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Abstract

used here.

other organisms.

Background: Gene duplication can lead to genetic redundancy, which masks the function of mutated genes in
genetic analyses. Methods to increase sensitivity in identifying genetic redundancy can improve the efficiency of
reverse genetics and lend insights into the evolutionary outcomes of gene duplication. Machine learning

techniques are well suited to classifying gene family members into redundant and non-redundant gene pairs in
model species where sufficient genetic and genomic data is available, such as Arabidopsis thaliana, the test case

Results: Machine learning techniques that combine multiple attributes led to a dramatic improvement in
predicting genetic redundancy over single trait classifiers alone, such as BLAST E-values or expression correlation. In
withholding analysis, one of the methods used here, Support Vector Machines, was two-fold more precise than
single attribute classifiers, reaching a level where the majority of redundant calls were correctly labeled. Using this
higher confidence in identifying redundancy, machine learning predicts that about half of all genes in Arabidopsis
showed the signature of predicted redundancy with at least one but typically less than three other family
members. Interestingly, a large proportion of predicted redundant gene pairs were relatively old duplications (e.g.,
Ks > 1), suggesting that redundancy is stable over long evolutionary periods.

Conclusions: Machine learning predicts that most genes will have a functionally redundant paralog but will exhibit
redundancy with relatively few genes within a family. The predictions and gene pair attributes for Arabidopsis
provide a new resource for research in genetics and genome evolution. These techniques can now be applied to

Background
Plants typically contain large gene families that have
arisen through single, tandem, and large-scale duplication
events [1]. In the model plant Arabidopsis thaliana,
about 80% of genes have a paralog in the genome, with
many individual cases of redundancy among paralogs
[2-4]. However, genetic redundancy is not the rule as
many paralogous genes demonstrate highly divergent
function. Furthermore, separating redundant and non-
redundant gene duplicates a priori is not straightforward.
Mutant analysis by targeted gene disruption is a
powerful technique for analyzing the function of genes
implicated in specific processes (reverse genetics). Still,
the construction of higher order mutants is time
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consuming and obtaining detectable phenotypes from
knockouts of single genes generally has a low hit rate
[5,6]. The ability to distinguish redundant from non-
redundant genes more accurately would provide an
important tool for the functional analysis of genes.
Furthermore, vast public databases are now available
and can be used to quantify pair-wise attributes of gene
pairs to help identify redundant gene pairs [7,8].

Here we develop tools to improve the analysis of
genetic redundancy by (1) creating a database of com-
parative information on gene pairs based on sequence
and expression characteristics, and, (2) predicting
genetic redundancy genome wide using machine learn-
ing trained with known cases of genetic redundancy.
The term genetic redundancy is used here in a wide
sense to mean genes that share some aspect of their
function (i.e., at least partial functional overlap).
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Different theories exist regarding the forces that shape
the functional relationship of duplicated genes. One posits
that gene pair survival frequently arises from indepen-
dently mutable subfunctions of genes that are sequentially
partitioned into two duplicate copies sometime after gene
duplication, leading to different functions for the two para-
logs [9-11]. However, at least some theoretical treatments
show that even gene pairs that are on an evolutionary tra-
jectory of subfunctionalization may retain redundant func-
tions for long periods [12]. Another set of theoretical
models predicts that natural selection can favor stable
genetic redundancy or partial redundancy under certain
conditions, especially in large populations [13,14]. Other
formulations allow for simultaneous evolution of subfunc-
tionalization, neofunctionalization, and redundancy in the
same genome [15]. Thus, despite varying models on the
persistence of gene duplicates, none of these formulations
preclude the possibility that gene duplicates may overlap
in function for long evolutionary periods.

However, a simple lack of observable phenotype upon
knockout is not necessarily caused by genetic redundancy.
Other causes include 1) phenotypic buffering due to non-
paralogous genes or network architecture [16] 2) minor
phenotypic effects in laboratory time scales but major
effects over evolutionary periods [17,18], or, 3) untested
environments or conditions in which a gene is necessary
[19]. This report is focused exclusively on redundancy
through functional overlap with a paralogous gene.

