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Vascular calcification is an irreversible pathological process associated with a loss of
vascular wall function. This process occurs as a result of aging and age-related diseases,
such as cardiovascular and chronic kidney diseases, and leads to comorbidities.
During these age-related diseases, the endothelium accumulates senescent cells, which
stimulate calcification in vascular smooth muscle cells. Currently, vascular calcification
is a silent pathology, and there are no early diagnostic tools. Therefore, by the time
vascular calcification is diagnosed, it is usually untreatable. Some mediators, such as
oxidative stress, inflammation, and extracellular vesicles, are inducers and promoters
of vascular calcification. They play a crucial role during vascular generation and the
progression of vascular calcification. Extracellular vesicles, mainly derived from injured
endothelial cells that have acquired a senescent phenotype, contribute to calcification
in a manner mostly dependent on two factors: (1) the number of extracellular vesicles
released, and (2) their cargo. In this review, we present state-of-the-art knowledge on
the composition and functions of extracellular vesicles involved in the generation and
progression of vascular calcification.

Keywords: aging, aging-related diseases, extracellular vesicles, inflammation, medial arterial calcification,
senescence, smooth vessel cells, vascular calcification

INTRODUCTION

Vascular calcification (VC) is a well-established multifactorial disorder characterized by calcium
deposits along the vascular wall (1, 2). However, the calcification of vascular structures
is unclear. Internal structures such as smooth muscle cells of the vascular wall undergo
calcification that confers them osteoblast-like characteristics (3, 4). This prevents valvular
or vascular adaptability and favors the development of pathologies. In general, there are
three types of VC: medial arterial calcification, intimal calcification, and infantile calcification
(2). This review mainly focuses on medial arterial calcification, which is often related
to old age, diabetes mellitus, and cardiovascular diseases (CVD) associated with chronic
kidney diseases (CKD) (5). In contrast, intimal calcification is only observed in patients
with CVD such as atherosclerosis and hypertension (6). Infantile calcification refers to
general arterial calcification in infants that is characterized mainly by medial calcification (7).
Moreover, hydroxyapatite crystals could appear in cardiac valves (heart valve calcification)
(6). Medial arterial calcification consists of hydroxyapatite crystals, which are calcium and
phosphate mineral deposits found in bones (8–11). This type of calcification is a characteristic
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of CKD patients with CVD (6, 12–15). The pathology of medial
arterial calcification is multifactorial (12). It is a gradual process
resulting from disruptions in calcium, phosphate, and vitamin D
homeostasis (8, 16). The pathophysiological process of vascular
wall calcification involves some features of bone morphogenesis.
Different cellular and molecular mediators are also involved such
as pro-inflammatory molecules and molecules contributing to
oxidative stress (8). Recently, extracellular vesicles (EVs) have
been shown to play a role (17–21).

Chronic inflammatory diseases, including CKD, are
considered synergistic pathologies due to the high risk of
comorbidities, including CVD (12, 22–24). Furthermore,
aging precipitates the appearance of age-related pathologies
such as CKD and/or CVD, and vice versa; thus, these chronic
inflammatory diseases trigger premature aging (19, 23). In
general, the role of calcification in aging and age-related
pathologies remains unclear. Calcification appears early and
progresses rapidly, constituting a severe complication of
kidney disease. Thus, VC is considered the primary cause of
cardiovascular morbidity and mortality in patients with CKD.
Due to its complex development mechanism, there are few tools
for CKD treatment (22, 25). In this context, according to what
we know so far, it would be essential to study the role of new
mediators such as EVs, which are involved in aging, age-related
diseases, and vascular calcification (18, 26, 27).

