive role.
The alignment-score mode attained a slightly higher maximum adjusted Rand index on
V3-V4 data but tended to be very similar otherwise. The chosen clusterer made a bigger

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 27/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

difference, with checked clustering reaching a similar or higher clustering quality on
Franzén data, while unchecked clustering showed the clearly better results on Callahan
data. The consistency mode was comparable to the distance-based modes with checked
clustering on Callahan data but struggled on Franzén data. The unrefined and, on V3-V4

data, the refined variants suffered frommassive undergrouping or overgrouping, leading to
a clustering quality close to 0. On V4 data, in contrast, the refined variants attained a
reasonable clustering quality. It was still lower than the one of the corresponding variants
in the distance-based modes but the gap decreased notably with increasing complexity of
the data sets.

Both fastidious and consistency-based refinement improved the clustering quality
compared to unrefined clustering in the distance-based modes. The fastidious methods
increased the maximum adjusted Rand index up to 12.7% and 0.9% on Franzén and
Callahan data, respectively. The consistency-based methods, in turn, allowed
improvements between 6.0% and 16.7% on Franzén data and between 0.4% and 1.2% on
Callahan data. While the fastidious variants worked better on V3-V4 data, the

Figure 6 Clustering quality of GeFaST (modes: as, lev, cons), DADA2, USEARCH, VSEARCH, UPARSE and Swarm on the Callahan and
Franzén data sets.Alignment-score and Levenshtein mode were evaluated with and without the consistency check in the clustering phase. Shows the
maximum adjusted Rand index of each tool or variant per data set. For Franzén data, the average values of the 10 actual data sets per combination of
complexity and read type have been averaged. Full-size DOI: 10.7717/peerj.11717/fig-6

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 28/37

http://dx.doi.org/10.7717/peerj.11717/fig-6
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

consistency-based variants attained a higher maximum clustering quality on V4 and
single data. They also increased the maximum adjusted Rand index of GeFaST in
consistency mode by approximately 6% on Callahan data and were essential for obtaining
meaningful results on the V4 data sets.

The effect of the different refinement methods tended to be quite similar for the two
distance-based modes as well as for unchecked and checked clustering. On V4 data,
however, the consistency-based methods notably reduced the difference in clustering
quality between the alignment-score and Levenshtein mode observed for the unrefined and
fastidious variants. While the consistency-based refinement variants attained almost the
same clustering quality on Callahan data and in consistency mode, they formed three
groups in the distance-based modes on Franzén data. LSA and LSR reached the highest
clustering quality when discarding the remaining light swarms. The second group
comprised the option of LSA and LSR keeping all remaining light swarms as well as LSS,
while the remaining options of LSA and LSR formed the last group.
The consistency-based refinement methods tended to increase the recall and, with the
exception of the third group, kept the precision stable or even improved it on most data
sets.

In comparison to the other tools, GeFaST in alignment-score and Levenshtein mode
(especially with consistency-based refinement) attained a higher clustering quality on V4

data. While the unrefined variants were slightly worse than USEARCH and VSEARCH,
their clustering quality exceeded the one of Swarm,UPARSE andDADA2. The fastidious
refinement variants tended to surpass the other tools already slightly and the
consistency-based refinement variants in alignment-score and Levenshtein mode
increased the maximum adjusted Rand index of the other tools by at least 6.2%. On V3-V4

data, however, only the discarding consistency-based variants and the doubling fastidious
variants were able to achieve a similar or better clustering quality than USEARCH and
VSEARCH, while some variants of the distance-based modes showed a maximum
adjusted Rand index that was up to 13.8% lower. Compared to the remaining tools,
GeFaST also attained a higher clustering quality on V3-V4 data. As described above,
GeFaST in consistency mode struggled on V3-V4 data but produced comparable results
on the other data sets. On Callahan data, the best variants of GeFaST (unchecked
clustering followed by consistency-based refinement) usually reached a clustering quality
similar to or not far below the other tools. Except for hmp_paired, they were at most 4.5%
lower. DADA2 was slightly better than the best variants of GeFaST on the single data
sets, but GeFaST achieved an at least 4.4% higher clustering quality on the paired data
sets.