Thus, for the sake of training our methods, redundant
gene pairs are defined as paralogous genes whose single
mutants show little or no phenotypic defects but whose
double and higher order mutant combination, when
available, show a significant phenotype. Thus, such gene
pairs are redundant with respect to an obvious pheno-
type. Genes that show single mutant phenotypes were
used as a negative training set. These genes, together
with their closest BLAST match in the genome, com-
prised the non-redundant gene pairs, a conservative bias
against over-fitting on BLAST statistics. The training set
consisted of 97 redundant and 271 non-redundant pairs
for Arabidopsis, which were compiled from the litera-
ture. Preliminary data showed that the redundant and
non-redundant sets possessed distinct properties with
respect to pair-wise attributes of gene duplicates.

Training sets can be used to learn rules to classify
genetic redundancy, using common properties, or attri-
butes, of gene pairs. The attributes compiled for this study
compare different aspects of nucleotide sequence, overall
protein and domain composition, and gene expression.
Since any gene pair can be compared using the same com-
mon attributes, these rules can then be applied to
unknown cases to predict their functional overlap.

A set of “rules” for redundancy can be generated by
machine learning, which uses the attributes of known
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examples of positive and negative cases in training sets
to classify unknown cases [20]. Machine learning has
been applied to a range of biological problems [21],
including the prediction of various properties of genes
such as function or phenotype [22-25] and network
interactions [26]. In Arabidopsis, sequence expression
attributes of individual genes have been used to predict
gene function [27]. Here a new dataset was compiled to
test the novel question of learning the signatures of
genetic redundancy on a genome-wide scale.

Here we show that predictions based on a Support
Vector Machine achieved a precision of about 62% at
recall levels near 50%, performing two-fold better than
single attribute classifiers, according to withholding ana-
lysis. This performance is better than expected because
positive examples are plausibly rare among all family-
wise gene pairs and the causes of redundancy are appar-
ently complex. The level of precision achieved permits
reasonable estimates of trends in redundancy at a
whole-genome level. The predictions show that more
than 50% of genes are redundant with at least one para-
log but typically no more than three in the genome. In
many cases, the method predicts that redundant gene
pairs are not the most closely related in a gene family.
Together, the results show that redundancy is a rela-
tively rare outcome of gene duplication but any given
gene is likely to have a redundant family member. This
appears partly due the property that redundancy persists
or re-establishes itself for complex reasons, meaning not
only due to the age of a gene duplicate. For example,
many redundant duplicate pairs appear to be greater
than 50 million old, according to estimates based on
synonymous substitution rates. In addition, gene pairs
from segmental duplications have a dramatically higher
probability of redundancy and certain functional groups,
like transcription factors, show a tendency to diverge.
The entire dataset, including attributes of gene pairs
and SVM predictions is available at http://redundome.
bio.nyu.edu/supp.html.

Results and Discussion

Training set evaluation

A threshold question in this study is whether a gene
pair can be reliably labeled as redundant or non-redun-
dant in the training set, given that different gene pairs
often have different phenotypes. Preliminary analysis
showed that select attribute values had distinct distribu-
tions between the two groups. For example, BLAST
E-values were, in general, lower in the redundant pairs
than in the non-redundant pairs in the training set, indi-
cating they share higher sequence similarity (Additional
file 1, figure a). A similar trend held for non-synon-
ymous substitution rates between the two groups (data
not shown). Similarly, on average, gene pairs in the
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positive training set exhibited higher expression correla-
tion levels over the entire dataset (R = 0.51) than gene
pairs in the negative training set (R = 0.28). Thus,
known redundant gene pairs appear to have a higher
correlation than gene pairs identified as non-redundant,
as expected (Additional file 1, figure b). The disparate
trends in the two groups of gene pairs sets do not prove
that all training set examples are correctly labeled or
that all gene pairs can be discretely labeled but it does
indicate that the genes labeled redundant, in general,
show distinct attributes from those labeled non-redun-
dant. Thus, there is a basis for asking whether combina-
tions of gene pair attributes could be used to improve
the prediction of genetic redundancy.