Vascular calcification generates complications in numerous
cardiovascular pathologies. Coronary artery calcification is highly
prevalent in CKD and coronary atherosclerotic plaques (5, 6,
28). Such calcification is classified as an intimal and medial
calcification depending on the specific risk factor and is
associated with major cardiovascular events (28). In the case of
patients with acute myocardial infarction, they develop coronary
calcification, which is associated with a high mortality rate (29).
Furthermore, calcification is the most prevalent valvular disease
in western societies, and calcific aortic stenosis is associated with a
prevalence of 2% older (from 65 years) (30). Vascular calcification
is also involved in aortic diseases, especially the ascending aorta
called the porcelain aorta (31, 32).

Evidence suggests that chronic inflammation is a central factor
in calcification. In the vasculature, chronic inflammation triggers
atherosclerotic calcification (33). Subsequently, VC generates
abnormalities in arteries, such as changes in blood flow due
to the decreased wall elasticity and increased arterial stiffness,
which decrease end-organ perfusion and cause injury (1, 8, 12).
Consequently, VC may cause vascular alterations, cardiac arrest,
and heart failure in patients with CKD (34).

Cellular senescence is a process where cells gain the maximum
capacity of division and lose their division potential in somatic
cells (35, 36). Some inflammatory chronic diseases are considered
age-related diseases such as CKD and CVD, which are associated
with kidney failure and vascular and valvular heart disease
(36, 37) due to imbalance of oxidative stress, pro-inflammatory
factors, and DNA damage that facilitate the accumulation of
senescent cells (21, 37–39). Vascular aging is a consequence of
premature aging in CKD that mediates medial VC that is a
hallmark of senescence (37). Moreover, vascular and valvular
heart diseases are associated with accelerated aging, accumulation

of senescence, and increased inflammation that feedback these
age-associated diseases and promote aortic calcification and
calcific aortic valve diseases (CAVD) (36). CVD is the cause of
death in 40% of the elderly (40).

Nowadays, few data describe the mechanisms/pathways
by which EVs from vascular senescent cells mediate the
development and progression of vascular calcification. This study
compiles the role of senescent EVs from damage vasculature
and the pathways and mechanisms described to date. However,
more research is needed in this field. We know so far, the
crossover between senescent EVs and VC has been less studied;
therefore, the study of the EVs cargo generated by senescent cells
and the signaling pathways in VC generation and progression
could be critical in the VC prevention and treatment. In this
way, senescent EV characterization and quantification could be
a useful prognostic marker and therapeutic tool. This review
explored the senescence-associated changes in EVs contributing
to VC disease. However, due to the limited research, the work
highlighted the background about this field described to date.
Further studies should elucidate the role of senescent EVs in the
mechanism implied in VC generation and progression.

DEVELOPMENT OF VASCULAR
CALCIFICATION

In the last two decades, VC was identified as a manifestation
of atherosclerosis associated with diabetes, hypertension, and
dyslipidemia (41–45). Various therapeutic measures have been
developed to treat the associated risk factors. However, results
have been unsuccessful because VC pathophysiology remains
poorly understood (8). Current knowledge of VC mainly
indicates that it is caused by the progression of chronic
silent inflammatory diseases (without clinical symptoms at the
beginning) such as atherosclerosis, CKD, and CVD, among others
(46, 47) and becomes manifest when calcification is advanced and
irreversible (48). When finally diagnosed, there is no treatment;
therefore, arterial calcification is considered a silent disease with
no clinical symptoms or signs (18, 27, 46).

The strong correlation between VC and systemic
inflammation has been described (49, 50). VC develops due
to disturbances in the complex and subtle balance between
inhibitors and promoters, acting at both systemic and local
levels (5). Calcification involves proteins and mineralization
mediators similar to those that regulate the ossification process
(18). Inflammatory mediators, oxidative stress, and EVs induce
the dedifferentiation of vascular smooth muscle cells (VSMCs)
and cause endothelial damage (51), promoting the appearance
of senescent cells in the vascular wall (18, 27, 52). Therefore,
patients at a high risk of developing VC may experience
cardiovascular events.

