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Abstract. The testing of protein drug candidates for inducing the generation of anti-drug
antibodies (ADA) plays a fundamental role in drug development. The basis of the testing
strategy includes a screening assay followed by a confirmatory test. Screening assay cut points
(CP) are calculated mainly based on two approaches, either non-parametric, when the data
set does not appear normally distributed, or parametric, in the case of a normal distribution.
A normal distribution of data is preferred and may be achieved after outlier exclusion and, if
necessary, transformation of the data. The authors present a Weibull transformation and a
comparison with a decision tree-based approach that was tested on 10 data sets (healthy
human volunteer matrix, different projects). Emphasis is placed on a transformation
calculation that can be easily reproduced to make it accessible to non-mathematicians. The
cut point value and the effect on the false positive rate as well as the number of excluded

samples of both methods are compared.
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INTRODUCTION

Anti-drug antibodies (ADA) measurement is an essen-
tial part of the development of protein drugs and is regulated
by specific guidelines (1,2). In the scientific community, there
has been broad discussion for years about how to calculate a
robust cut point (CP) that accounts for biological and
technical variability (3-5). The discussion is flanked by the
FDA guidelines (2) that require justification for data ex-
cluded by outlier testing. Ideally, a data set should retain
biological variability (4). Generally, calculation of the CP
under the assumption of a normal distribution of the data is a
desired goal. However, this is not always possible and using
slightly skewed data while assuming a normal distribution is
accepted as a “workaround” (3). To actually achieve a normal
distribution, data can be transformed (3) (e.g., applying a log
transformation) and/or the data set can be tested for outliers
(6-9) that are then removed. However, the more data that is
excluded (assuming these were not caused by pre-existing
ADA (pADA)), the greater the risk of observing an
artificially high false positive rate (6) in the study samples
because the recommended 5% false positive rate (2) is
calculated based on the remaining data points. This could
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make an in-study CP necessary (3,10, 11) which is not
considered optimal, as it could slow down data reporting
although it is however scientifically sound. The impact of the
in-study cut point has to be fully assessed before implemen-
tation (4) taking challenges into account that in some rare
disease clinical trials, only a limited number of patient are
enrolled.

One possible way to address a non-normal distribution is
to perform a suitable transformation of the data to fit the
skewed distribution. Skewed distributions are often found in
survival analysis, extreme value theory, weather forecasting,
reliability engineering/failure analysis (12), and oncology data
(13). In the case of ADA assays, a skewed distribution may
result for technical reasons if an assumed normal distribution
of the samples is obscured by assay conditions that compress
sample signals at the lower end of the distribution. A Box-
Cox transformation can bring skewed data sets into a normal
distribution and the commonly used log transformation is a
special case of the Box-Cox transformation (14). The use of a
Weibull transformation offers a promising alternative
(12,15,16). Estimation of the unknown parameters could be
done according to the maximum likelihood method. As this
approach is not easy to perform for inexperienced mathema-
ticians, we present a pragmatic approach. An Excel®-based
method was chosen deliberately because this software is
widely used and the Excel add-in Solver can be used to
determine the value of unknown variables in the Weibull
equation. We lay out this simplified approach to start a
discussion within the bioanalytical community based on the
proposed transformation procedure.
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METHODS

Weibull Transformation

Outliers were removed from the normalized screening
assay data set using the 3IQR rule (7) with the ulterior motive
of minimal data manipulation according to the guideline (2).
The remaining data were transformed using Equation 1
(12,15). Normalization was performed by dividing each
individual signal by the signal of a pool matrix on each plate.

F(x) = (a/b) (x/b)"“" exp(~(x/b)") 1)

In Equation 1, a is the shape parameter, b is the scale
parameter, and both are unknowns and must be determined
to transform the data set. Our method leverages the Excel
SKEW function and the Excel (Microsoft) add-in “solver” to
do so. The skewness value of the data set is determined using
the Excel SKEW function and then driven as close to zero as
possible by adjusting the a and b parameters of the
transformation equation using the Solver add-in. The Solver
settings were defined such that the unknown parameters a
and b remained in the range 0.01-100. The Solving Method in
Solver was set to “GRG Nonlinear.” All transformed data
were plotted against the untransformed data to confirm that
the ranking did not change randomly.

