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Abstract

Background: Studies have demonstrated that perceived health-related quality of life (HRQOL) of patients receiving
hemodialysis is significantly impaired. Since HRQOL outcome data are often used to compare groups to determine
health care effectiveness it is imperative that measures of HRQOL are valid. However, valid HRQOL comparisons
between groups can only be made if instrument invariance is demonstrated. The Kidney Disease Quality of Life-
Short Form (KDQOL-SF) is a widely used HRQOL measure for patients with chronic kidney disease (CKD) however,
it has not been validated in the Veteran population. Therefore, the purpose of this study was to examine the
measurement invariance of the KDQOL-SF across Veterans and non-Veterans with CKD.

Methods: Data for this study were from two large prospective observational studies of patients receiving
hemodialysis: 1) Veteran End-Stage Renal Disease Study (VETERAN) (N = 314) and 2) Dialysis Outcomes and Practice
Patterns Study (DOPPS) (N = 3,300). Health-related quality of life was measured with the KDQOL-SF, which consists
of the SF-36 and the Kidney Disease Component Summary (KDCS). Single-group confirmatory factor analysis was
used to evaluate the goodness-of-fit of the hypothesized measurement model for responses to the subscales of
the KDCS and SF-36 instruments when analyzed together; and given acceptable goodness-of-fit in each group,
multigroup CFA was used to compare the structure of this factor model in the two samples. Pattern of factor
loadings (configural invariance), the magnitude of factor loadings (metric invariance), and the magnitude of item
intercepts (scalar invariance) were assessed as well as the degree to which factors have the same variances,
covariances, and means across groups (structural invariance).

Results: CFA demonstrated that the hypothesized two-factor model (KDCS and SF-36) fit the data of both the
Veteran and DOPPS samples well, supporting configural invariance. Multigroup CFA results concerning metric and
scalar invariance suggested partial strict invariance for the SF-36, but only weak invariance for the KDCS. Structural
invariance was not supported.

Conclusions: Results suggest that Veterans may interpret the KDQOL-SF differently than non-Veterans. Further
evaluation of measurement invariance of the KDQOL-SF between Veterans and non-Veterans is needed using large,
randomly selected samples before comparisons between these two groups using the KDQOL-SF can be done
reliably.

Background
The prevalence of chronic kidney disease (CKD) con-
tinues to grow each year with the incidence of patients
receiving hemodialysis in the United States reaching 310
per million in 2004 [1]. Hemodialysis, while not a cure

for CKD, helps prolong and improve patients’ quality of
life [2]. However, hemodialysis is often a burden for
patients requiring them to be essentially immobile while
they are connected to a dialysis machine several hours a
day at least three times a week. Social activities, physical
functioning and mental health are impacted due to the
constraints of hemodialysis as well as from the effects of
the treatment itself which can include fatigue and nau-
sea. A number of studies have demonstrated that
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perceived health-related quality of life (HRQOL) of
patients receiving hemodialysis is significantly impaired
[3-6]. Furthermore, HRQOL has been shown to be as
predictive of mortality as serum albumin levels with the
latter known as being one of the strongest predictors of
dialysis patient mortality[7].
Since HRQOL outcome data are often used to com-

pare groups to determine health care effectiveness,
including medication and treatment procedural effects
as well as resource allocation and policy development, it
is imperative that HRQOL instruments measure the
same latent traits across groups. However, valid HRQOL
comparisons between groups can be made only if instru-
ment invariance is demonstrated [8]. In other words,
measurement differences in HRQOL between groups
should reflect true mean differences in perceived
HRQOL. If group differences reflect variation in related
“auxiliary” secondary dimensions of HRQOL, then the
instrument is still considered to be “fair” and to reflect
meaningful group differences. But if such group differ-
ences instead reflect variation in secondary dimensions
that are irrelevant to HRQOL (i.e., “nuisance” factors),
then the instrument is considered to reflect unfair mea-
surement bias [9-11].
Recently, group differences in how to interpret

HRQOL measures have been discussed as an issue
potentially affecting the validity of comparisons between
genders and different cultural groups [12-17]. For exam-
ple, Mora et al., [12] found a lack of support for strict
measurement invariance across African American and
Latino HRQOL measures and recommended that the
instrument be refined to ensure equivalence of measures
across ethnic groups. In a study evaluating measurement
invariance of the WHOQOL-BREF across several
nations, Theuns et al.,[14] identified a significant lack of
measurement invariance and cautioned researchers
against using the instrument to make cross-national and
cross-cultural comparisons. However, group differences
are not in themselves problematic-instead, what is pro-
blematic is if these group differences do not reflect valid
differences in the construct(s) being assessed. Mean dif-
ferences should reflect actual group differences in the
underlying attribute and should not reflect a different
functioning of the measures across the different groups.
Previous studies have demonstrated that Veterans

report lower HRQOL than non-Veterans with similar
ages and diagnoses [18,19]. Kazis et al. [19] suggested
that one possible explanation for the differences in
reported HRQOL is that Veterans may experience
greater psychological distress than non-Veterans. How-
ever, it must also be considered that Veterans are a cul-
tural group with unique life experiences related to their
military experience [20]. Keynan Hobbs an advanced
practice psychiatric nurse and former combat Veteran

eloquently describes the culture of being a Veteran, in
Reflections on the Culture of Veterans [20]:

“More than enough evidence, from Veterans of every
war, has established that combat is only the begin-
ning of the journey. Soldiers come home, just days
out of combat, and enter the purgatory that is being
a Veteran. No longer true civilians, ex-soldiers enter
the culture of veterans. Millions of members strong,
Veterans have their own language, symbols, and
gathering places where they talk about what Veter-
ans talk about. Civilians are welcome, but it becomes
apparent that they do not fit - they ask the wrong
questions and say things that veterans leave unsaid.
This is the way of cultures and those who belong to
them.” (p. 337).

The culture of Veterans may influence how Veterans
interpret HRQOL measures similar to the differences in
interpretation of HRQOL items found among other cul-
tures and ethnic groups [12]. Identification of differ-
ences in HRQOL outcomes between Veterans and non-
Veterans receiving hemodialysis is important for several
reasons. First, HRQOL has been found to be signifi-
cantly lower for patients with CKD than for the general
population [21]. Thus, measuring HRQOL in CKD
patients in order to measure the effectiveness of inter-
ventions to improve the lives of CKD is imperative. Sec-
ond, HRQOL is a predictor of future health problems
and mortality in patients (both Veterans and non-Veter-
ans) with CKD and may help clinicians identify high
risk patients in order to provide early intervention.
Third, Veterans may be at a particular high risk for
developing poor HRQOL because of their life experi-
ences, socioeconomic status, etc. Valid measurement of
HRQOL in Veterans is necessary to accurately assess
their needs. However, a valid assessment of HRQOL in
Veterans requires that the measure is functioning in a
comparable manner for Veterans as it is functioning for
non-Veterans. Therefore, it is imperative that HRQOL
instruments be validated in Veterans prior to using to
make comparisons with non-Veterans. However, prior
to comparing HRQOL of Veterans with non-Veterans, it
is necessary to consider measurement invariance of the
instrument used to measure HRQOL. The Kidney Dis-
ease Quality of Life-Short Form (KDQOL-SF) [22] is a
widely used HRQOL measure for patients with CKD,
however it has not been validated in the Veteran popu-
lation. Therefore, the purpose of this study was to
examine the measurement invariance of the KDQOL-SF
[22] instrument across Veterans and non-Veterans with
CKD receiving hemodialysis. To achieve our objective,
we first determined if the same factors and loadings
were appropriate for both the Veteran and non-Veteran
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samples. We then evaluated whether the measurement
structure of the KDQOL-SF was invariant across a
Veteran and non-Veteran sample.

