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Abstract Extracellular vesicles are cell-derived mem-
brane particles ranging from 30 to 5,000 nm in size, in-
cluding exosomes, microvesicles, and apoptotic bodies.
They are released under physiological conditions, but also
upon cellular activation, senescence, and apoptosis. They
play an important role in intercellular communication.
Their release may also maintain cellular integrity by rid-
ding the cell of damaging substances. This review de-
scribes the biogenesis, uptake, and detection of extracel-
lular vesicles in addition to the impact that they have on
recipient cells, focusing on mechanisms important in the
pathophysiology of kidney diseases, such as thrombosis,
angiogenesis, tissue regeneration, immune modulation,
and inflammation. In kidney diseases, extracellular vesi-
cles may be utilized as biomarkers, as they are detected in
both blood and urine. Furthermore, they may contribute to
the pathophysiology of renal disease while also having
beneficial effects associated with tissue repair. Because
of their role in the promotion of thrombosis, inflamma-
tion, and immune-mediated disease, they could be the
target of drug therapy, whereas their favorable effects
could be utilized therapeutically in acute and chronic kid-
ney injury.
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Introduction

Intercellular communication is essential for multicellular or-
ganisms and cells communicate by a variety of mechanisms
such as direct cell–cell contact, transfer of secreted molecules
or intercellular transfer of extracellular vesicles (EVs). EVs
are membrane-bound vesicles released by cells under physio-
logical and pathological conditions. As EVs circulate in the
blood, they may act as shuttle vectors or signal transducers
both locally and at a distance from their site of origin [1].
Another function of EVs is the removal of unwanted molecu-
lar material or cellular waste [2], conceivably as a means of
maintaining cellular integrity.

Extracellular vesicles are subdivided into exosomes,
microvesicles, and apoptotic bodies (Table 1). Exosomes are
the smallest vesicles (30–100 nm) released by the fusion of
multivesicular bodies containing intraluminal vesicles with
the plasma membrane. Microvesicles are vesicular structures
(0.1–1.0 μm) shed by outward blebbing of the plasma mem-
brane. The largest EVs (1–5 μm) are apoptotic bodies that are
formed during the late stages of apoptosis [5, 10]. These sub-
types of extracellular vesicles differ in their mechanism of
biogenesis, as described below. This review focuses mainly
on exosomes and microvesicles. Certain studies have not spe-
cifically analyzed the subtype of vesicle, in which case we
refer to the general term EVs.

Althoughmicrovesicles and exosomes are structurally sim-
ilar, they differ in size, lipid composition, content, and cellular
origin (Table 1). EVs may be shed, under physiological or
pathological conditions, into the extracellular environment ei-
ther constitutively or upon activation, hypoxia, oxidative
stress, senescence or apoptosis [4]. The release of vesicles
may be induced by the stimulation of purinergic receptors
[11], by shear stress or apoptosis [12, 13] and by proinflam-
matory mediators [14] or thrombin [15]. In addition, bacterial
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virulence factors, such as Shiga toxin and lipopolysaccharides
[16] and uremic toxins [17] induce the release of EVs.

Microvesicles carry membrane-derived receptors, proteins,
including cytokines, chemokines, proteins involved in cellular
signaling and/or migration, lipids, carbohydrates, and genetic
material including mRNA and microRNAs (miRNAs) [4].
Their contents depend on the parent cell, the microenviron-
ment and on the triggers preceding their release [5, 18–21].
The transfer of these substances to recipient cells may affect
the phenotype of the target cell. EVs transport combinations of
multiple mediators and are therefore considered a more pow-
erful means of intercellular communication than the transfer of
single molecules. Circulating microvesicles are mainly of
platelet, erythrocyte, leukocyte, and endothelial origin
[22–25]. Urinary microvesicles originate mainly from
podocytes, tubular cells, and epithelial cells lining the urogen-
ital tract [2].

Extracellular vesicle biogenesis and release

Exosomes are the product of the fusion of a subset of late
endosomes, called multivesicular bodies, with the plasma
membrane releasing their contents including intraluminal ves-
icles (ILVs). Once extracellular, these vesicles are termed
exosomes (Fig. 1) [3]. ILV formation is regulated via the
endosomal sorting complex required for transport (ESCRT,
four protein complexes that guide intracellular cargo) [26],
and/or by non-ESCRT-related mechanisms, including
tetraspanins [27] and membrane lipids [28].