Recent evidence also suggests that an imbalance in the gut
microbiota generates an accumulation of bioactive metabolites
in the blood and activates cellular and molecular signaling,
thereby disrupting homeostasis, and promoting diseases such
as CKD. Moreover, CKD progression is often accompanied
by VC that is linked to the dysregulation of gut microbiota
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and production of harmful metabolites, such as uremic blood
toxins (gut microbiota-derived metabolites in CKD patients), that
promote CKD development and therefore, they are implied in the
calcification process (53). As a result, endothelial damage caused
by uremic toxins is associated with the progression of CKD.
In addition, uremic toxins promote vascular senescence and,
finally, VC. Supporting this observation, in CKD, medial arterial
calcification switches the VSMC phenotype and sometimes
occurs in conjunction with calcium and phosphate accumulation
within atherosclerotic lesions. Thus, vascular damage leads to
VC, which is triggered by uremic toxins resulting from CKD.
The imbalance of the bacterial metabolism in the gut microbiota
promotes the production of uremic toxins and increases the
possibility of VC development (54). Therefore, the generation of
uremic toxins caused by microbiota imbalance that ultimately
produces vascular senescence and VC in CKD was a novel
way to develop VC.

Vascular Calcification Mediators
The pathophysiology of VC involves multiple, complex signaling
pathways that lead to mineralization (27). As already described,
the loss of homeostasis leads to an accumulation of calcium
and phosphate ions in the blood, causing spontaneous ion
precipitation in the arteries, thereby inducing changes in the
vasculature (12). VC caused by age-related pathologies, such as
CKD and/or CVD, progresses in the same manner as that caused
by physiological aging, but to a different extent (Figure 1).

Endothelial cells are continuously in contact with the blood
in the vascular wall, and the imbalance of calcium/phosphate
hampers endothelial cell function (55). Moreover, damage to
endothelial cells in the vasculature generates oxidative stress
through reactive oxygen species (ROS) production, which is
a well-known cause of oxidative DNA damage and pro-
inflammatory cytokine release (56, 57). These factors contribute
actively to the appearance of extracellular matrix (ECM) deposits
and increase calcium/phosphate accumulation in VSMCs,
accelerating VC in CKD patients (58). It is noteworthy that
damaged endothelial cells in this environment may adopt a
senescent phenotype, thus contributing to VC development
(18, 27).

Vascular smooth muscle cells are present alongside endothelial
cells in the vasculature and are the primary cell type constituting
the medial layer of the vascular wall (12). During the
development of VC, VSMCs undergo dedifferentiation into
osteoblast-like cells, promoting mineralization (an osteogenic
transition) of the vessels. This process is associated with
the upregulation of cellular and molecular targets of ROS,
inflammatory factors, and EVs released from endothelial cells and
VSMCs. This association highlights the multifactorial origin of
VC (59, 60) occurring as a consequence of CKD (61).

Endothelial Cell and Vascular Smooth
Muscle Cell Senescence
Premature and physiological aging share many cellular
phenotypes, including abnormal nuclear shape, loss of epigenetic
markers, higher reactive oxygen and nitrogen species (RONS)

levels, which increase lipid and protein production, cause DNA
injury, increase calcium metabolism, and promote mitochondrial
dysfunction (62). Cellular senescence is characterized by a stable
cell cycle arrest (35) that causes inflammation and modifications
of the microenvironment through the senescence-associated
secretory phenotype (SASP). The SASP is a combination
of molecules such as cytokines, ECM proteins, proteases,
and other factors that alter the behavior of neighboring
cells. Senescence is associated with phenotypic alterations
that include morphological changes, such as a decrease in
cellular proliferation and DNA replication. This phenotype
is characterized by an increase in senescence marker levels
(senescence-associated-β-galactosidase [SA-β-gal], p16INK4a,
and Ki-67), lysosomal biogenesis, DNA repair protein levels,
DNA injury, loss of cellular functionality, secretion of pro-
inflammatory factors (IL-1, IL-6, and TNF-α), modulation of
cell cycle arrest proteins, and reorganization of chromatin into
discrete foci (21, 38).