All data sets (non-transformed and transformed) were
subjected to a Shapiro-Wilk test in R (shapiro.test, R 3.5.1,
www.https://www.r-project.org/) to confirm normal
distribution.

Decision Tree-Based Calculation

This Weibull transformed data were compared with
results obtained with an approach based on the following
decision tree: The original data were checked for normal
distribution. In the case of a non-normal distribution, a log-
transformation was performed and tested for normal distri-
bution. The normal distribution was verified using the
shapiro.test, or if the p-value was <0.05, normality was
assumed if the skew factor (SKEW, Excel) was <ABS
(1)(3). In the case that the distribution was still estimated to
be non-normal, the data set was subjected to a 3IQR outlier
test and then analyzed for normal distribution (as described
above, including the log transformation). In case of a still
non-normal distribution (via shapiro.test or skewness), the
data set was subjected to a 1.5 IQR outlier test and the
normal distribution was tested again. The CP was calculated
with a parametric approach based on the data set that first
achieved normal distribution. If no normal distribution
was achieved, the CP was calculated based on the 95th
percentile of the 1.5 IQR data.

To enable a direct comparison of the CP factor of all data
sets, regardless of whether they were determined from
transformed or untransformed data sets, the CP factor of
log and Weibull transformed data sets were re-transformed.
For Weibull transformed data, the back calculation was
performed by using the Excel add-in “solver” tool.

The data sets from validation or pre-validation runs
(blank healthy volunteer matrix) of 10 different projects
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(monoclonal antibodies and multidomain therapeutics) using
ADA one-step bridging assays (with drug as capture and
detection reagent) were transformed by both methods and
then compared. The number of individual matrix samples
used for the evaluation is shown in Table I and covers a
sample size from 40 to 128 individuals. Variability of the assay
(replicate assay runs) was not in the scope of the assessment.
In order to assess the applicability of the introduced Weibull-
based approach to data sets with replicate variability, the
transformation was assessed for two data sets were three
replicates of 100 individual matrix samples were analyzed on
different days by different operators.

RESULTS

Table I summarizes the CP calculation based on the
decision tree, non-Weibull transformation approach. Two
data sets were normally distributed after log transformation,
6 data sets had to undergo 3IQR outlier tests, and two data
sets underwent 1.5 IQR. The CP was calculated based on the
criteria described in Fig. 1.

Table II summarizes the Weibull-transformed data. All
data sets could be transformed into a normal distribution with
p-values in the range of 0.05 to 0.95. For further evaluation,
the calculated values a and b were retained for each data set,
a new transformation based on the complete data (without
outlier exclusion), and the p-value was calculated (Fig. 2).

The aim was to evaluate the robustness of the Weibull
transformation and to evaluate whether the extreme outliers
were part of the distribution. In principle, the data set should
only be subjected to minimal manipulation and outlier
removal should be justified (2), for example, by the presence
of pADA or bivalent soluble target (17). By applying the
transformation on the complete data sets, the p-values of the
data sets 2, 6, and 8 fell below 0.05, whereas all others
remained above 0.05. Data sets 2, 3, 6, 8, 9, and 10 had more
than 2 outliers based on the applied 3IQR test. The data sets
2, 6, and 8 required outlier removal for applying the Weibull
transformation (Table II). In these data sets, the outliers
showed a significantly higher quenching signal (data not
shown) compared to the mean. This supported the legitimacy
of their removal as they appeared to be more reactive (e.g.,
due to pADA or drug target) than most other samples to the
drug. In contrast, for the remaining data sets (3, 9 and 10), the
p-value fell not below 0.05 (Table II) when Weibull param-
eters were applied to the entire data sets, enabling the entire
dataset to be used for cut point determination. As long as the
p-value of the entire data set remains above 0.05, a CP can be
calculated based on the entire data set assuming the 3IQR
test eliminated erroneous values. A comparison of the CP is
shown in Table II where, when applicable, the CP is based on
the entire data set.

Table III summarizes a comparison of the two ap-
proaches in terms of CP and false positive rate. Addition-
ally, the false positive rate is calculated using the Weibull-
derived CP for the entire data set when applicable. In
theory, the false positive rate should be at 5%, thus, a
robust CP determination method should deliver a value as
close to 5% as possible.