Microvesicles are released from cells under physiological
conditions, especially during cell growth [29]. Microvesicle
shedding is increased when the cells are activated owing to
cell injury, proinflammatory stimulants, hypoxia, oxidative
stress or shear stress [30, 31]. Microvesicles are formed by
outward protrusion or budding of the plasma membrane.
This process is initiated by an increase in intracellular cytosol-
ic calcium that activates calpain, a calcium-sensitive protease
that detaches membrane proteins from the intracellular cyto-
skeleton [32], and gelsolin bound to actin filaments [33]. This
leads to remodeling of the cytoskeleton, by cleaving the actin
protein network, enabling blebbing to occur. Microvesicles
are shed from plasma membrane micro-domains known as
lipid rafts or caveolae domains [34]. The plasma membrane
is composed of a lipid bilayer in which phosphatidylserine is
located in the inner leaflet of the resting cell. The enzymes
flippase, floppase, and scramblase control phospholipid asym-
metry [35]. When the cell is activated, increased cytosolic
calcium activates floppase (allowing lipid movement to the
outer membrane) and scramblase (enabling bi-directional lipid
movement), whereas flippase (allowing lipid movement to the
inner membrane) is inactivated, resulting in flopping of nega-
tively charged phosphatidylserine to the outer leaflet of the
phospholipid bilayer [20]. This process does not always occur,
as some microvesicles do not expose phosphatidylserine on
their outer leaflet (Fig. 1) [36]. The presence of
phosphatidylserine on the outer leaflet is readily detected, as
it binds annexin V.

Microvesicles may express a slightly different repertoire of
surface receptors or cytoplasmic components compared with
the parent cell owing to a selective process during shedding

Table 1 Main characteristics of exosomes, microvesicles, and apoptotic bodies

Exosomes Microvesicles Apoptotic bodies References

Size 30–100 nm 100–1,000 nm 1–5 μm [3]

Origin Intraluminal vesicles within
multivesicular bodies

Plasma membrane and
cellular content

Plasma membrane,
cellular fragments

[4]

Mechanism of
formation

Fusion of multivesicular bodies
with the plasma membrane

Outward blebbing of
the plasma membrane

Cell shrinkage and
programmed cell death

[5, 6]

Release Constitutive and/or cellular
activation

Constitutive and/or cellular
activation

Apoptosis [4]

Time of release Ten minutes or more Few seconds – [7, 8]

Pathways ESCRT-dependent
Tetraspanin-dependent
Ceramide-dependent
Stimuli-dependent

Ca2+-dependent
Stimuli- and cell-dependent

Apoptosis-related [3]

Lipid membrane
composition

Enriched in cholesterol and
ceramide, expose phosphatidylserine,
contain lipid rafts

Expose phosphatidylserine,
enriched in cholesterol and
diacylglycerol, contain lipid rafts

– [3, 9]

Content Proteins, mRNA, miRNA, lipids Proteins, mRNA, miRNA, lipids Cell organelles, proteins,
nuclear fractions, DNA,
coding and noncoding
RNA, lipids

[3]

ESCRT endosomal sorting complex required for transport
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[34]. Similarly, microvesicles released from activated cells do
not express the same surface receptors as microvesicles shed
during apoptosis [19] or from resting cells. This was demon-
strated in vasculitis patients, microvesicles in patient samples
taken during the active phase exhibited more CD62E and
CD62P than those taken during remission and control samples
[37].

Clearance and uptake of extracellular vesicles

The quantity of EVs in the circulation reflects a balance be-
tween their generation and clearance. Microvesicles released
into the circulation have a half-life of a couple of minutes to a
few hours [38], during which they may be taken up by neigh-
boring or distant cells. In humans undergoing cardiopulmo-
nary bypass, transfusion or dobutamine-induced cardiac
stress, elevated levels of circulatingmicrovesicles were detect-
ed, but these returned to baseline levels within 15 min to ~6 h
[39, 40]. Interestingly, clearance of microvesicles may depend
on the cellular origin of the microvesicles as platelet-derived

microvesicles were cleared sooner thanmicrovesicles released
from red blood cells [40].

There are various mechanisms for the cellular uptake of
vesicles depending on the cargo of the vesicle, intercellular
communication (e.g. receptor-ligand interactions) and the mi-
croenvironment of the cell. The most common mechanism is
endocytosis, whereby the extracellular vesicle is engulfed by
the recipient cell [38]. There are several mechanisms of endo-
cytosis, such as clathrin-dependent or -independent, caveolin-
mediated, macropinocytosis, phagocytosis and lipid raft-
mediated [41]. Uptake of EVs seems to depend on the type
of recipient cell, its physiological state, and recognition of
ligands or receptors on the recipient cell and EVs [41]. For
example, vesicles shed from platelets interact with monocytes
[42] and endothelial cells [22], but not with neutrophils [42].
Likewise, exosomes exposing the tetraspanin–integrin com-
plex were selectively taken up by endothelial and pancreatic
cells [43].