Testing Measurement Invariance
The issue of measurement invariance concerns the
degree to which the items that comprise a measurement
instrument have the same meaning and measure the
same constructs in the same ways across different
groups of respondents. Although scores on measure-
ment instruments are often used to compare levels of
responses across different groups, such analyses of mean
differences assume that the scores being contrasted are
in fact comparable across groups. In this regard, several
types of measurement invariance (or construct compar-
ability) are relevant and are most often evaluated using
confirmatory factor analysis (CFA) in a sequence of pro-
gressively more restrictive hypotheses about equality
across groups concerning the pattern of factor loadings
(configural invariance), the magnitude of factor loadings
(metric invariance), and the magnitude of item inter-
cepts (scalar invariance). In assessing factorial differ-
ences across groups, it is also important to address
issues of structural invariance, or the degree to which
factors have the same variances, covariances, and means
across groups [23]. Although measurement invariance is
a requirement for valid comparisons of group means,
structural invariance is a desirable, though unnecessary
precondition for meaningful group comparisons [24].
Partial versus total invariance
Varying degrees of measurement and structural invar-
iance are possible across groups with respect to any or
all of the invariance hypotheses, ranging from the com-
plete absence of invariance to total invariance. Partial
invariance exists when some but not all of the para-
meters being compared are equivalent across groups
[25]. Either full or partial measurement invariance is
necessary in order to permit interpretable comparisons
of factor means across groups.
Configural invariance
An initial omnibus test of measurement invariance often
entails a comparison of the covariance matrix of item
variances and covariances between groups. However,
numerous statistical analysts [24,26] have recommended
against this overall test of equality because excellent
multigroup fit in one part of the measurement model
may mask departures from invariance in other parts of
the model and produce Type II errors concerning over-
all group differences.
For this reason, focused tests of invariance typically

begin by assessing the issue of equal factorial form or
configural invariance-that is, whether the same factors
and patterns of loadings are appropriate for both groups
[23,27]. Configural invariance is assessed by determining

whether the same congeneric measurement model pro-
vides a reasonable goodness-of-fit to each group’s data
[28]. Thus, whereas the tests of other forms of invar-
iance are based on estimated p values associated with
inferential null-hypothesis testing, the test of configural
invariance is merely descriptive.
Metric invariance
Given configural invariance, more rigorous tests are con-
ducted concerning first the hypothesis of equal factor
loadings across groups, or metric invariance [23,27,29].
Also known as weak invariance [27], the issue here con-
cerns the degree to which a one-unit change in the
underlying factor is associated with a comparable change
in measurement units for the same given item in each
group. Items that have different factor loadings across
groups represent instances of “non-uniform” differential
item functioning [30,31]. Numerous theorists [23,32,33]
have argued that between-group equivalence in the mag-
nitude of factor loadings is necessary in order to con-
clude that the underlying constructs have the same
meaning across groups.
Scalar invariance
Given some degree of metric invariance, a third form of
measurement equivalence concerns scalar invariance, or
the degree to which the items have the same predicted
values across groups when the underlying factor mean is
zero [23,27,29]. Differences in item intercepts when
holding the latent variable mean constant at zero reflect
instances of “uniform” differential item functioning
[30,31,34,35], and indicate that the particular items yield
different mean responses for individuals from different
groups who have the same value on the underlying fac-
tor. Scalar invariance is tested only for items that show
metric invariance [26]. Strong invariance is said to exist
when equivalent form (configural invariance), equivalent
loadings (metric invariance), and equivalent item inter-
cepts (scalar invariance) are all found across groups [27].
Equivalence of factor variances and covariances
An additional test of structural invariance concerns the
degree to which the underlying factors have the same
amount of variance and covary to the same extent
across groups. Although this form of invariance is unne-
cessary for interpretable between-group comparisons of
factor means [24], the equivalence of factor variances
indicates that the particular groups being compared
report a comparable range of values with respect to the
underlying measurement constructs; and the equivalence
of factor covariances indicates that the underlying con-
structs interrelate to a comparable degree in each group.
Invariance of item unique error variances
A second test of structural invariance concerns the
degree to which the underlying factors produce the
same amount of unexplained variance in the items
across groups. Although this form of invariance is not a
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technical requirement for valid between-group compari-
sons of factor means [32,34], the invariance of unique
errors indicates that the levels of measurement error in
item responses are equivalent across groups. Strict
invariance is said to exist when configural invariance,
metric invariance, scalar invariance, and invariance in
unique errors are all found across groups [27].
Equivalence of factor means
A final test of structural invariance concerns whether
the multiple groups have equivalent means on each
underlying factor in the measurement model. The pri-
mary advantages of using CFA to compare latent vari-
able means across groups, as opposed to comparing
group means on composite indices of unit-weighted
summary scores via t tests or ANOVAs, are that CFA
allows researchers to: (a) operationalize constructs in
ways that are appropriately invariant or noninvariant
across groups; (b) correct mean levels of constructs for
attenuation due to item unreliability; and (c) adjust
between-group mean differences for differential item
reliability across groups.

Methods
Study Design
Data for this study were from two large prospective
observational studies of patients in the United States
(U.S.) receiving hemodialysis: 1) Veteran End-Stage
Renal Disease Study (VETERAN) sample [36] and 2)
Dialysis Outcomes and Practice Patterns Study (DOPPS)
sample [37,38].
VETERAN Sample
The VETERAN sample consisted of baseline data of 314
males between the ages of 28-85 years from a large pro-
spective observational study of Veterans dialyzing at
Department of Veterans Affairs (VA) facilities or in the
private sector during 2001-2003 [36]. Veterans who had
received care at a VA facility within the prior 3 years
and were receiving hemodialysis for end-stage renal dis-
ease were eligible for enrollment. Patients were excluded
if they: 1) had a live kidney donor identified; 2) required
skilled nursing facility care; 3) had a life expectancy less
than 1 year, determined by a nephrologist; 4) were cog-
nitively impaired; 5) had a severe speech or hearing
impairment; 6) were not fluent in English; or 7) had no
access to a telephone for follow-up contact.
Participants were recruited from eight VA Medical

Centers with outpatient dialysis facilities from 2001 to
2003 and followed for at least six months. Health-
related quality of life questionnaires were completed via
a phone interview. Institutional review board (IRB)
approval was obtained from all VA sites. Coordinators
at each site explained the study and obtained written
informed consent from patients who were interested in
participating.