In addition, senescence is exacerbated by reduced levels
of renoprotective factors such as Klotho, vitamin D, and
bone morphogenetic proteins (BMPs), and downregulated
renoprotective mechanisms such as mitophagy (63). In this
sense, senescence can be considered an adaptive cellular response
to the external microenvironment. Accordingly, the interaction
between endothelial cells and VSMCs in VC has been recently
identified as an important factor; blocking the senescence process
can attenuate osteogenic transformation (64).

Arterial aging in elderly patients leads to endothelial
dysfunction, which eventually triggers a phenotypic change that
results in cellular senescence (46). Endothelial cells damaged as a
result of CKD may achieve a senescent phenotype characterized
by a larger and flatter morphology and a polyploid nucleus, thus
contributing to the evolution of VC (18, 27). Moreover, these
cells exhibit changes in cytoskeleton integrity, proliferation rate,
angiogenesis, and migration (21, 38). Furthermore, senescent
endothelial cells demonstrate increased production of adhesion
molecules (VCAM-1 and ICAM-1) and increased nuclear
translocation of NF-κB. Therefore, the senescent endothelium is
more susceptible to apoptosis, due to the presence of adhesion
and inflammatory molecules (33, 65). Moreover, endothelial cell
senescence is associated with an increase in EV release, which
contributes actively to the generation and progression of VC in
VSMCs (18, 21, 27). Overall, EVs from senescent endothelial cells
play a critical role in VC and are considered a novel mediator.

Some reports have demonstrated that classical and novel
mediators involved in VC may cause the VSMC phenotype
to switch to an osteoblast-like phenotype in aortic vessels
(12) and that senescent VSMCs generate a synergistic effect
on the surrounding environment during the phenotypic
transition. During this transition, the expression of some
osteogenic/chondrogenic markers is modified. An early event
in the VC signaling pathway is the downregulation of Sm22-
α (a VSMC-specific marker) expression, while the expression
of osteogenic/chondrogenic genes such as Sox9 and Runx-2
is upregulated (12, 18, 27). In this regard, VC in patients
with CKD is not fully understood. It has been hypothesized
that mediators such as oxidative stress, inflammation, and
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FIGURE 1 | The role of EVs in VC development associated with vascular senescence. Under physiological conditions, the vasculature presents a balance between
oxidative stress, inflammatory factors, and calcium and phosphate release and highlights the regular release of extracellular vesicles. All these mediators are focused
on maintaining vessel homeostasis. The loss of homeostasis could appear with physiological aging and age-related pathologies such as CKD and/or CVD, which
implies the imbalance of several processes. Both physiological and premature aging illnesses are characterized by an increase in ROS, calcium, and phosphate
release, inflammatory mediators, adhesion molecules, coagulation process, the proliferation of extracellular matrix proliferation in the blood, and especially increased
vasculature senescence. In addition, cells from a senescent vessel, especially endothelial cells and vascular smooth muscle cells, release extracellular vesicles that
contain calcification factors. Complex signaling pathways in senescent extracellular vesicles cause spontaneous calcium ion precipitation in the arteries and thus
contribute to VC development and pathophysiology.

EVs are associated with a chronic inflammatory environment
that regulates mineral metabolism in CKD patients (51,
66, 67).

Leopold et al. (68) reported that prelamin A levels increase
in senescent cells through a mechanism involving ROS and
pro-inflammatory cytokines, which are directly implicated in
VC pathogenesis. Furthermore, it has been reported that

atherosclerotic plaques increase morbidity and mortality rates
in patients with advanced CKD and foster the development of
atherosclerosis-related VC. This finding is associated with the
development of VC in patients with CVD-associated chronic
renal failure. Benz et al. (51) sought effective treatment to
inhibit calcification mechanisms under CKD conditions. This
finding focuses on atherosclerosis therapies to avoid calcification
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TABLE 1 | Original research articles and reviews obtained after a search in PubMed with the following keywords: “extracellular vesicles” and “vascular calcification” and
“senescence.”