The robustness of the Weibull transformation was
additionally evaluated on data sets 2 and 9 for which 3


https://www.r-project.org/

The AAPS Journal (2021) 23: 97

Page 3 0of 6 97

Table I. CP Calculation for 10 Data Sets by Applying Decision Tree of Fig. 1. Red Bold Value: Indicating Non-normal Distribution. Green

Italic Value: It Is Assumed that a Normal Distribution Exists and Data Set Was Selected for CP Calculation. p-value Based on Shapiro-Wilk

Test in R. Number of Detected Outliers for Each Applied Test Is Shown in “N Outlier.” In Case No Normal Distribution Can Be Assumed, the
CP Is Calculated Based on 95 Percentile; Otherwise, a Parametric Approach Was Selected

ou:::zlri::st: Original data set Outlier based on 31QR Outlier based on 1.51QR

fort:a"tsi;n: non transformed Log transformed non transformed Log transformed non transformed Log transformed

Ds:t: ( d:‘ta) val:;le skewness | p-value skewness ou:I‘ier p-value sk p-value sk ou:ier p-value skewness | p-value skewness cp
1 128 <0.05 2.18 <0.05 1.73 1 <0.05 1.19 <0.05 0.99 111
2 100 <0.05 8.06 <0.05 6.41 2 <0.05 1.06 <0.05 0.74 1.05
3 50 <0.05 2.30 <0.05 1.63 4 <0.05 1.19 <0.05 0.93 135
4 60 <0.05 1.58 0.12 0.62 2.00
5 64 <0.05 3.83 <0.05 3.11 1 <0.05 1.25 <0.05 1.08 3 0.05 0.65 1.10
6 100 <0.05 8.76 <0.05 5.62 10 <0.05 1.71 <0.05 1.51 15 <0.05 1.18 <0.05 1.04 1.06
7 40 <0.05 1.41 <0.05 0.99 1.15
8 50 <0.05 4.19 <0.05 3.26 4 <0.05 0.85 1.07
9 100 <0.05 4.76 <0.05 2.62 8 <0.05 1.11 <0.05 0.72 1.27
10 100 <0.05 3.58 <0.05 1.02 3 <0.05 1.28 0.09 0.44 2.01

replicates of the 100 individual samples were performed
on different days by different analyst, resulting in N=300
data sets. After outlier removal (3 IQR), the data sets
could be transformed to normal distribution by applying
the Weibull approach with p-values of 0.40 and 0.24. For
data set 2, the initial (based on N=100) determined values
a and b could be kept and the p value dropped from 0.54
(N=100) to 0.40 (N=300).

DISCUSSION AND CONCLUSION

We have introduced a Weibull-based transformation for
screening assay data based on a procedure that can be easily
repeated and reproduced by bioanalytical experts. The
applicability of the transformation was demonstrated for
10 data sets, and a comparison with a decision tree-based
CP calculation method highlighted the advantages of the

Data set

>
Shapiro Wilk

Skewness

Log transformation

If data

Outlier test on untransformed data:
First: 3IQR
Second: 1.5 IQR

v

p-Value>0.05  CP calculation

parametric

CP calculation

-1AND 1 parametric

If log transformed

Back to untransformed data set

CP calculation
Non-parametric

If both outlier tests
were performed

Fig. 1. Cut point calculation procedure for decision tree CP calculation
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Table II. CP Calculation by Applying the Weibull Transformation. Parameters a and b Were Determined Based on the Data Set Which Were
Undergoing the 3IQR Outlier Test. Keeping a and b, the Test on Normal Distribution Is Repeated Based “on All” Data, and in Case of a
Normal Distribution, the CP Was Re-calculated. Presence of Potential pADA Based on Quenching Signal in Confirmatory Assay

Outlier based on 3IQR CP All data CP
(based on 3IQR) (on al)