Compared to the unrefined variants, the different refinement methods substantially
lowered the number of clusters computed when reaching their respective maximum
clustering quality. The consistency-based refinement methods tended to decrease their
number more strongly than the fastidious ones on both Franzén and Callahan data, with
an effect potentially being twice as high (or more on Callahan data). Then again, the
variants of the second group mentioned above behaved similarly to the doubling fastidious
variant on Franzén data. The differences between the alignment-score and the Levenshtein

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 29/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

mode were also small in this regard, even though the former led to fewer clusters in some
cases (mainly unrefined and fastidious variants). Moreover, variants involving unchecked
clustering tended to produce a similar or lower number of clusters than those with checked
clustering. GeFaST with consistency-based refinement also led to fewer clusters than
USEARCH, VSEARCH and Swarm, while DADA2 and UPARSE usually produced the
lowest number of clusters.

The runtime of GeFaST in Levenshtein and alignment-score mode was considerably
higher when using consistency-checked clustering, especially for larger thresholds
(Fig. S32). The Levenshtein mode remained comparable to the other tools in the lower half
of the threshold range, whereas the alignment-score mode exceeded most of them already
after the first three threshold steps. When performing a refinement step, the runtime
of GeFaST also tended to quickly surpass the one of the other tools. Since checked
clustering tended to produce more clusters, the same refinement step was slower when
following on checked clustering compared to unchecked clustering. However, the
consistency-based variants were similar to each other in terms of their runtime after the
same clustering step. Both fastidious and consistency-based refinement could be very
time-consuming. The fastidious variants required more time as the threshold increased
due to their distance-based nature, while the consistency-based ones were particularly slow
for the small thresholds leading to a higher number of clusters. Compared to the
distance-based modes with consistency-checked clustering, the consistency mode of
GeFaST was even slower (both with and without refinement) and, thus, was also not
competitive with the other tools.

As explained for the quality-weighted methods, processing quality information notably
increases the memory consumption of GeFaST compared to the other tools. Similarly,
those variants with consistency-checked clustering or a consistency-based refinement
method showed a higher memory consumption than, e.g., unchecked clustering due to the
space occupied by the quality scores (Fig. S33). Performing a refinement did not
increase the memory consumption and there were only minor differences between
Levenshtein and alignment-score mode.

DISCUSSION
The evaluations in this paper showed that quality-aware methods can improve the
clustering quality of the iterative, de novo OTU clustering approach. Many of the
quality-weighted and model-supported methods implemented in GeFaST were able to
attain at least the clustering quality of the quality-unaware variants and to increase it on
different data sets, in some cases even notably. Other clustering tools like USEARCH
and VSEARCH still achieved better results on several data sets, but the quality-aware
methods often reduced the gap to them in these cases and surpassed them (even more) on
other data sets. At the same time, several distinct similarities and differences became
apparent among the quality-aware methods.

One of the most distinct similarities of both quality-weighted and model-supported
methods was their tendency to improve the clustering quality on Franzén data more
notably than on Callahan data. While both collections of data sets comprise reads of

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 30/37

http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717/supp-1
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

hypervariable regions of the 16S rRNA gene obtained from bacterial mock communities,
they differ in several other respects. Above all, one could argue that the non-synthetic
Callahan data sets lend themselves to more viable observations regarding the effect of the
quality-aware methods than the synthetically sequenced Franzén data sets. The ground
truths of the Franzén data sets, however, allow to evaluate the clustering quality more
precisely because they are complete and the origin of each read can be traced back due to
the synthetic sequencing. In contrast, only 79 to 86 % of the reads in the Callahan
data sets could be assigned taxonomically through searches in the reference databases.
Consequently, the Callahan ground truths may not be sufficiently complete or precise to
fully recognise the potentially fine-scale effects of the quality-aware methods.