Non-Veteran Sample
The non-Veteran data are from the first phase of the
Dialysis Outcomes and Practice Patterns Study (DOPPS)
[37,38]. The DOPPS is an international, prospective,
observational study of the care and outcomes of patients
receiving hemodialysis in seven countries including
France, Germany, Italy, Japan, Spain, the United King-
dom, and the U.S. A detailed description of DOPPS
Phase 1 has been published [37,38]. Health-related qual-
ity of life data was collected by a written questionnaire.
In the U.S., 6,609 patients from 142 dialysis facilities
completed baseline data between 1996 and 2001. For
the present analyses, only males living in the U.S.
between the ages of 28 and 85 who had completed qual-
ity of life data were included resulting in a sample size
of 3,300.
Table 1 describes the demographics of the two

samples.
Instruments
Demographic information such as patient age, gender,
marital status, race, work status, and educational level

Table 1 Demographics of VETERAN and DOPPS Samples

VARIABLE VETERAN
N = 314

DOPPS
N = 3300

Age

Mean years 62.14 59.68

Range 28-85 years 28-85 years

(Standard deviation) (11.24) (14.38)

Marital status

Married 154 (49.36%) 1965 (61.21%)

Single 37 (11.85%) 600 (18.70%)

Divorced/Separated 86 (27.56%) 419 (13.05%)

Widowed 35 (11.22%) 226 (7.04%)

Race

White 153 (49.35%) 1965 (59.5%)

Black 150 (48.39%) 1071 (32.5%)

Other 7 (2.26%) 260 (7.9%)

Education

Less than high school 59 (18.91%) 426 (15.91%)

Completed high school/trade
school

72 (23.08%) 514 (19.19%)

Some college 139 (44.55%) 861 (32.15%)

Completed college 35 (11.22%) 596 (22.25%)

Graduate work 7 (2.24%) 281 (10.49%)

Employed 26 (8.28%) 357 (10.81%)

Annual income

$0 to $10,000 75 (23.89%) 716 (21.71%)

$10,000 to $20,000 100 (31.85%) 642 (19.45%)

$20,000 to $30,000 64 (20.38%) 635 (19.24%)

> $30,000 64 (20.38%) 778 (23.57%)

Not reported 11 (3.50%) 529 (16.03%)

Years since beginning dialysis 2.50 ± 2.85 2.08 ± 3.47
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were collected using an investigator developed
questionnaire.
Kidney Disease Quality of Life
Health-related quality of life was measured with the
Kidney Disease Quality of Life Instrument -Short Form
(KDQOL-SF). The KDQOL was developed as a self-
report, health-related quality of life measurement tool
designed specifically for patients with CKD [22]. The
134-item KDQOL was later condensed into the 80-item
Kidney Disease Quality of Life Instrument-Short Form
(KDQOL-SF) [39]. The questionnaire consists of the
generic SF-36 [40] as well as 11 multi-item scales
focused on quality of life issues specific to patients with
kidney disease (Figure 1). Subscales of the KDCS are (1)
symptoms/problems (6 items), (2) effects of kidney dis-
ease (4 items), (3) burden of kidney disease (3 items),
(4) work status (2 items), (5) cognitive function (3
items), (6) quality of social interaction (3 items), (7) sex-
ual function (2 items), (8) sleep (4 items), (9) social sup-
port (2 items), (10) dialysis staff encouragement (2
items), and (11) patient satisfaction. For example, related
to the effects of kidney disease, participants are asked
how true or false (using a 5 point Likert scale ranging
from “definitely true” to “definitely false” the following
statements are for them: (1) “My kidney disease inter-
feres too much with my life;” and (2) “Too much of my
time is spent dealing with my kidney disease” [22,39].
All kidney disease subscales are scored on a 0 to 100
scale, with higher numbers representing better HRQOL.
The 11 kidney disease-specific subscales can be averaged
to form the Kidney Disease Component Summary
(KDCS) [21,41-44]. The KDQOL-SF has been widely
used in several studies of patients with kidney disease,
including the ongoing, international DOPPS [21,45-50],
and has demonstrated good test-retest reliability on
most dimensions [2,22]. Published reliability statistics
for all subscales range from 0.68 to 0.94 with the sub-
scale of social interaction (0.68) being the only subscale
with an internal consistency reliability of less than the
recommended 0.70 [22].
Data Analysis
Missing values occurred between 1% and 10% for all
items except for sexual function which was missing
greater than 50% of data. The Veteran data set con-
tained less missing data than the DOPPS data set
(between 0 to 5% for the Veterans versus 6% to 10%
missing data for the DOPPS data set). This difference
may have been attributed to the Veteran data being col-
lected over the telephone whereas DOPPS data were
collected via written questionnaire. Because of the large
amounts of missing data from both the VETERANS and
DOPPs samples for the sexual function subscale, sexual
function was not included in the calculation of the
KDCS. For all other items, missing data were replaced

for the KDQOL-SF variables using the SAS 9.2 (Cary,
NC) multiple imputation procedure [51]. The multiple
imputation procedure consisted of using a regression
model fitted for each variable with missing data with 3
imputed data sets [52]. A one-factor confirmatory factor
analysis of the KDCS demonstrated weak factor loadings
of the subscales of work status, patient satisfaction and
dialysis staff encouragement, suggesting that these three
subscales measure something other than HRQOL. These
findings are consistent with CFA findings from a pre-
vious study [53]. Therefore, the 7-subcale KDCS com-
prising the subscales measuring symptoms, effects of
kidney disease on daily life, quality of social interaction,
burden of kidney disease, cognitive function, support,
and sleep was used for analyses in this study. Descriptive
statistics (mean, range, standard deviation) were calcu-
lated using SAS (Cary, NC).

Analytic Strategy
CFA. We used single-group confirmatory factor analysis
(CFA) via LISREL 8 [28] to evaluate the goodness-of-fit
of the hypothesized measurement model for responses
to the subscales of the KDCS and SF-36 instruments
when analyzed together; and given acceptable goodness-
of-fit in each group, we then used multigroup CFA to
compare the structure of this factor model in the
VETERAN (N = 314) and DOPPS (N = 3,300) samples.
As a first step, we evaluated separately for each group
the goodness-of-fit of a CFA model that specified two
correlated factors consisting of the seven subscales of
the KDCS and the eight subscales of the SF-36. The
rationale for examining a two-factor, second-order
structure considering generic HRQOL as one factor and
disease-specific HRQOL as another factor is supported
by the literature in which generic HRQOL and disease-
specific HRQOL are considered to be distinct, yet com-
plementary concepts [54]. In a seminal review, Patrick
and Deyo [54] describe an approach to measuring
HRQOL using both a generic instrument and condition
disease-specific measure with the intention “not to mea-
sure the same concepts as a generic measure with speci-
fic reference to a medical condition, but to capture the
additional, specific concerns of patient with the condi-
tion that are not contained in generic measures”
(p. S224). Furthermore, several studies have found evi-
dence that generic and disease-specific HRQOL instru-
ments measure discrete concepts. For example,
Bombardier et al., in a comparison of a generic (SF-36)
and a disease-specific HRQOL measure (Western
Ontario and McMaster Universities Osteoarthritis
Index) in patients after knee surgery found that the dis-
ease-specific measure detected improvements post-sur-
gery whereas the SF-36 discriminated better among
participants’ pain and functional level [55]. Other studies
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Figure 1 Subscales of KDQOL. The ellipses represent latent factors (i.e., the SF-36 and KDCS instruments), the rectangles represent measured
indicators (i.e., the subscales for each instrument), the lines connecting instruments to subscales are factor loadings, and the curve connecting
the two instruments represents a factor correlation. Four KDCS subscales (sexual function, work status, patient satisfaction, and staff
encouragement) were not included in the confirmatory factor analysis models for this study). Because of large amounts of missing data from
both the VETERANS and DOPPs samples for the sexual function subscale, sexual function was not included in the calculation of the KDCS for this
study. In addition, a one-factor confirmatory factor analysis of the KDCS demonstrated weak factor loadings of the subscales of work status,
patient satisfaction and dialysis staff encouragement suggesting that these three subscales measure something other than HRQOL. Therefore,
these four subscales were not included in our measurement models (see data analysis section for further details).
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have also found that generic and disease-specific
HRQOL measure different aspect of HRQOL concluding
that both types of instruments should be included in
studies [56-58].
CFA models were analyzed via maximum-likelihood