Algorithm Choice
Instead of predicting binary labels for genes pairs,
machine learning methods can quantify redundancy by
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posterior probabilities, which permit performance eva-
luation at different levels of confidence. The Receiver
Operating Characteristic (ROC) curve (Figure 1a), which
plots true vs. false positive rates at all possible threshold
values, shows that SVM, Bayesian network, and stacking
(a combined method) performed better than decision
trees, decision rules, or logistic regression. All machine
learning algorithms dramatically outperformed a ran-
dom, or betting, classifier (Figure la, diagonal line),
which also supports the hypothesis that the training set
labels are not randomly assigned. SVM was used for
further analysis because of its good empirical perfor-
mance and well-characterized properties [20].

The ROC curve analysis also permits an evaluation of
an appropriate threshold for calling redundant vs. non-
redundant gene pairs. Using precision (true positive rate
among positive calls) and recall (true positives among
positive calls vs. total true positives), the precision rate
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Figure 1 Performance analysis of machine learning and single attribute classifiers. Receiver Operating Characteristic (ROC) curve for
comparing (A) 5 different machine learning algorithms and one meta-algorithm (StackingC); The hashed diagonal line is the performance of a
simple betting classifier, which represents probabilistic classification based on the frequency of positive and negative cases in the training set.
(B) single-attribute classifiers using correlation of gene pairs across all microarray experiments (All Experiments) and BLAST E-values.
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increased relatively sharply from 0.2 to 0.4 probability.
The rate then saturated after 0.4 while recall dropped
sharply after that point (Additional file 2). Thus, 0.4 was
chosen as a balanced tradeoff between true and false
positives for further analysis of SVM.

Machine learning performance

Another critical question is whether machine learning,
which considers multiple features of duplicate gene
pairs, offers any advantage over the single characteristics
commonly used by biologists to identify potentially
redundant genes, such as sequence similarity or expres-
sion correlation. To address this question, predictions
for single attributes were generated using information
gain ratio. A 10-fold withholding approach was used to
evaluate performance. ROC curves (Figure 1b) showed
that sequence similarity and expression correlation,
taken individually, have poorer performance than SVM
or Decision Trees. The area under the curve (AUC) and
above the non-discriminating line measures performance
over random guessing (0 to 1 scale). The AUC was 0.56
for SVM while the AUC for BLAST E-values and corre-
lation was 0.14 and 0.22, respectively. At every threshold
cutoff, SVM outperformed single characteristic
approaches.

Within gene families, the vast majority of pair-wise
combinations of genes within gene families are expected
to be non-redundant. In such a problem, a classifier
could perform well (but not usefully) by labeling all
comparisons as functionally non-redundant. Thus, a cri-
tical feature of a useful predictor is achieving a good
performance on redundant cases.

To evaluate directly the tradeoff between accuracy and
coverage, we compared precision and recall among the
different classifiers. At the 0.4 probability cutoff estab-
lished for SVM, the machine learning approach achieved
a precision of 0.62 with a recall of 0.48. In contrast, at
the same recall rate, expression correlation achieved a
precision of 0.36 and BLAST E-values a precision of
0.29. Thus, in addition to ROC curve analysis, the
machine learning approach that utilized multiple attri-
butes showed dramatically improved precision in label-
ing redundancy compared to using single attributes.

SVM also performed well on predicting non-redun-
dant gene pairs at the 0.4 probability threshold, with a
precision rate of 0.83 and a recall rate of 0.90. At the
same recall level, expression correlation has a precision
of 0.82 and BLAST E-values had a precision of only
0.25. Thus, the SVM classifier shows consistently high
recall on negative cases with moderate levels of preci-
sion and recall on the difficult task of identifying scarce
positive examples.

When tested with 16 new redundant and 9 non-
redundant pairs published after the initial training of the
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predictor, the SVM classifier predicted 11 pairs were
redundant based on the 0.4 probability threshold, with
10 of them true redundant cases. The precision on posi-
tive cases was >90% with a recall of about 63%. The pre-
cision on negative cases was 57% with a recall of 89%.
Thus, the classifier performs well on novel cases not
used in withholding analysis.