Type of article Publication
year

References Model Experiment (tissue/cells) Findings/Results

Research 2021 (100) In vivo EVs pooled from the human whole tissue
proteome and miRNAome (carotid artery plaque
and calcified aortic valve)

71 proteins and 5 miRNAs were
significantly altered between the artery
and valve EVs

Research 2021 (101) In vivo

In vitro

The thoracic aorta of WT rat aortas
Tissue from human carotid arteries and human aortic
Human aortic VSMCs

Warfarin increased vascular calcification
in an endoplasmic reticulum
stress-dependent manner via increased
EVs release

Research 2021 (102) In vitro
In vitro

Human aortic vascular smooth muscle cells
EVs from bone mesenchymal stem cell

EVs from bone mesenchymal stem cell
Inhibition of VSMCs calcification

Research 2020 (103) In vitro
In vivo

Human VSMCs
5/6-nephrectomy + high phosphate diet mice

EVs from melatonin-treated VSMCs
attenuate VC and aging in VSMCs and
mice

Research 2020 (27) In vitro
In vitro

Human endothelial cells
Human VSMCs

EV from indoxyl sulfate-treated
endothelial cells generate calcification in
VSMCs

Research 2019 (104) In vitro
In vitro

Human endothelial cells
Human VSMCs

EVs from high glucose-treated
endothelial cells induce calcification in
VSMCs

Research 2017 (18) In vivo
In vitro
in vitro

EVs from elderly
EVs from senescent human endothelial cells
Human VSMCs

EVs of senescent endothelial cells and
EVs from plasma of elderly subjects
promote vascular calcification (in
VSMCs)

Research 2015 (17) In vivo
In vitro
in vitro

EVs from plasma of CKD patients
EVs from TNF-α-treated human endothelial cells
Human VSMCs

EV from TNF-α-treated endothelial cells
and EV from plasma of CKD subjects
promote vascular calcification (in
VSMCs)

Type of article Publication year References Title

Review 2022 (105) Matrix vesicles as a therapeutic target for vascular calcification

Review 2021 (106) Exosomes and melatonin: Where their destinies intersect

Review 2021 (100) Calcifying extracellular vesicles as building blocks of microcalcifications in cardiovascular disorders

Review 2020 (107) Omics research in vascular calcification

Review 2019 (108) Cardiovascular calcification: artificial intelligence and big data accelerate mechanistic discovery

Review 2019 (22) The interplay between mineral metabolism, vascular calcification and inflammation in chronic kidney disease (CKD):
Challenging old concepts with new facts

Review 2019 (1) Multifaceted mechanisms of vascular calcification in aging

Review 2019 (109) [Molecular mechanism of vascular calcification] [Article in Japanese]

Editorial 2019 (110) A dual role for GRP in cardiovascular disease

Review 2018 (4) Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness

Review 2018 (111) Exosomes, the message transporters in vascular calcification

Review 2018 (21) Senescent microvesicles: A novel advance in molecular mechanisms of atherosclerotic calcification

Review 2017 (112) Vascular calcification in CKD-MBD: Roles for phosphate, FGF23, and Klotho

Review 2016 (113) Vascular calcification in uremia: New-Age concepts about an old-age problem: Methods

Review 2015 (114) [Vascular Calcification–Pathological Mechanism and Clinical Application–Mechanisms of vascular calcification]:
[Article in Japanese]

associated with CKD and these authors also highlighted the role
of EVs in promoting inflammation and CV in CKD. Other studies
that investigated VC in a model of accelerated aging reported
that older subjects and younger CKD patients both presented
phenotypically aged vascular walls, which was associated with
upregulated prelamin A expression in calcified VSMCs (69–71).
Moreover, senescent VSMCs present upregulated expression
of Runx-2 and alkaline phosphatase, which are osteoblast
transcription factors that enhance the transition of senescent

VSMCs to the osteoblast-like phenotype and, therefore, promote
calcification in vascular vessels (3, 72).