estimation using the covariance matrix of the KDCS and
SF-36 subscales. Because HRQOL responses tend to be
distributed nonnormally and because nonnormality
inflates the goodness-of-fit chi-square, reduces standard
errors, and exaggerates statistical significance, we also
analyzed the KDCS and SF-36 data using robust maxi-
mum likelihood estimation, by analyzing the asymptotic
covariance matrices to estimate the Satorra-Bentler
scaled chi-square value [59]. An identical pattern of
results emerged as when using traditional maximum-
likelihood estimation, although the goodness-of-fit chi-
square values were generally smaller. For present
purposes, we have chosen to report results using tradi-
tional maximum-likelihood estimation.
To define the units of variance for each factor in sin-

gle-group CFA, we standardized the KDCS and SF-36
factors by fixing their variances at 1.0. To define the
units of variance for the factors in the multigroup CFA
models, we identified a single subscale for each factor
that had a virtually identical loading for both groups
and then fixed this loading to a value of 1.0 for each
group [28,60]. For the KDCS factor, we selected the
Symptoms subscale as the referent item because it had
practically the same loading for both groups in the com-
pletely standardized single-group CFA solutions: 0.750
for Veteran sample and 0.747 for the DOPPS sample.
And for the SF-36 factor, we selected the Role Physical
(RP) subscale as the referent item because it had practi-
cally the same loading for both groups in the completely
standardized single-group CFA solutions: 0.614 for
VETERAN sample and 0.611 for the DOPPS sample.
Assessing model fit
We used four different statistical criteria to judge the
goodness-of-fit of the hypothesized two-factor CFA
model. As measures of absolute fit, we examined the root
mean square error of approximation (RMSEA) and the
standardized root mean residual (SRMR). RMSEA
reflects the size of the residuals that result when using
the model to predict the data, adjusting for model com-
plexity, with smaller values indicating better fit. Accord-
ing to Browne and Cudeck [61], RMSEA < .05 represents
“close fit,” RMSEA between .05 and .08 represents “rea-
sonably close fit,” and RMSEA > .10 represents “an unac-
ceptable model.” SRMR reflects the average standardized
absolute value of the difference between the observed
covariance matrix elements and the covariance matrix
elements implied by the given model, with smaller values
indicating better fit. Hu and Bentler [62] suggested that
SRMR < .08 represents acceptable model fit. As measures

of relative fit, we used the non-normed fit index (NNFI)
and the comparative fit index (CFI). NNFI and CFI indi-
cate how much better the given model fits the data rela-
tive to a “null” model that assumes sampling error alone
explains the covariation observed among items (i.e., no
common variance exists among measured variables).
Bentler and Bonett [63] recommended that measurement
models have NNFI and CFI > .90. More recently, Hu and
Bentler [64] suggested that relative fit indices above 0.95
indicate acceptable model. However, Marsh et al., [65]
have strongly cautioned researchers against accepting Hu
and Bentler’s (1999) [64] more stringent criterion for
goodness-of-fit indices, and have provided a strong con-
ceptual and statistical rationale for retaining Bentler and
Bonett’s [63] long-standing criterion for judging the
acceptability of goodness-of-fit indices. Therefore, follow-
ing Marsh et al.’s [65] recommendation, we have adopted
Bentler and Bonett’s [63] criterion of relative fit indices >
.90 as reflective of acceptable model fit.
Assessing invariance
We followed Vandenberg and Lance’s [23] recom-
mended sequence for conducting tests of measurement
invariance. Given an acceptable fit for the hypothesized
two-factor CFA model in each group (i.e., configural
invariance), we tested five different hypotheses about
measurement invariance between the VETERAN and
DOPPS samples. These structural hypotheses concerned
between-group differences (versus equivalence) in: (a)
the magnitude of the factor loadings (metric invariance);
(b) the intercepts of the measured subscales (scalar
invariance); (c) the variances and covariance of the
KDCS and SF-36 factors; (d) the unique error variances
of the measured subscales; and (e) the latent means of
the KDCS and SF-36Q factors.
We used the difference in chi-square values and

degrees of freedom, i.e., the likelihood ratio test [66], to
test hypotheses about differences in goodness-of-fit
between nested CFA models. Because the goodness-of-
fit chi-square is inflated by large sample size [66], we
also examined differences in CFI across nested models,
with difference in the CFI (ΔCFI) ≤ .01 considered evi-
dence of measurement invariance [67]. In addition, we
computed the effect size for each probability-based test
of invariance expressed in terms of w2, or the ratio of
chi-square divided by N [68], which is analogous to R-
squared (i.e., the proportion of explained variance) in
multiple regression. Cohen [68] suggested that w2 ≤ 0.01
is small, w2 = 0.09 is medium, and w2 ≥ 0.25 is large.
In testing invariance hypotheses, there is disagreement

in the literature about whether researchers should test
invariance hypotheses globally across all relevant para-
meters simultaneously (e.g., a single test of whether all
factor loadings show between-group invariance) versus
test invariance hypotheses separately across relevant sets
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of parameters (e.g., separate tests of the equivalence of
factor loadings for each factor). Although omnibus tests
of parameter equivalence reduce Type I errors by
decreasing the number of statistical tests when the null
hypothesis is true, Bontempo and Hofer [24] have sug-
gested that perfectly invariant factors can obscure non-
invariant factors and make multivariate global tests of
invariance misleading. For this reason, we chose to
examine the between-group equivalence of factor load-
ings, item intercepts, and unique error variances sepa-
rately for each factor in our two-factor CFA model.
To further reduce the likelihood of capitalizing on

chance, we corrected the Type I error rate for probability-
based tests of invariance (see Cribbie) [69], by imposing a
sequentially-rejective Bonferroni adjustment to the gener-
alized p value for each statistical test [70]. Specifically, we
used a Sidak step-down adjustment procedure [71,72] to
ensure an experimentwise Type I error rate of p < .05, cor-
recting for the number of statistical comparisons made.
In drawing inferences from tests of measurement or

structural invariance, we examined four different statisti-
cal criteria: (a) the unadjusted p-value associated with
the likelihood-ratio test; (b) the sequentially-rejective
Bonferroni adjusted p-value associated with the likeli-
hood-ratio test; (c) the difference in CFI values (ΔCFI);
and (d) effect size (w2). Research comparing the likeli-
hood-ratio test and ΔCFI as criteria for judging mea-
surement invariance [73] suggests that these two criteria
produce highly inconsistent conclusions. Because the
likelihood-ratio test is biased against finding invariance
when sample sizes are large [67,73,74], we expected that
likelihood-ratio tests using unadjusted p-values would
more often support the rejection of invariance hypoth-
eses relative to the other statistical criteria, given the
large sample size for our multigroup analyses (N =
3,614). Because the large number of anticipated invar-
iance tests (i.e., 40-50) will produce a more stringent
adjusted p-value, we expected that using Bonferroni-
adjusted p values would reduce the bias toward rejecting
invariance hypotheses via the likelihood-ratio test.