The scale of predicted redundancy

At a probability score greater than or equal to 0.4, SVM
predicted 16,619 redundant pairs among 593,673
(2.80%) pair-wise comparisons taken from genes that fell
into annotated or ad-hoc gene families (see Materials
and Methods). The percentage of redundant pairs at
various probability scores is shown in Additional File 3.
At the 0.4 cutoff, 8,628 out of 18,495 genes examined,
or an estimated 47% of the genes tested, were predicted
to exhibit high levels of redundancy with at least one
other gene. Extrapolating estimates of true and false
positive rates at this probability, about 11,000 genes,
more than half the large set of genes tested, are pre-
dicted to have a highly redundant paralog. Nonetheless,
the number of redundant genes is likely an underesti-
mate since 4,757 genes could not be evaluated for
redundancy because they were not on the ATH1 micro-
array. Many of the missing genes are likely to be closely
related so this set may show higher redundancy rate
than the background.

Among the 8,628 genes classified as redundant, many
were labeled redundant with more than one paralog.
However, the frequency distribution of redundant para-
logs per gene is skewed to the left, meaning that the lar-
gest categories are genes with relatively few redundant
paralogs (Figure 2). For example, the largest category
(3,695 or about 43% of redundant genes) were predicted
to have only one redundant duplicate. The majority of
redundant genes (5,394 or 63%) were predicted to have
no more than two duplicates. While the false negative
rate may mean that many duplicate pairs were not
detected, the general trend indicates that most genes
tend to have relatively few redundant genes associated
with them. Overall, these predictions suggest that
redundancy in gene function is common in the Arabi-
dopsis genome but the number of functionally redun-
dant genes for any given trait is relatively low.

The synonymous substitution rate (K;) of gene pairs
was used to roughly examine the age of gene duplica-
tions. As expected, redundant gene pairs had lower
synonymous substitution rates on average, meaning that
redundant gene pairs tended to be younger duplicates
(Additional File 4). However, the frequency distribution
of predicted redundant gene pairs plotted against K has
a slow decline and a long tail, suggesting that many
redundant pairs are quite old. For example, 41% of
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Figure 2 The predicted depth of redundancy genome-wide. Genes are grouped into bins based on the number of paralogs with which they
are predicted to be redundant. The first bin represents the number of genes that were predicted to have exactly one redundant paralog, using
the cutoff of 0.4. The frequency distribution shows that most genes have relatively few predicted redundant duplicates.

redundant pairs have a K > 1, which is commonly esti-
mated to exceed 50 million years [4]. Thus, predictions
indicate that redundancy can persist for long evolution-
ary periods.

How attributes contribute to predictions

Given that multiple attributes improve the predictability
of redundancy, we asked which attributes contribute
most to predictions. Two measures were used to assess
the informativeness of individual attributes on SVM pre-
dictions: 1) the absolute value of SVM weights, which
are the coefficients of the linear combination of attri-
butes that is transformed into redundancy predictions
(see Materials and Methods), and, 2) SVM sensitivity
analysis in which single attributes were removed and the
overall change in predictions was quantified (using cor-
relation of probability values compared to the original
SVM predictions). The two analyses were largely in
agreement in identifying the top ranking attributes
(Additional file 5) and an average of the two ranks was
used as a summary rank.

Several unexpected attributes ranked highly in the
analysis, suggesting that functional information on gene
pair divergence could be captured by attributes that are
rarely utilized. The highest-ranking attribute was

“isoelectric point” (Rank 1), which measures a difference
in the pH at which the two paralogs carry no net elec-
trical charge. Thus, the measure is sensitive to differ-
ences in the balance of acidic and basic functional
groups on amino acids, potentially capturing subtle
functional differences in protein composition. Similarly,
“Molecular Weight” ranked fifth. An index of the differ-
ence in “Predicted Protein Domains” ranked seventh,
apparently providing functional information on the
domain level.