Furthermore, senescent cells in the vascular wall generate an
imbalance of phosphate in VSMCs, thus promoting the pro-
calcification phenotype of senescent vascular cells. Similarly,
atherosclerosis is associated with premature cellular senescence;
existing evidence demonstrates the presence of senescent VSMCs
and atherosclerotic plaques in young patients (73). Senescent
VSMCs exhibit decreased proliferation and a reduced capacity to
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repair plaques, with increased production of pro-inflammatory
chemokines and adhesion molecule mediators (IL-6, MCP-
1/CCL-2, VCAM-1, and ICAM-1) (74). Thus, inflammatory cells
proliferate in this particular landscape.

ROLE OF EXTRACELLULAR VESICLES
IN VASCULAR CALCIFICATION

Extracellular vesicles can be found in many body fluids,
including plasma and urine. EVs are involved in physiological
and pathophysiological processes through their involvement in
the intercellular communication system. Under physiological
conditions, EVs are involved in paracrine and/or endocrine
communication mechanisms because they transmit biological
signals to neighboring cells (75). In addition to delivering
their cargo to nearby targets, EVs facilitate long-distance
communication, thus regulating different biological and
pathophysiological functions (76). Under pathological
conditions, EVs participate in crucial processes such as
inflammation, cell proliferation, and the immune response (38,
76–78). In addition, EV delivery is considered a biomarker per se
and can be utilized to develop therapeutic strategies (76).

Indeed, EVs biogenesis, shedding and uptake, as well as
their cargo content is known to be redox sensitive (79). In
particular, senescence and oxidative stress promote EVs release
(80–82), and recently, EVs are being included as part of the
SASP (83). However, their specific content can include either
antioxidants or ROS-generating enzymes; thus, oxidative-stress
released EVs can trigger both antioxidant and pro-oxidant
responses, thereby modulating the redox status of recipient
cells (84). These EVs can also carry waste products, such as
oxidized molecules, which would induce autophagy in target cells
(85). Environmental factors influence the number and content
of EVs in the development and progression of diseases (18,
27, 86). Levels of EVs are elevated in patients with vascular,
metabolic, pulmonary, autoimmune, and neurodegenerative
diseases, chronic inflammation, and cancer (87). Furthermore,
an increase in EV levels is generated in vascular endothelial
cells during atherosclerosis, due to stress (88). Hence, EVs
are attracting increasing attention as markers for predicting,
diagnosing, and monitoring complex diseases, with the potential
to contribute to the identification of new therapeutic targets (88).

Some studies demonstrated that cells that arise SASP release
different amounts of EVs compared with non-senescent cells
and have also been shown that EVs from senescent cells present
different EV cargo (18, 27, 82, 89). Moreover, these changes in
EVs released by senescent cells are associated with an increase
in the EV size and ultrastructural changes observed by electronic
microscopy (18, 27). Furthermore, some evidence demonstrated
that proteins expressed on the surface of EVs released by
damaged cells is different from non-damaged cells such as cancer
(90, 91) CVD (92), among others.

Extracellular vesicles general content includes calcification-
promoting factors such as annexins, BMPs, and calcium.
A recent study showed that senescent-cell-derived EV cargo
is high in calcium, annexin A2, annexin A6, and BMP2
(18, 93). When VSMCs are cultured in the presence of EVs

derived from senescent endothelial cells (93, 94), they undergo
dedifferentiation (18), with a decrease in Sm22-α protein levels
(27, 95). Recent evidence also suggests that EVs from the plasma
of elderly subjects promote calcification in vascular muscle cells
in vitro. Accordingly, EVs from senescent endothelial cells are
involved in VC (18).