Moreover, the way in which the quality-aware methods typically improved the
clustering quality might be another factor contributing to the lower effect on Callahan
data. The quality-weighted methods were typically associated with improvements of the
precision but it was already very close to the maximum when using quality-unaware
methods on Callahan data. Thus, there was little room for improvement and an increased
risk of overreaching, resulting in a lower clustering quality due to undergrouping.
The behaviour on the balanced_paired data set supports this observation. On this data
set, the precision was in general notably lower compared to the other Callahan data sets,
thus leaving some room for improvement. At the same time, balanced_paired was
the Callahan data set most amenable to improvements. We also observed a similar effect
for the model-supported refinement methods, which attained slightly larger improvements
on Callahan data (especially on the single data sets). These methods were more
strongly related to increasing the recall than the quality-weighted ones and the
quality-unaware methods did indeed leave more room for improving the recall than they
did for the precision.

Due to its iterative nature, the approach of Swarm and GeFaST is at risk of
overgrouping amplicons, eventually leading to a decreased clustering resolution. In terms
of our taxonomy-based evaluation, this would manifest itself in the aggregation of different
taxonomic groups in a single cluster and, thus, a lower precision. Comparing Swarm and
the quality-unaware variants ofGeFaSTwith the other tools, we indeed typically observed
a lower precision. As described above, the presented quality-aware methods were often
able to reduce or even close the gap to the other tools without lowering the overall
clustering quality. Thus, quality-aware methods appear as a way to address this issue.

Our evaluations also showed that the quality-weighted methods had a much larger
effect in the quality alignment-score mode than in the quality Levenshtein mode. This did
not come as a surprise as the modified scoring functions contribute directly to the distance
between the aligned sequences in the quality alignment-score mode, while changes in the
alignment score do not necessarily lead to a different or more complex alignment.
However, only such changes affect the distance in the quality Levenshtein mode. The fact
that the largest improvements in this mode tended to involve more extreme boosting
parameters and weighted matches (instead of rather modest parameters and unweighted
matches like in the quality alignment-score mode) indicates an attenuated effect too.
Nevertheless, the same cost functions (Malde-A and, to some degree, Frith) provided the

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 31/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

largest gains in both quality-weighted modes. These two cost functions, in fact, also differ
from the others in their approach. Instead of using probability weights or linear
combinations directly, their approaches are both related to the likelihood ratios of
substitution matrices. Frith and Malde-A were also the only cost functions profiting from
weighted matches in the quality alignment-score mode, suggesting that methods based on
likelihood ratios are more able to benefit from considering the quality information for
both matches and mismatches. The other cost functions appeared to be affected too
strongly from the gradually accumulating contributions provided by weighted matches.
When considering the alignment score as the distance between two sequences, an excess of
match contributions may start to obscure the contributions of the actual differences,
thus confusing the clustering process. However, looking at the quality Levenshtein mode,
we see that considering weighted matches during the alignment construction could still be
beneficial to all cost functions. As explained above, the number of edit operations is
more stable than the alignment score and, thus, the clustering process is less prone to be
confused by fluctuations in the alignment score due to the contributions from weighted
matches. In our evaluation, we also found that emphasising the differences between the
quality score with the help of the boosting functions was typically beneficial to the
clustering quality. The unboosted variants of the cost functions were also able to provide
some improvements but it seemed that without boosting the effect of quality weighting
was often too subtle and went unnoticed with respect to the distance function or the
clustering threshold. Overall, the multiplicative and root boosting functions were the
preferred choices, presumably because they increase the probabilities without
fundamentally changing the relationship between quality score and error probability.
The initial plateau of the multiplicative boosting function (see Fig. 2) had little impact
because correspondingly low quality scores were rare. There were also some general
tendencies with respect to the boosting parameter or the application of inner respectively
outer boosting, but the combinations considered best were, at least to some degree,
specific to the cost function. However, this was not surprising as the cost functions differ at
least slightly in their approach and, thus, could not be expected to react in the same way to
boosting. At the same time, these best combinations were quite robust and provided
improvements on different data sets.