Another mechanism for microvesicle uptake is fusion,
whereby the microvesicles fuse with the membranes of the
recipient cell and the content of the vesicle is released into

ILVs

Mul�vesicular body

Exosomes

Ca2+ increase

Disrup�on of cytoskeleton

Vesicle forma�on

Membrane remodeling

Microvesicles

Ligand binding

Fusion

Endocytosis

Uptake

a b

c

Fig. 1 Schematic presentation of the release and uptake of extracellular
vesicles. a Exosomes are released from late endosomes termed
multivesicular bodies bearing intraluminal vesicles (ILVs)
intracellularly. When the multivesicular bodies fuse with the plasma
membrane and empty their contents, ILVs are released and are termed
exosomes once they are extracellular. Exosomes are the smallest
extracellular vesicles (Table 1). b Microvesicles are shed directly from

the plasma membrane, thereby carrying membrane markers of the parent
cell. Microvesicle formation is calcium-dependent and associated with
loss of membrane asymmetry and disruption of the cellular cytoskeleton.
c Extracellular vesicle uptake by target cells may occur via fusion of the
vesicle membrane with the cell membrane or by endocytosis. The vesicle
may also transduce an intracellular signal by ligand binding to a receptor
on the recipient cell
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the cell. Platelets expressing P-selectin fuse with tissue-factor-
rich monocyte-derived microvesicles, increasing the
procoagulability of platelets [34]. Fusion efficiency is en-
hanced in an acidic microenvironment (Fig. 1) [44].

Detection

Extracellular vesicles are mostly detected in blood samples,
but also in cerebrospinal fluid [45], urine [46], synovial fluid
[47], bronchoalveolar lavage fluid [48], breast milk [49], bile
[50], saliva [51], and uterine fluid [52], and the findings may
reflect a process occurring on their cells of origin. Techniques
for extracellular vesicle detection are listed in Table 2 and
briefly described below. Given the heterogeneity of EVs the
detection methods vary depending on which vesicle popula-
tion is studied. The small size of exosomes demands a high
sensitivity analysis method, including nanoparticle tracking
analysis and electron microscopy [54, 57]. For the detection
of microvesicles flow cytometry is the most common
technique.

Flow cytometry

The flow cytometer detects microvesicles as small as 150 nm
in diameter (depending on the sensitivity of the instrument).
The principle of detection is based on vesicles passing through
a laser beam. Modern flow cytometers may have many lasers
and fluorescence detectors, which allow for labeling with mul-
tiple conjugated antibodies in the same sample [64].
Microvesicles may have phosphatidylserine on their outer
membrane enabling the use of conjugated annexin V for their
detection [65].

Although flow cytometry is widely used to detect
microvesicles, it has some limitations. Flow cytometry does
not detect the smallest microvesicles as individual events.
Multiple microvesicles may be detected collectively as a sin-
gle event, a phenomenon termed swarm detection (Table 2)
[66]. In addition, small microvesicles may have a limited
number of antibody binding sites, sterically restricting staining
with multiple antibodies [65]. Thus, both the number of small
microvesicles and their surface expression may be
underestimated.

Transmission electron microscopy

The transmission electron microscope (TEM) visualizes small
structures (limited to approximately 1 nm) because of the high
resolution of the technique. Immune electron microscopy en-
tails adding a conjugated antibody to detect a specific antigen
in the sample [67]. Negative staining is performed when the
surrounding medium is stained, leaving the vesicles unstained
and the contrast clearly visualizes the vesicles.

Nanoparticle tracking analysis

Nanoparticle tracking analysis (NTA) examines EVs in the
liquid phase using a laser beam that determines the size and
concentration by filming the light scatteringwhen the particles
move under Brownian motion [54]. The technique detects
vesicles with a size of 0.05–1 μm (modern instruments may
lower the detection limit even further). NTA can be used in
fluorescent mode, thus detecting labeled vesicles [54]. NTA
with fluorescent mode provides both quantitative and qualita-
tive information on the vesicles in suspension.