Results
Single-Group CFA Modeling
Configural invariance
CFAs revealed that the hypothesized two-factor model
fit the data of both the VETERAN and DOPPS samples
reasonably well, c2(89, N = 314) = 331.632, RMSEA =
.091, SRMR = .058, NNFI = .952, CFI = .959, and c2(89,
N = 3,300) = 2464.593, RMSEA = .086, SRMR = .051,
NNFI = .956, CFI = .963, respectively. Table 2 presents
the within-group completely standardized CFA solutions
(in which factor variances and item variances were both
fixed at 1.0) for the VETERAN and DOPPS samples.
These results establish the configural invariance of the

two-factor measurement model, whereby the same two
factors (KDCS and SF-36) and the same pattern of fac-
tor loadings are relevant for both the VETERAN and
DOPPS samples. Further supporting the configural
invariance of the hypothesized two-factor model,
squared multiple correlations (i.e., proportions of var-
iance explained by the relevant factor) for the subscales
reflecting each factor were generally large for each factor
in both groups: VETERAN sample, KDCS median R2 =
.394, SF-36 median R2 = .484; DOPPS sample, KDCS
median R2 = .398, SF-36 median R2 = .459.
In the completely standardized CFA solution, the

KDCS and SF-36 factors correlated 0.924 in the
VETERAN sample and 0.879 in the DOPPS sample.
Although these factor intercorrelations reflect a high
degree of overlap between the two HRQOL instruments
in both the VETERAN (0.9242 = 85% shared variance)
and DOPPS (0.8792 = 77% shared variance) samples,
they also indicate that roughly one-seventh of the var-
iance in each instrument for the VETERAN sample, and
one-quarter of the variance in each instrument for the
DOPPS sample, has nothing to do with the other instru-
ment. Furthermore, a one-factor model, representing
overall HRQOL, fit the combined KDCS and SF-36 data
significantly worse than did the two-factor model for
both the VETERAN, Δc2(1, N = 314) = 20.287, p <
.0001, and DOPPS samples, Δc2(1, N = 314) = 524.571,
p < .0001; and a one-factor model did not yield an
acceptable model fit with respect to RMSEA for either
the VETERAN, c2(90, N = 314) = 352.459, RMSEA =
.102, SRMR = .0589, NNFI = .946, CFI = .954, or
DOPPS sample, c2(90, N = 3,300) = 2989.164, RMSEA
= .107, SRMR = .0564, NNFI = .942, CFI = .951.
Although the two-factor model fit the data well, we

also tested a three-factor model that consisted of a single
second-order factor for the KDCS and two second-order
factors, representing the physical and mental component
summary scores of the SF-36 [40]. The two second-order
factors were evaluated by allowing the four physical sub-
scales (PF, RP, BP, & GH) to load on the second-order
physical component summary and the four mental health
subscales (MH, RE-SF, & VT) to load on the second-
order mental health component summary and then esti-
mating these loadings. This three-factor model fit the
data of both the DOPPS and VETERAN sample slightly
better than the two-factor model. However, the SF-36
physical component summary factor correlated very
highly with the SF-36 mental component summary in the
CFA solution for both the DOPPS sample (r=.957) and
the VETERAN sample (r=.997).

Multigroup CFA Modeling
Having established configural invariance (or an identical
pattern of factor loadings), we next used multigroup
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CFA to assess a set of increasingly restrictive hypotheses
concerning measurement invariance across the two sam-
ples. Analyzing the data for the VETERAN and DOPPS
samples in a multigroup model with no cross-group
invariance constraints provided the baseline model for
subsequent tests of invariance, (see Model 1, Table 3).
Metric invariance
In the next step, we examined the magnitude of factor
loadings or metric invariance. As seen in Table 3 (Model
3), the likelihood-ratio test revealed invariant factor load-
ings for the SF-36 subscales according to both unadjusted
(p < .29) and Bonferroni-adjusted (p = ns) criteria. In
addition, the effect size of group differences in loadings
on the SF-36 factor was modest (w2 = .05), and the
change in CFI (ΔCFI = .0002) also suggested invariant
SF-36 factor loadings. In contrast, the likelihood-ratio
test revealed significant group differences in loadings for
the KDCS factor (Model 2) according to both unadjusted
(p < .00085) and Bonferroni-adjusted (p < .025) criteria.
However, this effect approached only medium size (w2 =
.08), and the change in CFI (ΔCFI = .0003) suggested
that the VETERAN and DOPPS samples had equivalent
loadings on the KDCS factor.
Tests of the invariance of factor loadings for each of the

non-referent KDCS subscales revealed statistically signifi-
cant differences in loadings for two subscales (Sleep and
Social Support) using the unadjusted criterion (p <

.0069), but for only the Sleep subscale using the adjusted
criterion (p < .0036; see Table 3, Model 8). All six tests of
invariance in KDCS subscale factor loadings produced
modest effect sizes (w2s ≤ .06), and all ΔCFIs were within
the recommended 0.01 threshold for inferring invariance
(ΔCFIs ≤ .0005).
Adopting the most conservative criterion for assessing

invariance (i.e., unadjusted p-value), we thus sought to
establish a partially metric invariant measurement model
that constrained the factor loadings for all seven non-refer-
ent SFQ subscales and four of the six non-referent KDCS
subscales (all except the Sleep and Social Support subscales)
to be invariant across the VETERAN and DOPPS samples.
This partially metric invariant model fit the data well and
provided an equivalent goodness-of-fit compared to the
initial unconstrained baseline model, Δ(11, N = 3,614) =
14.342, unadjusted p < .22, Bonferroni-adjusted p = ns,
ΔCFI = .0003, w2 = .06 (see Model 10, Table 3). These
results support the conclusion that the VETERAN and
DOPPS samples used the SF-36 subscales in largely equiva-
lent ways to define the subjective quality of their lives (full
metric equivalence). Thus, quality of life, as measured by
the KDCS and SF-36, has mostly the same meaning for the
VETERAN and DOPPS samples (weak invariance).
Scalar invariance
As discussed, scalar invariance is the magnitude of item
intercepts. According to the likelihood-ratio test

Table 2 Within-Group Completely Standardized Factor Loadings and Squared Multiple Correlations for VETERAN (N =
314) and DOPPS (N = 3,300) Samples for the Two-Factor CFA Model

Subscales Factors Squared Multiple Correlations

KDCS SF-36

VETERAN DOPPS VETERAN DOPPS VETERAN DOPPS

Burden of Kidney Disease .593 .697 - - - - .351 .485

Quality of Social Interaction .628 .591 - - - - .394 .349

Cognitive Functioning .655 .631 - - - - .429 .398

Symptoms/Problems .750 .747 - - - - .562 .558

Effects of Kidney Disease .728 .733 - - - - .530 .537

Sleep .618 .584 - - - - .382 .341

Social Support .516 .392 - - - - .266 .154

PF - - - - .523 .580 .273 .336

RP - - - - .614 .611 .377 .373

BP - - - - .714 .678 .510 .459

GH - - - - .676 .725 .457 .526

MH - - - - .743 .713 .551 .508

RE - - - - .564 .586 .318 .344

SF - - - - .761 .784 .579 .614

VT - - - - .718 .763 .516 .583

Note. CFA = confirmatory factor analysis. Completely standardized factor loadings are regression coefficients obtained in predicting subscale scores when factors
and subscales are both standardized. Squared multiple correlations represent the proportion of variance in each subscale that the underlying factor explains.
Blank loadings were fixed at zero in the CFA model. PF = Physical Functioning. RP = Role Physical. BP = Bodily Pain. GH = General Health. MH = Mental Health.
RE = Role Emotional. SF = Social Functioning. VT = Vitality.
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Table 3 Results of tests of invariance for the VETERAN (N = 314) and DOPPS (N = 3,300) samples