Chronic kidney disease is characterized by the accumulation
of uremic toxins in the blood. Senescent endothelial cells
stimulated by uremic toxins produce more EVs per cell
(27). EVs produced by senescent endothelial cells, generated
by treatment with primary plasma uremic toxin, indoxyl
sulfate, and uremic serum from rats, cause calcification of
the vasculature in vitro (27, 95). In the present study,
senescent endothelial EV cargo was increased in calcium
levels (27). The mechanism that senescent endothelial EVs
generated in VSMCs mediated VC is remarkable. Recently,
Alique et al. reported that senescent EVs generated an
increase in Runx2 and BMP2 expression in VSMCs during
VC progression (27). Moreover, these VSMCs change the
phenotype to the procalcifying vascular phenotype indicated
by a decrease in Sm22-α levels. During the development of
this phenotype, vascular cells expressing different inflammatory
cytokines such as TNF-α, TWEAK, MCP-1/CCL-2, CCL5, and
IL-6 are implicated in VC (27). Furthermore, EVs play an
essential role in angiogenesis, and together with their role
in the development of VSMC senescence and VC generation,
they mediate CKD progression and associated cardiovascular
complications (96). Moreover, EVs in CKD patients have
been proposed as therapeutic targets (97). Thus, the effect
on the initiation and progression of VC depends on the
number and cargo of EVs generated in patients with chronic
inflammatory pathologies.

Recent evidence showed that EVs from senescent endothelial
cells are implied in the VC (18, 27). Furthermore, some
microRNAs are mediated in the endothelial senescence,
highlighting the downregulation of miR126-3p, miR126-5p,
miR21-3p, miR155, and miR210, critical keeping endothelial
homeostasis. Therefore, finally, cellular damage carries
endothelial cells to achieve the senescent phenotype (27).
Moreover, as a consequence, senescent endothelial EVs release
an increase of calcium and magnesium compared with “young”
endothelial EVs (27). Moreover, it has been demonstrated that
senescent cells suffer DNA damage that increases EV release
in cancer (98). Finally, Wallis et al. (83) showed changes in
EV cargo in senescent cells depending on their content, and
senescent EVs have a different role, harmful or beneficial.

Vascular smooth muscle cells undergoing calcification
may release calcifying EVs themselves (22), which contain
metalloproteinase-2 (MMP-2); annexin A2, A5, and A6; and
phosphatidylserine (PS) on the surface. The enrichment of
these matrix EVs enhances calcium-binding, coagulation,
hydroxyapatite formation, and subsequently, calcification of the
vascular walls in aging-related calcification (55). Accumulating
evidence suggests that senescent endothelial EVs act as promoters
of VC, initiating a cascade of events that cause vascular injury
and finally, CVD development (38, 99). The production of
EVs by senescent endothelial cells is considered a pathogenic
mechanism of endothelial dysfunction (21). Endothelial EVs
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promote damage to VSMCs and the vascular endothelium
(38, 39). In this context, both CVD in the elderly and chronic
diseases in younger patients cause vascular senescence and VC
(1, 63).

Notably, the relationship between EVs, VC, and senescence
is unclear. To date, a search in PubMed using the keywords
“extracellular vesicles,” “vascular calcification,” and “senescence”
gave 24 results (Table 1). Interestingly, 15 of the 24 results are
reviews and only 8 are original research articles. The first study
was published in 2014. More research is needed to continue
unraveling the complex underlying mechanism that correlates
all three factors.

CONCLUSION

The incidence of VC is increasing in developed countries,
and VC can significantly increase cardiovascular risk. The
processes and mechanisms involved in VC are unclear,
and new therapeutic strategies are needed to prevent or
reverse calcification. EVs have been outlined as a mediator
in VC development, especially those released by senescent
vasculature cells. Moreover, EVs are mediators that regulate
aortic valve calcification evolution. Patients with CKD have
a high prevalence of vascular calcification. To develop
early diagnostic methods, evaluating EVs’ role in aging and
age-related diseases such as CKD and VC is necessary.
Consequently, studying EVs from damaged vasculature
in physiological aging and age-related diseases to prevent

the progression of VC is essential. It highlights EVs’
implication in the development of VC to develop early
diagnostic methods to treat elderly and premature aging
diseases (such as CVD associated with CKD) that will be
achieved through VC.
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