Extracellular vesicles in physiological
and pathological processes

During physiological and pathological processes, EVs are re-
leased and partake in cellular communication affecting pro-
cesses such as coagulation and thrombosis, angiogenesis, im-
mune modulation and inflammation, which are discussed in
the following sections.

Intercellular communication

Extracellular vesicles use various mechanisms to transfer in-
formation to recipient cells. They may bind to receptors on
target cells, thereby transducing a signal, or transfer functional
receptors, proteins, lipids, mRNA or miRNA from parent cells
to recipient cells in which they may induce phenotypic
changes.

Extracellular vesicles in cell signaling

Extracellular vesicles expose numerous signaling proteins and
lipids on their surface and may thus bind to and stimulate
target cells directly. For example, microvesicles from platelets
exposing P-selectin were shown to bind to P-selectin glyco-
protein ligand-1 (PSGL-1) on the surface of leukocytes, lead-
ing to leukocyte accumulation and aggregation [68]. During
morphogenesis of multicellular organisms, shedmicrovesicles
exposing the morphogen protein Bwingless^ bind to a family
of G protein-coupled receptors called frizzled, thereby
forming a gradient necessary for adequate tissue development
[69]. Similarly, lymphocyte-derived microvesicles carrying
the morphogen Bhedgehog^ may bind to its receptor on early
hematopoietic stem cells and thereby induce differentiation
into megakaryocytes [70].

Transfer of receptors

Extracellular vesicles can transfer functional receptors to tar-
get cells, allowing cell signaling in cells that originally lacked
the receptor or enhancing the number of receptors. For
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example, microvesicles exposing the kinin B1 receptor trans-
ferred a functional receptor to endothelial cells and to human
embryonic kidney cells [71]. The transfer of adhesion mole-
cules and receptors from platelets to hematopoietic or malig-
nant cells via platelet-derived microvesicles modulated their
adhesion capacity and engraftment [72, 73]. Furthermore,
microvesicles released from aggressive glioma cells trans-
ferred the oncogenic epidermal growth factor receptor
(EGFR) to tumor cells causing a propagation of oncogenic
activity [74]. The C-C chemokine receptor type 5 (CCR5)
and C-X-C chemokine receptor type 4 (CXCR4) are impor-
tant for HIV-1 uptake by cells. Microvesicle-mediated transfer
of CCR5 and CXCR4 enabled HIV-1 to be internalized in
cells previously not susceptible to the virus [75, 76], suggest-
ing that this might be a means of disseminating HIV infection.

Transfer of proteins and lipids

Extracellular vesicles transport proteins such as cytokines,
chemokines, and growth factors to neighboring or distant
cells, resulting in modulation of the target cell. In addition,
EVs may transfer functional channels. Exosomes originating
in murine kidney-collecting duct cells (mCCDC11) transfer
functional aquaporin 2 (AQP2), increasing water transport in
recipient cells [77] and can thus potentially be involved in
intra-renal signaling downstream in the nephron. Upon re-
lease, EVs may shelter proteins that would otherwise be
phagocytosed or neutralized in free form in plasma, thus
protecting their content from the host response [22]. This
mode of transport can also be utilized by bacterial and viral
components to evade the host response [22, 78]. Bioactive
lipids, such as sphingosine 1-phosphate and arachidonic acid,
are also transported within microvesicles [79]. Lipids in plate-
let microvesicles can increase adhesion between endothelial
cells and monocytes [80]; hence, microvesicles not only affect
recipient cells, but also other cells in their microenvironment.

Transfer of mRNA and microRNA

Extracellular vesicles are enriched in mRNA and miRNA,
which can be transferred horizontally to and translated in re-
cipient cells, thereby changing the phenotype of the cell. For
example, microvesicles shed by endothelial progenitor cells
induced activation of quiescent endothelial cells and stimulat-
ed angiogenesis by transfer of mRNA [81]. Mesenchymal
stem cell (MSC)-derived EVs transfer mRNAs, inducing tran-
scription and proliferation of tubular epithelial cells after
in vivo injury [82]. Exosomes may regulate mRNA levels in
recipient cells by delivering functional miRNA, thus blocking
translation [83–85]. Transfer of miRNA by urinary exosomes
to tubular cells modulated their function, as exemplified by
diminished ROMK1 potassium channel levels in human
collecting duct cells [86]. Exosomal transfer of certain

miRNAs between immune cells conferred both a proinflam-
matory and an anti-inflammatory effect in vitro and in mice
following endotoxin administration [87]. Likewise, vesicles
derived from endothelial progenitor cells contain mRNAs
coding for inhibitors of the complement system and anti-
apoptotic molecules, thereby inhibiting complement-induced
apoptosis and complement deposition on mesangial cells [88].
Interestingly, horizontal transfer of genetic material and the
changes seen in the target cells were even demonstrated be-
tween cells of different species [89].