Comparative Statistics

Model c2 df Contrast
with Model

#

Δc2 Δdf Unadj.
p <

Bonf.
Adj. p
<

ΔCFI w2

1. Baseline model: Two factors (KDCS & SF-36) with no invariance
constraints

2796.225 178 - - - - - - - - - - - - - -

2. KDCS factor loadings invariant 2819.092 184 1 22.867 6 .00085 .025 .0003 .08

3. SF-36 factor loadings invariant 2804.771 185 1 8.546 7 .29 ns .0002 .05

4. KDCS Burden subscale loading invariant 2796.239 179 1 0.014 1 .91 ns <.0001 <.01

5. KDCS Social Interaction subscale loading invariant 2799.730 179 1 3.505 1 .062 ns .0004 .03

6. KDCS Cognitive subscale loading invariant 2796.928 179 1 0.703 1 .41 ns <.0001 .01

7. KDCS Effects subscale loading invariant 2798.687 179 1 2.462 1 .12 ns .0005 .03

8. KDCS Sleep subscale loading invariant 2811.091 179 1 14.866 1 .00012 .0036 .0003 .06

9. KDCS Social Support subscale loading invariant 2803.528 179 1 7.303 1 .0069 ns .0001 .04

10. Partially metric invariant model (factor loadings for KDCS Sleep &
Social Support subscales noninvariant)

2810.567 189 1 14.342 11 .22 ns .0003 .06

11. Partially invariant model with 5 metric invariant KDCS subscale
intercepts invariant

2894.471 194 10 83.904 5 .000001 .00005 .0019 .15

12. Partially invariant model with 8 metric invariant SF36 subscale
intercepts invariant

2964.251 197 10 153.684 8 .000001 .00005 .0040 .21

13. Partially invariant model with intercept of KDCS Burden subscale
invariant

2812.836 190 10 2.269 1 .14 ns .0003 .03

14. Partially invariant model with intercept of KDCS Social Interaction
subscale invariant

2838.461 190 10 27.894 1 .000001 .00005 .0008 .09

15. Partially invariant model with intercept of KDCS Cognitive subscale
invariant

2835.202 190 10 24.635 1 .000001 .00005 .0007 .08

16. Partially invariant model with intercept of KDCS Symptoms
subscale invariant

2877.711 190 10 67.144 1 .000001 .00005 .0015 .14

17. Partially invariant model with intercept of KDCS Effects subscale
invariant

2839.951 190 10 29.384 1 .000001 .00005 .0008 .09

18. Partially invariant model with intercept of SF-36 PF subscale
invariant

2815.734 190 10 5.167 1 .024 ns .0004 .04

19. Partially invariant model with intercept of SF-36 RP subscale
invariant

2846.345 190 10 35.778 1 .000001 .00005 .0001 .10

20. Partially invariant model with intercept of SF-36 BP subscale
invariant

2819.639 190 10 9.072 1 .0026 ns .0004 .05

21. Partially invariant model with intercept of SF-36 GH subscale
invariant

2810.568 190 10 0.001 1 .98 ns .0003 <.01

22. Partially invariant model with intercept of SF-36 MH subscale
invariant

2837.769 190 10 27.202 1 .000001 .00005 .0008 .09

23. Partially invariant model with intercept of SF-36 RE subscale
invariant

2900.352 190 10 89.785 1 .000001 .00005 .0018 .16

24. Partially invariant model with intercept of SF-36 SF subscale
invariant

2831.587 190 10 21.020 1 .000005 .00016 .0007 .08

25. Partially invariant model with intercept of SF-36 VT subscale
invariant

2810.914 190 10 0.347 1 .56 ns .0003 <.01

26. Partially metric invariant model with two-factor variances &
covariance invariant

2816.786 192 10 6.219 3 .11 ns .0005 .04

27. Partially metric invariant model with factor variances-covariance &
unique error variances for KDCS subscales invariant

2866.086 199 26 49.300 7 .000001 .00005 .0007 .12

28. Partially metric invariant model with factor variances-covariance &
unique error variances for SF-36 subscales invariant

2840.570 200 26 23.784 8 .0025 ns <.0001 .09

29. Partially metric invariant model with factor variances-covariance &
unique error variance for KDCS Burden subscale invariant

2827.202 193 26 10.416 1 .0013 .036 .0003 .07
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(unadjusted p < .000001, Bonferroni-adjusted p <
.00005), an omnibus test of scalar invariance suggested
that the five metric-invariant KDCS subscales (including
the referent subscale) had different intercepts for the
VETERAN and DOPPS samples (see Table 3, Model
11). Although the size of this overall effect was between
medium and large (w2 = .15), the difference in CFI
again did not reach the 0.01 threshold (ΔCFI = .0019).
As seen in Table 3, individual follow-up tests of scalar
invariance revealed that only the KDCS Burden subscale
(Model 13) had equivalent intercepts for the two groups,
as reflected in a nonsignificant likelihood-ratio test
(unadjusted p < .14, Bonferroni-adjusted p = ns), ΔCFI
<0.01, and a small effect size (w2 = .03).
Likewise, an omnibus test of scalar invariance sug-

gested that the eight metric-invariant SF-36 subscales
(including the referent subscale) had different intercepts
for the VETERAN and DOPPS samples, according to
the likelihood-ratio test (unadjusted p < .000001, Bon-
ferroni-adjusted p < .00005). Although the size of this
overall effect was relatively large (w2 = .21), the differ-
ence in CFI again did not reach the 0.01 threshold
(ΔCFI = .004). As seen in Table 3 (Models 18 thru 25),

individual follow-up tests of scalar invariance revealed
that four of the SF-36 subscales (PF, BP, GH, & VT)
had equivalent intercepts for the two groups, as
reflected in nonsignificant Bonferroni-adjusted likeli-
hood-ratio tests, ΔCFIs < 0.01, and small effect sizes
(w2s ≤ .05).
Strong invariance
Thus, supporting partial scalar invariance (magnitude of
item intercepts), half of the eight SF-36 subscales, but
only one of the seven KDCS subscales, showed evidence
of scalar invariance for the VETERAN and DOPPS
groups. These results suggest that strong invariance (i.e.,
configural, metric, and scalar combined) exists in partial
(50%) form for the SF-36, but only minimal form (one
subscale) for the KDCS. Inspection of CFA solutions
revealed that subscales with nonequivalent intercepts
had higher values for the VETERAN sample relative to
the DOPPS sample.
Invariance of factor variances and covariance
As seen in Table 3 (Model 26), all four statistical criteria
suggested that the variances and covariance of the
KDCS and SF-36 factors were equivalent for the
VETERAN and DOPPS samples. These results indicate

Table 3: Results of tests of invariance for the VETERAN (N = 314) and DOPPS (N = 3,300) samples (Continued)

30. Partially metric invariant model with factor variances-covariance &
unique error variance for KDCS Social Interaction subscale invariant

2816.909 193 26 0.123 1 .73 ns .0006 .01

31. Partially metric invariant model with factor variances-covariance &
unique error variance for KDCS Cognitive subscale invariant