In contrast to the quality-weighted methods, the differences between model-supported
methods used with the alignment-score and the Levenshtein mode were minor. Applying a
consistency check during the clustering phase did not affect the close similarity of the
two modes and, given comparable clusters, the consistency-based refiners performed
similar refinements since they are oblivious of the previously used notion of distance.
The consistency mode, in turn, performed worse than the distance-based modes as it
tended to have problems with finding the balance between undergrouping and
overgrouping. Among the model-supported methods, we also observed that some
consistency-based refiners consistently increased the clustering quality at least slightly,
while adding the consistency check to the clustering phase was not always preferable.
In contrast to the Franzén data, checked clustering led to a notably lower clustering quality
on Callahan data since its general tendency towards undergrouping by being too restrictive

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 32/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

could not be compensated. As discussed above for quality-weighted methods, the
already very high precision on these data sets might be a contributing factor. Furthermore,
the consistency-based refinement methods turned out to be useful alternatives to the
fastidious ones, able to attain a similar clustering quality, while also producing notably
fewer clusters. Keeping the unattached clusters after the refinement provided improved
and comparable results, while the variants (temporarily) combining the unattached
clusters into a single one showed too much overgrouping. Even though the discarding
variants look especially promising, their results are not directly comparable to the
non-discarding variants and they have to be used with caution. While they usually
discarded only a few per cent of the amplicons, they removed more than half of them on
some V3-V4 data sets. The V3-V4 data sets also tended to be more difficult to cluster for
consistency-based methods in general. In addition to the consistency-based refiners,
GeFaST in consistency mode as well as DADA2 also reached a lower clustering quality
than on V4 data. A possible reason could be the overall tendency of methods using the
consistency model to have difficulties handling reads that cover more than one
hypervariable region. Taken together, the evaluation of the model-supported methods
showed that the incorporation of ideas from the inference of ESVs into OTU clustering is
difficult yet potentially beneficial. The mixed results indicate that further research is
necessary to explore the potential of such hybrid methods and fine-tune them.

The aforementioned improvements of the clustering quality obtained by the
quality-aware methods were, however, not without cost. The quality-unaware variants of
GeFaST were able to attain a better or similar runtime compared to the other tools,
whereas the quality-weighted and model-supported methods were usually slower due to
often moderate but sometimes severe runtime penalties. Consequently, they will not yet be
able to process data sets as large as the quality-unaware methods and tools, even though
this heavily depends on the selected method and threshold. Moreover, the other tools
(including Swarm) support multithreading to scale up to larger data sets, while this is
currently not the case with GeFaST. Similar to Swarm, a parallelisation of parts of the
computation is, however, possible.

Based on our evaluation, we advocate the use of quality-aware methods on data sets
which tend to be structurally uniform. More precisely, we recommend quality-weighted
alignments, in particular the Frith and Malde-A variants with root boosting and weighted
matches, when clustering reads coming from the same location, which may span multiple
regions of interest (e.g. V3-V4 reads). Among these two cost functions, Malde-A was
overall more robust. Frith, in turn, relied less on any boosting as its unboosted form
already provided considerable improvements close to the boosted variants of all other cost
functions except Malde-A. Furthermore, we suggest model-supported refinement,
especially the simple LSA variant keeping all ungrafted amplicons, as an alternative to the
fastidious method in the opposite scenario, i.e. when the read collection can originate from
one or more locations but each individual read covers (primarily) only one region of
interest (e.g. the single data sets). In general, the quality-aware alignments provided
better results with the alignment-score mode, while the model-based refinement methods
worked similarly well with both alignment-score and Levenshtein mode.