It was noteworthy that typically summary statistics on
protein or sequence similarity did not rank highly. For
example, BLAST “Score” (Rank 17), “E-value” (Rank 23),
and “Non-Synonymous Substitution Rate” (Rank 28)
were not among the top ranking attributes, although
preliminary analysis showed they contained some infor-
mation pertaining to redundancy. The low contribution
of these attributes was partly due to the fact that gene
pairs were already filtered by moderate protein sequence
similarity (BLAST E-value of le-4, see Materials and
Methods) but this cutoff is relatively non-stringent.
Thus, measures that capture changes in protein compo-
sition like isoelectric points or predicted domains appear
more informative about redundancy at the family level
than primary sequence comparisons.
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For gene expression, two types of experimental cate-
gories had a high rank for predictions, those that con-
tained many experiments and those that examined
expression at high spatial resolution. In the first cate-
gory, “All Experiments” (Rank 4), “Pathogen Infection
Experiments” (Rank 6), and “Genetic Modification
Experiments” (Rank 7) were among the top ranked cate-
gories. These categories all shared the common feature
of being among the largest, comprised of hundreds of
experiments each (Table 1). Thus, large datasets appear
to sample enough expression contexts to reliably report
the general co-expression of two paralogs for redun-
dancy classification. The specific experimental context
may also carry information.

In contrast to providing information over a broad
range of experiments, tissue and cell-type specific pro-
files had relatively few experiments but appeared to pro-
vide useful information on a fine spatial scale. For
example, “Root Cells,” which is a compendium of
expression profiles from cell types [28,29], ranked 2™
for all attributes. At organ level resolution, “Organism
Part” ranked 11" [30]. Similarly, the large-scale and spa-
tially resolved expression data sets were not highly cor-
related to each other (e.g., “Pathogen Infection” and
“Root Cells,” R = 0.19). Thus, while attributes are not
completely independent, they appear to provide different
levels of information that machine learning can use to
create a complex signature to identify redundancy.

In one example, four members of the PLETHORA
(PLT) family have been shown to be redundant in root
development [31]. One member of the family,
PLT2 (AT1G51190), was in the training set with redun-
dant relationships specified between it and PLT]I
(AT3G20840) and PLT3 (AT5G10510). However, our
classifier also correctly predicted redundancy with a
fourth member of the family, BABYBOOM (BBM,
AT5G17430), which was not in the training set but has
been shown to be at least partially redundant with PLT2
for embryonic phenotypes [31]. Interestingly, even
though several members of PLT family are more closely
related in sequence to PLT2 than BBM, they were not
predicted to be redundant (to date no redundancy
among them and PLT2 has been documented). Thus,
this example shows the properties of useful predictor
for genetic redundancy, accurately delineating redun-
dancy within a gene family in a non-trivial way; that is,
the predictor does not simply label the most closely
related genes as redundant.

In addition, we note that high probability predictions
for redundancy (or non-redundancy) can be based on
different sets of attributes. For example, while redundant
pairs tended to have high gene expression correlation,
many gene pairs classified as redundant have low corre-
lation levels (~20% of them have R < 0.2 in “All
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Experiments,” see Additional file 1, figure b). In such
cases, other attribute values that generally suggested
redundancy influenced the redundancy prediction. Addi-
tionally, we also generated separate predictions based on
co-expression in specific categories of experimental con-
ditions, such as root cell types or nutrient environments,
leaving out overall trends in correlation across all
experiments. Such techniques could specifically address
partial redundancy in conditions where a sufficient
number of global gene expression experiments were
available (online supplementary data, http://redundome.
bio.nyu.edu/supp.html). Thus, one advantage of machine
learning approaches using multiple attributes is that
they can discover multiple combinations of attributes
that suggest redundancy or non-redundancy.

Functional trends in predicted genome-wide genetic
redundancy

The ability to identify redundancy at reasonable accu-
racy across the genome permits an analysis of genome-
wide trends in the divergence of gene pairs. Gene
Ontology was used to ask whether certain functional
categories of genes were more likely to diverge or
remain redundant according to predictions. To control
for the number of closely related genes, paralogous
groups of genes were binned into small (< 5), medium
(= 5,< 20,) or large (> 20) classes based on the number
of hits with a BLAST cutoff of 1e-4 or less. In each
class, gene pairs were split into redundant and non-
redundant categories and each group was analyzed for
over-represented functional categories (see Materials
and Methods).