Protection against stress and cell death

To what extent EVs contribute to homeostasis and cell surviv-
al by ridding cells of unwanted substances is unknown, but
may explain why cells release vesicles into their surroundings.
The presence of complement C5b-9 on shed microvesicles
may preserve the integrity of the parent cells by elimination
of complement and the risk of cytolysis [90]. EVs from
healthy individuals contain active caspase-3 that was not
found in the parental cells, suggesting that caspase-3 might
have been removed from the cells to ensure survival [91].
Inhibition of microvesicle release from viable endothelial cells
containing active caspase-3 triggered both apoptosis and de-
tachment of the cells [92].

Intriguingly, dying cells release microvesicles bearing the
adaptor protein Crkl during the early stages of apoptosis in-
duced by the caspase 3 cascade. These microvesicles were
isolated from glomeruli after injury and were shown to induce
compensatory proliferation signaling in recipient cells [93,
94]. Taken together, release of microvesicles may rid the cell
of toxic substances, but may also induce repair in neighboring
cells.

Coagulation and thrombosis

Extracellular vesicles play an important role in coagulation,
platelet aggregation, and thrombosis. Pro-thrombotic proper-
ties of microvesicles are primarily associated with exposure of
negatively charged phosphatidylserine and tissue factor [95].
Phosphatidylserine on circulating platelet- and monocyte-
derived microvesicles provides binding sites for the assembly
of coagulation factors such as factor IXa, Va, Xa, and VIII
followed by thrombin generation [96]. Phosphatidylserine is
also present on exosomalmembranes [9]. It not only facilitates
formation of coagulation complexes, but also promotes tissue
factor activity [97]. Tissue factor is normally encrypted, but
may be exposed on microvesicles released from platelets,
monocytes or endothelial cells [16, 34, 98] and form a com-
plex with factor VII/VIIa, thereby activating the extrinsic
pathway of coagulation.

Platelet-derived microvesicles have a significantly higher
pro-coagulant activity compared with activated platelets most
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probably because of their higher surface density of
phosphatidylserine, factor Xa, P-selectin, and αIIbβ3 (glyco-
protein IIb/IIIa) [99]. At the site of vascular injury, platelet-
derived microvesicles support thrombus formation by facili-
tating the adhesion of platelets to endothelial cell matrix com-
ponents [100]. The interaction between PSGL-1 on
monocyte-derived microvesicles and selectins on platelets,
endothelial cells or their shed microvesicles provides a basis
for thrombus formation [34].

Angiogenesis

Microvesicles derived from blood and endothelial and tumor
cells [101] may possess angiogenic properties, as previously
reviewed [102]. The angiogenic effect may be associated with
exposure of surface molecules or growth factors within the
vesicles. Lymphoid microvesicles induced production of en-
dothelial nitric oxide formation, expression of adhesion mol-
ecules, in addition to in vitro angiogenesis and in vivo neo-
vascularization in endothelial cells [103]. Endothelial cell-
derived microvesicles induced invasion of endothelial cells
into basement membranes followed by capillary-like structure
formation in vitro [104]. These properties may be of impor-
tance during tissue injury, post-ischemic revascularization and
regeneration [105], and thus have importance during acute
kidney injury (AKI).

Immune modulation

Extracellular vesicles play an important role in promoting im-
mune responses, affecting both innate and adaptive immunity.
Dendritic cell-derived exosomes enhanced the cytotoxic ac-
tivity of natural killer cells [106]. Moreover, dendritic cell
microvesicles stimulated epithelial cells to release pro-
inflammatory cytokines [107], leukocyte-derived
microvesicles activated the endothelium, upregulating adhe-
sion molecules and releasing cytokines, leading to leukocyte
recruitment [108] and platelet microvesicles affected the ad-
hesion of monocytes to the endothelium [80].

Extracellular vesicles may have antigen-presenting proper-
ties, exposing major histocompatibility complexes (MHCs).
Dendritic cells stimulated with lipopolysaccharide shed vesi-
cles exposing MHC II, CD83, and the co-stimulatory mole-
cule CD40 on their surface initiating a pro-inflammatory re-
sponse in epithelial cells and T-cell activation [107, 109].
Interestingly, dendritic microvesicles containing tumor necro-
sis factor-α could initiate an innate immune response in epi-
thelial cells, leading to cytokine release without transfer of
antigen-presenting properties [107]. Microvesicles may also
affect adaptive immunity, as platelet-derived microvesicles
can increase immunoglobulin production by B-cells [110].