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 33/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

CONCLUSIONS
In this work, we explored the applicability of quality-aware methods in the context of OTU
clustering. To this end, we presented a range of quality-weighted and consistency-model
supported methods for clustering and cluster refinement and implemented them as
extensions of the iterative, de novo clustering approach in GeFaST. Our analyses showed
that quality-aware methods are indeed able to improve the clustering quality.

These first encouraging findings call for additional analyses, ideally on a variety of data
sets, to verify the improvements and to potentially corroborate connections between the
characteristics of the data and the (gains in) clustering quality. This might also be combined
with the examination of the parameters available for some of the quality-weighted cost
functions (e.g. whether they can be used to adjust them to certain types of data).
The applicability of the quality-aware methods would also benefit from directing further
efforts to their performance in order to address the increased runtime and memory
consumption. In addition, there is room for improving the quality-aware methods
themselves. For example, the quality-weighted alignments could be adapted to consider
different base frequencies (Frith, Mori & Asai, 2012). Instead of incorporating the quality
information into transformed scoring functions, it might also be a worthwhile effort
to investigate the application of the generalised transformation of matches and mismatches
of varying degrees hinted at by Smith, Waterman & Fitch (1981). These degrees could be
derived from the quality scores of the participating bases and might even consider
quality-independent deviations in the error probabilities of different substitutions,
e.g. observed for transitions and transversions by Tikhonov, Leach & Wingreen (2015).

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive comments, which helped to
improve the quality of the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
We acknowledge support for the publication costs by the Open Access Publication Fund of
Bielefeld University. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Open Access Publication Fund of Bielefeld University.

Competing Interests
The authors declare that they have no competing interests.

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 34/37

http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

Author Contributions
� Robert Müller conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, implemented the software, and approved the final draft.

� Markus Nebel conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

GeFaST and the workflow to reproduce the evaluation are available at GitHub: https://
github.com/romueller/gefast and https://github.com/romueller/gefast-qa-evaluation.

Associated input and result files are available from PUB at https://pub.uni-bielefeld.de/
record/2951742.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.11717#supplemental-information.

REFERENCES
Bushnell B. 2014. BBMap. Available at https://sourceforge.net/projects/bbmap/.

Callahan BJ, McMurdie PJ, Holmes SP. 2017. Exact sequence variants should replace operational
taxonomic units in marker-gene data analysis. The ISME Journal 11(12):2639–2643
DOI 10.1038/ismej.2017.119.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2:
high-resolution sample inference from Illumina amplicon data. Nature Methods 13(7):581–583
DOI 10.1038/nmeth.3869.

Clement NL, Snell Q, Clement MJ, Hollenhorst PC, Purwar J, Graves BJ, Cairns BR,
Johnson WE. 2009. The GNUMAP algorithm: unbiased probabilistic mapping of
oligonucleotides from next-generation sequencing. Bioinformatics 26(1):38–45
DOI 10.1093/bioinformatics/btp614.

De la Bastide M, McCombie WR. 2007. Assembling genomic DNA sequences with PHRAP.
Current Protocols in Bioinformatics 17(1):11 4 1–11 4 15 DOI 10.1002/0471250953.bi1104s17.

Dear S, Staden R. 1992. A standard file format for data from DNA sequencing instruments. DNA
Sequence 3(2):107–110 DOI 10.3109/10425179209034003.

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P,
Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench
compatible with ARB. Applied and Environmental Microbiology 72(7):5069–5072.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics
26(19):2460.

Edgar RC. 2018. Updating the 97% identity threshold for 16S ribosomal RNA OTUs.
Bioinformatics 34(14):2371–2375.

Ewing B, Green P. 1998. Base-calling of automated sequencer traces using phred—II: error
probabilities. Genome Research 8(3):186–194.