Data set N outlier a (shape) b (scale) p-value p-value
1 1 0.80 0.09 0.80 1.12 0.61 1.13
2 2 0.68 0.09 0.54 1.06 < 0.05
3 4 0.71 0.10 0.19 1.45 0.09 1.94
4 1 0.43 15.0 0.83 1.99 0.77 2.07
5 1 1.03 0.10 0.27 1.16 0.41 1.16
6 10 2.49 0.50 0.05 1.11 < 0.05
7 0 0.66 0.10 0.95 1.17
8 4 0.69 0.10 0.07 1.08 < 0.05
9 8 1.20 0.36 0.17 1.36 0.05 1.81
10 3 0.92 0.74 0.23 217 0.27 2.44

introduced Weibull transformation in terms of (a) transfor-
mation of data to normal distribution and (b) a more robust
CP calculation that reduces the need to exclude outliers,
additionally its potential sensitivity in detecting outliers as
potential reactive samples (e.g., pADA, soluble target). The
reduced number of excluded data points for which there
would be no justification such as pADA shows a major
advantage and meets regulatory expectations (2). Ideally,
the assessment of screening reactive samples for the
presence of pADA should be based on a dedicated assay
(e.g., IgG depletion) and not only on the confirmatory assay
results (17). In a comparison of the false-positive rate, the
Weibull transformed data were superior to results from the
decision tree-based CP approach. The overall values were
close to the theoretical 5% level, which suggests that an in-
study CP might not be necessary (in case a nearly
representative population was chosen for CP calculation).
The CP of 8 out of 10 data sets were within 2-11% (3,10)
with the Weibull transformation, whereas only 5 were in
that range with the decision tree-based CP approach. A
recent publication highlighted that the false positive rate is
related to the number of samples included in the CP
calculation (11). Therefore the expected false positive rate
for 100 data points for data set 10 should rather be between
2 and 9%. Data set 2 suggested a more robust CP with the
Weibull transformation compared to the decision tree-based

Determination of
Weibull parameter
aandb

3I1QR
Outlier
test

Exclude
outliers

Entire
data set

Fig. 2. Flow chart for the Weibull normalization approach

N

approach given that low CP values might result in a high
false positive rate during routine sample analysis. However,
the difference is low or even negligible. For data sets 2 and
9 for which 3 replicates resulting in N=300 data sets were
available, the Weibull-based transformation could be ap-
plied as well, showing its applicability also for pooled data
sets coming from replicate assay runs.

Taken together, the Weibull transformation of a
screening assay results and process described in Fig. 2
provides an alternative way to incorporate more data into a
normally distributed transformed data set, is sensitive
enough to enable the detection and removal of pre-
existing drug reactive samples, and can achieve the goal of
setting a cut point that results in a 2-11% false positive rate.

It is clear to the authors that the screening results
should be evaluated in light of the confirmatory assay
(robust elimination of pADA) but it may be difficult to
define a criterion in the confirmatory assay that detects
potentially pADA-containing samples without an additional
assay like IgG/IgM depletion. A robust screening CP
calculation, as presented, characterized by the need to
exclude a smaller number of data points could also be
beneficial for confirmatory assay assessment, as the focus
would only be on a smaller number of samples and a
significant quenching might be clearer. Nevertheless, the
approach presented was chosen to focus on the robustness

With determined aand b
test on normal distribution
of entire data set

p- Value > 0.05

normal
distribution

normal

distribution CP calculation on

entire data set

Weibull
transformation not
successfull

CP calculation on
outlier excluded
data set
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Table III. Comparison of CP Calculation Based on Assumption of a Weibull Distribution and Decision Tree (Fig. 1). False Positive Rate Is
Based on Applying Each CP on the Complete Data Set. Red Values Were Outside the Range of 2 to 11% False Positive Rate

Data set cpP

decision-tree based CP calculation

false positive rate cP

Weibull tr ion based CP

false positive rate

1 111 6%

2 1.05 8%

3 1.35 18%

5 1.10 13%

6 1.06 19%

7 1.15 8%

8 1.07 16%

9 1.27 17%

10 2.01 10%

113 6%

1.06 7%

1.94 8%

111 16%

117 8%

1.08 16%

of the transformation procedure and on the transformation
itself, based on screening assays, with the aim to cope with
regulatory expectations in terms of minimal data manipula-
tion. Other tools (e.g. R) could be used to generate more
statistically sound calculations of the scale and shape
parameters, but were beyond the scope of this analysis.

Finally, a re-analysis of complete assay validation data
sets, e.g, recommended by the FDA (2) and clinical data
where an in study cut-point was necessary using the Weibull
approach could demonstrate its applicability. The presented
approach could open new possibilities for data transformation
for ADA immunoassays and re-evaluation.
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