We focused analysis on signal transduction since such
genes are the frequent targets of reverse genetics and
distinct trends in these categories emerged from the
data. Within this large-sized paralog group, non-redun-
dant genes were over-represented in the category of reg-
ulation of transcription (p < 10, 301 genes, Additional
file 6). These included members of the AP2-EREBP (52),
basic Helix-Loop-Helix (33), MYB (35), MADS-box (18),
bZIP (16), and C2H2 (10) transcription factor families
(Additional file 7). Similarly, in the small-sized families,
the same term was also over-represented among non-
redundant genes (p < 0.01) with subgroups of many of
the same gene families mentioned above. In the large
gene family class, the frequency of transcriptional regu-
lators with at least one redundant paralog was only 30%
compared to a background of all genes with 50%. Simi-
lar trends were observed in the distribution of predicted
probabilities of redundancy, with transcription factors
skewed toward lower values (Figure 3a)

We examined the average values of attributes among
redundant and non-redundant pairs to ask how attribute
values contributed to classifications. On the gene
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Table 1 List of attributes used for the predictions

# Attribute Type Description

1 CLUSTALW Score Sequence ClustalW alignment score

2 E-value Sequence BLAST alignment E-value

3 Isoe Pt Diff Sequence percent difference in isoelectric points
4 Mol W Diff Sequence percent difference in molecular weight
5 Nonsyn Subst Rate Sequence non-synonymous substitution rate
6 Protien Domain Sharing Index Sequence intersection/union of predicted protein domain
7 Score Sequence BLAST alignment bit score

8 All Experiments Expression 2799 ATHT microarray experiments
9 Atlas of Arabidopsis Development Expression 264 ATH1 microarray experiments
10 Atmosphereric Conditions Expression 172 ATH1 microarray experiments
11 Change Light Expression 127 ATH1 microarray experiments
12 Change Temperature Expression 112 ATH1T microarray experiments
13 Compound Based Treatment Expression 248 ATH1 microarray experiments
14 Genetic Modification Expression 952 ATH1T microarray experiments
15 Genetic Variation Expression 22 ATHT microarray experiments
16 Growth Condition Treatments Expression 74 ATHT microarray experiments
17 Growth Conditions Expression 503 ATH1T microarray experiments
18 Hormone Treatments Expression 256 ATH1T microarray experiments
19 Induced Mutation Expression 18 ATH1 microarray experiments
20 Infect Expression 61 ATH1T microarray experiments
21 Injury Design Expression 28 ATHT microarray experiments
22 Irradiate Expression 28 ATHT microarray experiments
23 Light Expression 12 ATH1 microarray experiments
24 Media Expression 54 ATH1T microarray experiments
25 Organism Part Expression 806 ATH1T microarray experiments
26 Organism Status Expression 16 ATH1 microarray experiments
27 Pathogen Infection Expression 200 ATHT microarray experiments
28 Root Cells Expression 59 ATH1 microarray experiments
29 Root Cells Iron Salt Treatments Expression 17 ATH1 microarray experiments
30 Root Cells Nitrate Treatments Expression 20 ATH1T microarray experiments
31 Root Developmental Zones Expression 11 ATH1 microarray experiments
32 Root Developmental Zones (Fine Scale) Expression 24 ATH1T microarray experiments
33 Root Regeneration Expression 11 ATH1 microarray experiments
34 Seed Development Expression 6 ATH1 microarray experiments
35 Set Temperature Expression 4 ATH1 microarray experiments
36 Starvation Expression 22 ATH1 microarray experiments
37 Stimulus or Stress Expression 320 ATHT microarray experiments
38 Strain or Line Expression 32 ATHT microarray experiments
39 Temperature Expression 15 ATH1T microarray experiments
40 Time Series Design Expression 427 ATH1 microarray experiments
41 Unknown Experimental Design Expression 8 ATH1 microarray experiments
42 Wait Expression 17 ATH1 microarray experiments
43 Water Availability Expression 40 ATH1 microarray experiments
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expression level, gene pairs in the transcriptional regula-
tor category showed a distribution of correlation values
that was skewed toward lower values (e.g., Figure 3b, c).
For sequence attributes, transcriptional regulator gene
pairs also showed higher differences in isoelectric points
compared compared to all genes in large family size
class (Figure 3d). In summary, transcriptional regulators
in large gene family classes show a trend of functional
divergence of gene pairs, with tendencies to diverge in
expression pattern and in subtle protein properties.