2821.228 193 26 4.442 1 .036 ns .0001 .04

32. Partially metric invariant model with factor variances-covariance &
unique error variance for KDCS Symptoms subscale invariant

2825.083 193 26 8.297 1 .004 ns .0001 .05

33. Partially metric invariant model with factor variances-covariance &
unique error variance for KDCS Effects subscale invariant

2816.917 193 26 0.131 1 .72 ns .0006 .01

34. Partially metric invariant model with factor variances-covariance &
unique error variance for KDCS Sleep subscale invariant

2838.330 193 26 21.544 1 .000004 .00013 <.0001 .08

35. Partially metric invariant model with factor variances-covariance &
unique error variance for KDCS Social Support subscale invariant

2821.074 193 26 4.288 1 .039 ns .0009 .03

36. Partially metric invariant model with factor variances-covariance &
unique error variance for SF-36 PF subscale invariant

2817.060 193 26 0.274 1 .61 ns .0006 .01

37. Partially metric invariant model with factor variances-covariance &
unique error variance for SF-36 RP subscale invariant

2818.194 193 26 1.408 1 .24 ns .0004 .02

38. Partially metric invariant model with factor variances-covariance &
unique error variance for SF-36 BP subscale invariant

2816.855 193 26 0.069 1 .80 ns .0007 <.01

39. Partially metric invariant model with factor variances-covariance &
unique error variance for SF-36 GH subscale invariant

2819.464 193 26 2.678 1 .11 ns .0003 .03

40. Partially metric invariant model with factor variances-covariance &
unique error variance for SF-36 MH subscale invariant

2817.791 193 26 1.005 1 .32 ns .0009 .02

41. Partially metric invariant model with factor variances-covariance &
unique error variance for SF-36 RE subscale invariant

2821.873 193 26 5.087 1 .025 ns .0011 .09

42. Partially metric invariant model with factor variances-covariance &
unique error variance for SF-36 SF subscale invariant

2821.253 193 26 4.467 .035 ns .0002 .04

43. Partially metric invariant model with factor variances-covariance &
unique error variance for SF-36 VT subscale invariant

2826.729 193 26 9.943 .0017 .045 .0002 .05

Note: CFI = Comparative fit index. W2 = ratio of chi-square divided by N [68], which is analogous to R-squared (i.e., the proportion of explained variance) in
multiple regression. Cohen [68] suggested that w2 ≤ 0.01 is small, w2 = 0.09 is medium, and w2 ≥ 0.25 is large.
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the two groups used an equivalent range of the latent
construct continuum in responding to the subscales for
each instrument [23]. Because both the factor variances
and the covariance are invariant, the correlation
between the factors is also invariant [26].
The finding of equal factor variances across groups is

important for at least two reasons. First, the invariance
of factor variances is a precondition for using the com-
parison of item unique variances as a test of equal sub-
scale reliabilities across groups [23,75]. Second, because
factor variances are equal across groups, regression coef-
ficients obtained when predicting the factors from other
constructs are not biased by differential range restriction
across groups [24].
Invariance of item unique error variances
As seen in Table 3 (Model 27), the omnibus hypothesis
of invariance in unique error variances for the KDCS
subscales (w2 = .12) was rejected according to the likeli-
hood-ratio test (adjusted p < .000001, Bonferroni-
adjusted p < .00005), but not according to the difference
in CFI values (ΔCFI = .0007). Individual follow-up tests
(w2s ≤ .05) revealed that five of the KDCS subscales-
Social Interaction, Cognitive Functioning, Symptoms,
Effects, and Social Support-had invariant unique error
variances according to the Bonferroni-adjusted likeli-
hood-ratio test (all ps = ns) and the difference in CFI
(all ΔCFIs < .001). These results suggest that five (71%)
of the seven KDCS subscales were equally reliable for
the VETERAN and DOPPS samples. Both of the KDCS
subscales (Burden and Sleep) that showed evidence of
differential reliability had greater unique error variance
for the VETERAN sample than for the DOPPS sample
in the partially invariant CFA model.
Also seen in Table 3 (Model 28), the omnibus hypoth-

esis of invariance in unique error variances for the SF-36
subscales (w2 = .09) was rejected according to the unad-
justed likelihood-ratio test (p < .0025), but not according
to the Bonferroni-adjusted likelihood-ratio test (p = ns)
or the difference in CFI (all ΔCFIs < .0001). Individual
follow-up tests (w2s ≤ .05) revealed that five of the SF-
36 subscales-PF, RP, BP, GH, and MH-had invariant
unique error variances according to the likelihood-ratio
test (all unadjusted ps > .11, all Bonferroni-adjusted ps
= ns) and the difference in CFI (all ΔCFIs < .001). In
addition, the RE subscale (w2 = .09) and SF subscale (w2

= .04) of the SF-36 had invariant unique error variances
according to the Bonferroni-adjusted likelihood ratio
test (ps = ns), but not according the unadjusted likeli-
hood-ratio test (ps < .035) or the difference in CFI
(ΔCFIs < .0012). And the VT subscale of the SF-36 had
a different unique error variance for the two groups
according to the likelihood-ratio test (unadjusted p <
.0017, Bonferroni-adjusted p < .045), but had a small
ΔCFI (.0002) and a small effect size (w2 = .05). These

results suggest that at least seven (88%) of the eight SF-
36 subscales were equally reliable for the VETERAN
and DOPPS samples. The one SF-36 subscale that
showed evidence of differential reliability (VT) had
greater unique error variance for the VETERAN sample
than for the DOPPS sample.
Invariance in factor means
As a final step in our invariance analyses, we tested for
group differences in latent means for the KDCS and SF-
36 factors, using a multigroup CFA model that specified
partially invariant factor loadings (all loadings invariant
except for the Sleep and Social 2 subscales of the
KDCS), fully invariant factor variances and covariances,
and partially invariant unique error variances (all unique
error variances invariant except for the Burden and
Sleep subscales of the KDCS and the VT subscale of the
SF-36). Because of problems of under-identification,
item intercepts and factor means cannot both be esti-
mated in the same model [76] nor can the factor means
of both groups be estimated simultaneously [28].
Accordingly, to test invariance in factor means, we fol-
lowed standard practice in the structural equation mod-
eling literature by: (a) constraining all item intercepts to
be equal across groups; (b) fixing at zero the factor
means for the DOPPS group; (c) estimating the factor
means for the VETERAN group; and (d) using Wald
tests to assess whether the factor means for the
VETERAN group were significantly different from zero
(i.e., from the factor means for the DOPPS group).
This final partially invariant multigroup CFA model fit

the data of the two groups reasonably well. Inspection
of the LISREL solution revealed that the latent means
were significantly higher for the VETERAN sample,
compared to the DOPPS sample, for both the KDCS
(Z = 5.253, p < .000001, Cohen’s d = 0.18) and SF-36
(Z = 7.240, p < .000001, Cohen’s d = 0.23) factors.
Thus, given that higher scores reflect higher quality of
life, the VETERAN sample reported higher overall levels
of subjective life quality on both the general and specific
measures of QOL, when controlling for differences in
the ways in which the two groups used the subscales to
define QOL and for between-group differences in the
reliabilities of the subscales.