Activation of the complement system is usually directed
against foreign antigens such as bacteria or damaged host

cells. Complement activation and deposition of the membrane
attack complex on blood cells is followed by the release of
complement-coated microvesicles [111, 112]. Microvesicles
bearing C1q reflect activation of the classical pathway of com-
plement on the parent cell [113], whereas the presence of C3
reflects amplification of all three pathways of the complement
via the alternative pathway [111]. Direct activation on vesi-
cles, after shedding, may potentially also occur. Blood cell-
derived EVs expose complement regulators on their surface
such as complement receptor type 1 (C1R), membrane cofac-
tor protein (CD46), decay accelerating factor (DAF/CD55) or
CD59 [111, 114], thereby inhibiting assembly of the mem-
brane attack complex (C5b-9) and preventing excessive com-
plement activation. In addition, EVs opsonized by C3b are
rapidly cleared from the circulation by phagocytes [115].

Malignancies

Tumor cells release significant numbers of EVs [116] that
may influence proliferation, migration, invasion, and im-
mune escape of cancer cells as well as angiogenesis [117]
and the tumor environment [118]. EVs may also prime
distant organs to a pre-metastatic niche facilitating sur-
vival and growth of metastasis [119]. An important step
in tumor development is inhibition of immune surveil-
lance. Tumor-derived exosomes can suppress T-cell im-
munity [120], thereby contributing to tumor progression
by modulating and preventing anti-tumor immune reac-
tions. The topic of EVs in malignancies has been
reviewed elsewhere [116, 121].

Inflammation

Extracellular vesicles are capable of inducing both inflamma-
tory and anti-inflammatory responses. This may be associated
with the transfer of pro- and anti-inflammatory mediators and
by inducing the release of cytokines from target cells [108,
122–124]. Both leukocyte- and platelet-derived microvesicles
induced cytokine release from endothelial cells [122, 125],
suggesting that microvesicles might participate in vascular
damage and inflammatory disorders. Moreover, EVs may in-
duce chemotaxis. Platelet-derived microvesicles stimulated
recruitment of hematopoietic cells [73] and promoted leuko-
cyte migration [126]. Glomerular endothelial cell-derived
microvesicles exposing the kinin B1 receptor and interleukin
8 (IL-8) on their surface attracted neutrophils [127, 128].
Proximal tubular cells cultured in the presence of fenoldopam
(a dopamine receptor agonist) released exosomes that reduced
the production of reactive oxygen species in distal tubule and
collecting duct cells [129], indicating the transfer of an anti-
inflammatory response.
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Anti-microbial effects

Neutrophil-derived microvesicles have been demonstrated to
possess antimicrobial properties with a bacteriostatic effect on
the uropathogen Escherichia coli [130]. Urinary exosomes
also possess antimicrobial peptides, inhibiting the growth of
E. coli and inducing bacteriolysis [131]. It has also been pos-
tulated that tissue factor-bearing microvesicles may prevent
bacteria in the urinary tract from spreading beyond the
uroepithelial barrier [132].

Extracellular vesicles as biomarkers and promoters
of kidney disease

The prothrombotic, proinflammatory, and immunomodulato-
ry properties associated with EVs, described above, may all
contribute to and maintain tissue damage in the kidney and
urinary tract during the development of AKI, glomerular and
tubular diseases, infections, and chronic renal failure in addi-
tion to numerous other conditions affecting the kidney. These
aspects have been comprehensively reviewed recently by our
group and others [2, 128, 133]. Studies on the role of EVs in
AKI have mostly been carried out in patients with sepsis,
burns or other forms of acute tubular injury [134, 135]. Our
group has focused on the role of microvesicles in hemolytic
uremic syndrome and vasculitis, which will be elaborated on
below. In Table 3, we summarize various renal conditions in
which EVs have been described as biomarkers of disease, in
blood or urine, and describe which characteristics contribute
to the induction and propagation of tissue injury.

Microvesicles in hemolytic uremic syndrome

Circulating microvesicles are elevated in thrombotic mi-
croangiopathies. Microvesicles derived from platelets,
neutrophils, monocytes, and red blood cells were detected
in blood samples from patients with Shiga toxin-
producing E. coli (STEC)-associated hemolytic uremic
syndrome (HUS) [16, 22, 23, 111, 219]. Patients with
thrombotic thrombocytopenic purpura (TTP) exhibit ele-
vated levels of both platelet and endothelial-derived
microvesicles, the latter coated with complement deposits
[162, 163, 220].