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 35/37

https://github.com/romueller/gefast
https://github.com/romueller/gefast
https://github.com/romueller/gefast-qa-evaluation
https://pub.uni-bielefeld.de/record/2951742
https://pub.uni-bielefeld.de/record/2951742
http://dx.doi.org/10.7717/peerj.11717#supplemental-information
http://dx.doi.org/10.7717/peerj.11717#supplemental-information
https://sourceforge.net/projects/bbmap/
http://dx.doi.org/10.1038/ismej.2017.119
http://dx.doi.org/10.1038/nmeth.3869
http://dx.doi.org/10.1093/bioinformatics/btp614
http://dx.doi.org/10.1002/0471250953.bi1104s17
http://dx.doi.org/10.3109/10425179209034003
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

Franzén O, Hu J, Bao X, Itzkowitz SH, Peter I, Bashir A. 2015. Improved OTU-picking using
long-read 16S rRNA gene amplicon sequencing and generic hierarchical clustering.Microbiome
3:43.

Frith MC, Mori R, Asai K. 2012. A mostly traditional approach improves alignment of
bisulfite-converted DNA. Nucleic Acids Research 40(13):e100 DOI 10.1093/nar/gks275.

Frith MC, Wan R, Horton P. 2010. Incorporating sequence quality data into alignment improves
DNA read mapping. Nucleic Acids Research 38(7):e100 DOI 10.1093/nar/gkq010.

Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation
sequencing data. Bioinformatics 28(23):3150–3152 DOI 10.1093/bioinformatics/bts565.

Huang W, Li L, Myers JR, Marth GT. 2011. ART: a next-generation sequencing read simulator.
Bioinformatics 28(4):593–594 DOI 10.1093/bioinformatics/btr708.

Hubert L, Arabie P. 1985. Comparing partitions. Journal of Classification 2(1):193–218
DOI 10.1007/BF01908075.

Kim K, Kim M, Woo Y. 2008. A DNA sequence alignment algorithm using quality information
and a fuzzy inference method. Progress in Natural Science 18(5):595–602
DOI 10.1016/j.pnsc.2007.12.011.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods
9(4):357–359 DOI 10.1038/nmeth.1923.

Mahé F, Rognes T, Quince C, De Vargas C, Dunthorn M. 2014. Swarm: robust and fast clustering
method for amplicon-based studies. PeerJ 2(1):e593 DOI 10.7717/peerj.593.

Mahé F, Rognes T, Quince C, De Vargas C, Dunthorn M. 2015. Swarm v2: highly-scalable and
high-resolution amplicon clustering. PeerJ 3(2):e593 DOI 10.7717/peerj.1420.

Malde K. 2008. The effect of sequence quality on sequence alignment. Bioinformatics
24(7):897–900 DOI 10.1093/bioinformatics/btn052.

Müller R, Nebel ME. 2018. GeFaST: an improved method for OTU assignment by generalising
Swarm’s fastidious clustering approach. BMC Bioinformatics 19(1):321
DOI 10.1186/s12859-018-2349-1.

Needleman SB, Wunsch CD. 1970. A general method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of Molecular Biology 48(3):443–453
DOI 10.1016/0022-2836(70)90057-4.

Pearson WR. 2013. Selecting the right similarity-scoring matrix. Current Protocols in
Bioinformatics 43(1):351–359 DOI 10.1002/0471250953.bi0305s43.

Rand WM. 1971. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical Association 66(336):846–850 DOI 10.1080/01621459.1971.10482356.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool
for metagenomics. PeerJ 4(17):e2584 DOI 10.7717/peerj.2584.

Rosen MJ, Callahan BJ, Fisher DS, Holmes SP. 2012. Denoising PCR-amplified metagenome
data. BMC Bioinformatics 13(1):283 DOI 10.1186/1471-2105-13-283.

Salk JJ, Schmitt MW, Loeb LA. 2018. Enhancing the accuracy of next-generation sequencing for
detecting rare and subclonal mutations. Nature Reviews Genetics 19(5):269–285
DOI 10.1038/nrg.2017.117.