Discussion
This study evaluated the measurement invariance of the
KDQOL-SF in a sample of Veterans and non-Veterans
with CKD receiving hemodialysis. Confirmatory factor
analyses demonstrated that the hypothesized two-factor
model (KDCS and SF-36) fit the data of both the
VETERAN and DOPPS samples well, supporting config-
ural invariance. We also tested a three-factor model
using a single, second-order factor for the KDCS and
two second-order factors for the SF-36 (physical and
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mental component summaries) and found that although
this three-factor model fit the data of both the DOPPS
and VETERAN samples slightly better than our two-fac-
tor model, the SF-36 physical health component corre-
lated very highly with the mental health component.
These findings strongly suggest that a single second-
order factor is a more appropriate way of modeling the
SF-36 in the combined data analysis than is the two sec-
ond-order SF-36 factors. In fact, when we attempted to
model two second-order factors for the SF-36 in the
combined analysis, it resulted in an inadmissible PHI
matrix of factor correlations providing more evidence
that only one second-order factor better represents the
data. Our finding of a single second-order factor for the
SF-36 data is consistent with other published studies.
For example, in a study of 339 patients with Parkinson’s
disease, confirmatory factor analysis demonstrated evi-
dence to support a single second-order factor for the
SF-36 data but did not find evidence to support two sec-
ond-order factors for physical and mental health com-
ponents [77]. Earlier studies have also found support for
a one second-order factor for the SF-36 [78,79].
Although the disease-specific HROQL (KDCS) and gen-

eric HRQOL (SF-36) components of the KDQOL-SF were
highly correlated with one another, a one-factor model in
which the KDCS and SF-36 represented overall HRQOL
provided an unacceptable model fit, whereas a two-factor
model fit the data reasonably well. These findings suggest
that the KDCS and SF-36 measure two similar but distinct
factors. It should be noted that the KDCS and HRQOL
components were allowed, but not forced to correlate with
one another. Our findings are consistent with several other
studies demonstrating that generic measures of HRQOL
and disease-specific measures make a unique contribution
to the understanding of HRQOL [54,80-82].
As more than half of the data were missing for the

sexual function scale of the KDCS, we did not include
this subscale in our analysis. Other studies have also
reported significant amounts of missing data for the
KDCS sexual functioning subscale [2]. A possible reason
for this missing data may include the sensitive nature of
the questions for this particular subscale. Further eva-
luation and possible revision of the questions included
in the sexual functioning subscale may be necessary to
better capture this aspect of health-related quality of life.
Multigroup CFA results concerning configural, metric,

and scalar invariance suggested the partial strict invar-
iance for the SF-36, but only weak invariance for the
KDCS. Overall, these results support the conclusion that
the SF-36 has more equivalent psychometric properties
for the VETERAN and DOPPS samples than does the
KDCS. Thus, the more general measure of HRQOL
appears to provide greater measurement equivalence
across samples than does the more specific measure of

QOL related to kidney disease. The SF-36 has been
more widely validated in different cultural groups than
the more recently developed KDCS.
The VETERAN sample tended to endorse higher

scores on the same rating scales than the DOPPS sam-
ple, thus reporting higher overall HRQOL levels for
both the generic (SF-36) and disease-specific (KDCS)
factors. This finding is contrary to results of previous
studies in which Veterans tend to report lower HRQOL
than non-Veterans [18,19]. We speculate that Veterans
receiving dialysis, in particular those receiving dialysis at
a VA dialysis center, may have a greater opportunity to
socialize with others with similar backgrounds and
experiences as themselves during the 12-15 hours per
week of hemodialysis. Increased social support may have
led to better reported HRQOL for Veterans. On the
other hand, response bias must also be considered. It is
possible that our Veteran subjects, who were inter-
viewed over the phone, provided responses to the inter-
viewer that they believed to be socially desirable. More
research is needed to clarify this finding.
The issue of how to interpret regression intercept dif-

ferences between groups has been widely discussed in
the literature [83-85]. Millsap [83] concluded that inter-
cept differences may reflect actual mean group differ-
ences and may not necessarily reflect measurement bias.
Furthermore, Millsap [83] suggested that unreliability
may contribute to group differences found in intercepts.
Therefore, we interpret our findings of higher subscale
intercepts for the VETERAN sample compared to the
DOPPS sample as reflecting higher latent mean scores
for the VETERAN sample as compared to the DOPPS
sample. Consistent with Millsap’s [83] observations
regarding reliability of scores, we also suggest that the
lower reliability in subscale scores observed for the
VETERAN samples also contribute to the group differ-
ences we found in subscale intercepts.
An important question concerns whether observed

group differences in item functioning reflect variation in
“auxiliary” HRQOL factors or in unrelated “nuisance”
factors [9-11]. Given that we have analyzed existing sub-
scales rather than individual items for each instrument,
it seems most plausible that group differences reflect
“auxiliary” secondary dimensions of HRQOL that are
being measured by multiple interrelated subscales and
not idiosyncrasies of specific item wording. However,
future work is needed to establish this conclusion more
definitively (see, e.g., [86].
Our study has several limitations. First, this study was

restricted to males between the ages of 28 and 85 living
in the United States. This restriction limits the general-
izability of our findings to other CKD populations,
including females. In addition, the exclusion criteria for
the DOPPS and VETERAN data may have been
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different due to samples from different studies. Further-
more, data were collected from Veterans via telephone
interview while data from non-Veterans were collected
with a written questionnaire. It is possible that our find-
ings are confounded by these different modes of data
collection. Although there is no consensus in the litera-
ture related to comparability of data collected via writ-
ten questionnaires and telephone interviews, several
studies have demonstrated that mode of data collection
has little to no effect on findings [87-89]. In addition,
we did not control for demographic variables such as
educational level and household income, which may
have confounded the comparison between the VETER-
ANS and DOPPS samples. Furthermore, variables not
measured in this study, such as resilience and optimism,
may also have contributed to the differences we found
between Veterans and non-Veterans in how they inter-
preted the KDQOL-SF. However, despite not controlling
for confounding variables, the generic HRQOL (SF-36)
measure maintained cross-group generalizability
between the DOPPS and VETERANS samples. Future
research is needed using large, randomly selected sam-
ples in order to increase generalizability and best
address the issue of confounders in the evaluation of
instrument measurement invariance. In addition, we
only considered subscale scores and did not analyze
item-level data. Although SF-36 items have been widely
validated, future analyses of KDCS items are needed in
order to refine the KDCS to contain only items that
produce measurement equivalence within subscales
across different cultural groups. Finally, confirmatory
factor analysis was the only method used to test for
measurement equivalence in this study. There are a vari-
ety of statistical methods available to evaluate measure-
ment invariance, such as item response theory (IRT)
that may have yielded different results [90]. More
research is needed to clarify the impact of different sta-
tistical methods to assess measurement invariance.

Conclusions
Veterans make up a unique cultural group with life
experiences in the military that may influence how they
interpret HRQOL measures. These potential cultural
differences must be considered when comparing per-
ceived HRQOL ratings of Veterans to non-Veterans.
Measurement invariance is an essential condition for
valid comparisons of HRQOL rated by different cultural
groups. Our data supported measurement invariance
across Veterans and non-Veterans using the KDQOL-
SF. However, structural invariance, a desirable but not
necessary precondition for meaningful group compari-
sons, was not demonstrated, particularly with the KDCS,
the disease-specific HRQOL component of the KDQOL-
SF. Further evaluation of measurement invariance of the

KDQOL-SF between Veterans and non-Veterans is
needed using large, randomly selected samples before
comparisons between Veterans and non-Veterans using
the KDQOL-SF can be done reliably
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