Our studies have shown that circulating microvesicles
in STEC-HUS are pro-thrombotic/procoagulant as they
are both tissue factor- and phosphatidylserine-positive.
These aspects could be reproduced in vitro when whole
blood was stimulated with Shiga toxin and E. coli O157
lipopolysaccharide and shed pro-thrombotic microvesicles
were mainly derived from platelets [16]. Similarly,
platelet- and monocyte-derived microvesicles in patient
samples and in in vitro toxin-stimulated samples were

coated with deposits of C3 and C9, suggesting ongoing
complement activation.

Patients with STEC-HUS also exhibited elevated C3 and
C9 on microvesicles derived from red blood cells, and, inter-
estingly, Shiga toxin could induce complement activation on
red blood cells followed by hemolysis, thereby releasing
microvesicles from red blood cells with deposits of the mem-
brane attack complex C5b-9 [23].

Shiga toxin is transported in vivo bound to blood cells
and af te r uptake in these cel l s re leased wi thin
microvesicles (reviewed in Karpman et al. [221]). Blood
cell-derived microvesicles transport Shiga toxin to the kid-
ney, where the toxin, within microvesicles, is taken up in
glomerular endothelial cells and peritubular capillary en-
dothelial cel ls . Within the endothelial cel ls , the
microvesicles either empty their cargo or are transcytosed
through the cells, and their corresponding basement mem-
branes, into podocytes or tubular cells, respectively.
Eventually the microvesicles empty their cargo, although
the signal leading to this release of contents is unknown.
Intracellular toxin undergoes retrograde transport, binds to
ribosomes and induces cell death thus causing renal failure
[22]. HUS is characterized by platelet activation and the
formation of microthrombi, hemolysis, and acute renal fail-
ure. These studies show that microvesicles are not only
biomarkers, but actively contribute to disease-specific pro-
cesses during STEC-HUS by creating a pro-thrombotic en-
vironment, partaking in hemolysis, and transporting Shiga
toxin into the kidney to induce renal cell death.

In similarity to the pro-thrombotic microvesicles dem-
onstrated in patients with STEC-HUS, serum from patients
with aHUS, with mutations in the complement regulator
factor H, induced the release of tissue factor- and
phosphatidylserine-positive platelet-derived microvesicles
from normal washed platelets, effects that could be
inhibited by the addition of normal factor H [161].

Microvesicles in vasculitis and inflammatory disorders

Microvesicles shed from endothelial cells, platelets, and
leukocytes were increased during the acute phase of vas-
culitis, returning to normal levels during remission [25,
37, 152]. Endothelial microvesicle levels in pediatric vas-
culitis correlated with the Birmingham Vasculitis Activity
Score (BVAS), C-reactive protein, and erythrocyte sedi-
mentation rate [165]. Likewise, endothelial microvesicles
in adults with anti-neutrophil cytoplasmic antibodies
(ANCA)-associated vasculitis (AAV) correlated with the
BVAS [37] and could thus be used as a biomarker for
disease activity [37, 165].

The ANCAs circulating in patients with AAV activated
neutrophils, causing them to release microvesicles [167]. In
patients with vasculitis, neutrophil microvesicles activated
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endothelial cells, leading to the release of cytokines [108, 122,
167]. Neutrophil microvesicles may expose proteinase 3
(PR3) and myeloperoxidase (MPO) on their surfaces enabling
ANCA to bind. Microvesicles were pro-thrombotic as they
promoted the generation of thrombin [167], and could thus
contribute to the thromboembolic complications seen in
vasculitis.

Our studies have demonstrated systemic activation of
the kinin system in children and adults with vasculitis un-
derlying the profound vascular inflammation [222, 223].
We have shown that neutrophil-derived microvesicles
bearing the kinin B1 receptor, expressed on cells during
chronic inflammation, can transfer the receptor to cells
lacking the receptor (demonstrated using transfected and
wild-type HEK cells) and to glomerular endothelial cells,
thereby promoting the inflammatory response. The phe-
nomenon was confirmed in kidney biopsies showing that
B1-receptor-positive neutrophil-derived microvesicles
dock on glomerular endothelial cells in vivo during vascu-
litis [71]. Furthermore, during extensive vascular injury,
endothelial microvesicles are released, also bearing the
B1 receptor [127]. The B1-receptor-positive endothelial
microvesicles recruited neutrophils, thus enhancing the in-
flammation. Interestingly, C1 inhibitor, the main inhibitor
of the kinin system, inhibited the release of the chemotactic
glomerular endothelial microvesicles.