Schirmer M, D’Amore R, Ijaz UZ, Hall N, Quince C. 2016. Illumina error profiles: resolving
fine-scale variation in metagenomic sequencing data. BMC Bioinformatics 17(1):125
DOI 10.1186/s12859-016-0976-y.

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 36/37

http://dx.doi.org/10.1093/nar/gks275
http://dx.doi.org/10.1093/nar/gkq010
http://dx.doi.org/10.1093/bioinformatics/bts565
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1016/j.pnsc.2007.12.011
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.7717/peerj.593
http://dx.doi.org/10.7717/peerj.1420
http://dx.doi.org/10.1093/bioinformatics/btn052
http://dx.doi.org/10.1186/s12859-018-2349-1
http://dx.doi.org/10.1016/0022-2836(70)90057-4
http://dx.doi.org/10.1002/0471250953.bi0305s43
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.7717/peerj.2584
http://dx.doi.org/10.1186/1471-2105-13-283
http://dx.doi.org/10.1038/nrg.2017.117
http://dx.doi.org/10.1186/s12859-016-0976-y
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C. 2015. Insight into biases and
sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids
Research 43(6):e37 DOI 10.1093/nar/gku1341.

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,
Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ,
Weber CF. 2009. Introducing mothur: open-source, platform-independent,
community-supported software for describing and comparing microbial communities. Applied
and Environmental Microbiology 75(23):7537–7541 DOI 10.1128/AEM.01541-09.

Schmidt TSB, Matias Rodrigues JF, Von Mering C. 2014. Ecological consistency of SSU
rRNA-based operational taxonomic units at a global scale. PLOS Computational Biology
10(4):1–10 DOI 10.1371/journal.pcbi.1003594.

Smith TF, Waterman MS. 1981. Identification of common molecular subsequences. Journal of
Molecular Biology 147(1):195–197 DOI 10.1016/0022-2836(81)90087-5.

Smith TF, Waterman MS, Fitch WM. 1981. Comparative biosequence metrics. Journal of
Molecular Evolution 18(1):38–46 DOI 10.1007/BF01733210.

States DJ, Gish W, Altschul SF. 1991. Improved sensitivity of nucleic acid database searches using
application-specific scoring matrices. Methods 3(1):66–70
DOI 10.1016/S1046-2023(05)80165-3.

Tikhonov M, Leach RW, Wingreen NS. 2015. Interpreting 16S metagenomic data without
clustering to achieve sub-OTU resolution. The ISME Journal 9(1):68–80
DOI 10.1038/ismej.2014.117.

Tsuji S, Miya M, Ushio M, Sato H, Minamoto T, Yamanaka H. 2020. Evaluating intraspecific
genetic diversity using environmental DNA and denoising approach: a case study using tank
water. Environmental DNA 2(1):42–52 DOI 10.1002/edn3.44.

Westcott SL, Schloss PD. 2015. De novo clustering methods outperform reference-based methods
for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ 3:e1487
DOI 10.7717/peerj.1487.

Müller and Nebel (2021), PeerJ, DOI 10.7717/peerj.11717 37/37

http://dx.doi.org/10.1093/nar/gku1341
http://dx.doi.org/10.1128/AEM.01541-09
http://dx.doi.org/10.1371/journal.pcbi.1003594
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1007/BF01733210
http://dx.doi.org/10.1016/S1046-2023(05)80165-3
http://dx.doi.org/10.1038/ismej.2014.117
http://dx.doi.org/10.1002/edn3.44
http://dx.doi.org/10.7717/peerj.1487
http://dx.doi.org/10.7717/peerj.11717
https://peerj.com/

	On the use of sequence-quality information in OTU clustering
	Introduction
	Basic concepts and previous work
	Quality-aware clustering methods
	Evaluation of quality-aware otu clustering
	Discussion
	Conclusions
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