In systemic lupus erythematosus (SLE), platelet-derived
microvesicles are significantly increased and correlate with
thrombin generation, suggesting a role in the thromboembolic
state [206]. Other aspects, such as the contribution to immune
complex deposition, are presented in Table 3.

Antiphospholipid syndrome is an autoimmune disease as-
sociated with antiphospholipid antibodies and thrombotic
complications. Patients with antiphospholipid syndrome have
elevated endothelial and platelet-derived microvesicles com-
pared with controls and the endothelial vesicles may be pro-
thrombotic [208].

The effect of renal replacement therapy and drugs
on extracellular vesicles

Treatments given during acute and chronic renal failure may
affect levels of EVs. Dialysis treatment (hemodialysis and peri-
toneal dialysis) not only does not remove EVs, it may increase
levels in comparison with healthy controls and after treatment
sessions [17, 153]. The same is true for miRNA levels, which
do not decrease after hemodialysis [136]. Treatment with re-
combinant erythropoietin may enhance levels of platelet-
derived microvesicles, whereas the presence of an arteriove-
nous fistula has no effect on microvesicle levels [154].

To our knowledge, the effect of plasma exchange on
levels of EVs has not been specifically addressed, but

plasma exchange should presumably remove EVs. This
has been suggested in the treatment of patients with SLE
and antiphospholipid syndrome [224].

Various drugs used in the treatment of renal disease,
including anti-hypertensive medications such as calcium
channel blockers, amiloride, and beta blockers, or statins,
may affect the release of EVs, as reviewed [128, 225].
Amiloride affects both the release and uptake of vesicles
[226, 227].

The renal regenerative capacity of extracellular
vesicles

Mesenchymal stem cells and endothelial progenitor cells
secrete EVs that have been demonstrated to induce neph-
ron regeneration and repair by inhibiting apoptosis and
promoting tubular proliferation. These effects have been
documented in vitro [228] and in vivo [229] and are
attributed to the transfer of both growth factors and
RNAs (mRNAs and miRNAs) [230]. As described above,
EVs can stimulate angiogenesis, and transfer growth fac-
tors such as vascular endothelial growth factor, hepato-
cyte growth factor [231], insulin-like growth factor-1
(IGF-1), adrenomedullin, and stromal cell-derived fac-
tor-1 (SDF1) [4]. Horizontal transfer of the IGF-1 recep-
tor mRNA transcript via MSC EVs to damaged tubular
cells induced proliferation [232]. EVs derived from
MSCs localize to the kidney [233] and have been exten-
sively investigated, in preclinical studies, for their thera-
peutic potential to protect tubuli and repair ischemia/
reperfusion-induced injury [234].

Extracellular vesicles as vehicles for drug delivery

The capacity of EVs to deliver proteins, lipids, and
nucleic acids to recipient cells has therapeutic potential.
EVs can be designed to target specific recipient cells.
Cells can be genetically altered to express ligands on their
membrane that are also present on EVs released from the
cells. These ligands can bind to receptors on the target
cell [235]. Thus, EVs can be loaded with therapeutic sub-
stances for delivery to target cells. These exciting devel-
opments in EV-based therapeutics may be used in future
clinical trials and have been recently reviewed [236, 237].

Conclusions

Extracellular vesicles play an important role in normal in-
tercellular communication. They can be detected as bio-
markers of disease owing to their excessive numbers and
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their properties and may also contribute to the develop-
ment of diseases, including kidney disease, by inducing
inflammation, vascular injury, and thrombosis in addition
to modulating the immune response. Their contribution to
the induction and progression of renal diseases may lead to
the development of treatments geared toward temporary
reduction of EVs systemically in the circulation, or locally
in the kidney and urinary tract. Treatments that reduce the
release or uptake of EVs need to take into account the
notion that EVs may also be cytoprotective, as their release
and the removal of unwanted or damaging substances from
their parent cells may maintain cellular integrity. EVs may
have potentially beneficial properties associated with tubu-
lar regeneration and the induction of angiogenesis. The
therapeutic potential and nephroprotective effects of EVs,
owing to their capacity to shuttle proteins, lipids, and ge-
netic cargo to recipient cells, are being explored in preclin-
ical studies, which may lead to clinical trials in the future.
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