In contrast, genes predicted to be redundant were dra-
matically over-represented in the category of kinase
activity, another category of signal transduction (p < 10
1817, Additional file 6). The term included many
members of the large receptor kinase-like protein family
(Additional file 7). The distribution of redundancy prob-
ability for gene pairs in the kinase category was skewed
toward higher values compared to all genes in the same
large family class (Figure 3a). In contrast to the tran-
scriptional regulator category, about 85% percent of
kinases had at least one predicted redundant paralog. In
general, the redundant kinases show the typical trends
of redundant genes from other categories, with high cor-
relation over a broad set of experiments (Figure 3b, c).

Interestingly, despite the high level of predicted redun-
dancy, gene pairs in the kinase category also showed a
high divergence in isoeletric points (Figure 3d), showing
that this attribute trend of kinases, which typically sig-
nified non-redundancy, was overcome by other attri-
butes. Overall, the redundancy analysis suggests that
genes at different levels of signal transduction show dis-
tinct trends in redundancy, which has intriguing impli-
cations for the general role of different signaling
mechanisms in evolutionary change.

It is important to note that not all attributes showed
the same trends in each functional category. For exam-
ple, other functional categories with redundant genes
showed different trends in attributes relative to the
background, as noted above for the isoeletric point attri-
bute for kinases. This means that, as noted above, the
attributes display some independence and machine
learning can rely on different attributes to call redun-
dancy in different genes.

Duplication Origin and Predicted Redundancy

We also asked whether there were trends in redundancy
stemming from either single or large-scale duplication
events. To compare redundancy trends by duplication
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origin, gene pairs were labeled according to previous
genome-wide analyses that identified recent segmental
duplication events in Arabidopsis [32] as well as tandem
and single duplications [33]. To minimize bias that
might be caused by a correlation with the age of a
duplication event, only gene pairs with a synonymous
substitution rate (K;) below 2 were used. The cutoff, in
addition to the fact that many very recent duplicates
were not included on the microarray and could not be
analyzed, made the distribution of K values in recent
and single duplication events highly similar (Additional
file 8a, b). Thus, the comparison of these two groups
was not confounded by differences in the apparent ages
of duplication events in the recent segmental vs. single
duplication events.

The average probability of redundancy was signifi-
cantly higher among gene pairs in the most recent
duplication event than among gene pairs resulting from
single duplication events (0.47 v.s. 0.28, p < 107'° by t-
test). Despite the equilibration of neutral substitution
rates, gene pairs in the two groups differed dramatically,
on average, in molecular weight difference (0.04 recent
vs. 0.13 single) and isoelectric point difference (0.8
recent vs. 0.12 single). In addition, expression correla-
tion between gene pairs was generally two-fold higher in
recent duplicates than in single duplication events.
Higher predicted redundancy among segmental dupli-
cate pairs was not trivially due to larger gene families in
that class, as the number of closely related genes for
gene pairs in the single, old, recent, and tandem events
is 54, 7, 20, and 46, respectively. It is possible that
synonymous substitution rates do not accurately reflect
relative divergence times but it is not apparent how one
group would show bias over the other. Thus, the predic-
tions suggest that duplicates from large segmental dupli-
cations diverge more slowly in function, as is evident in
low divergence in expression and protein-level
properties.

Conclusions

Identifying redundancy is a complex problem in which
gene pairs may be redundant in some phenotypes but
not others. However, the results indicate that there is
enough generality in the outcome of gene duplication to
classify redundancy based on evidence from disparate
phenotypes. Among the gene pairs that the SVM classi-
fied as redundant, 62% were correct in withholding ana-
lysis. At this level of precision for redundancy
predictions, SVM was able to correctly label 48% of all
known cases of redundant gene pairs. The best single
attribute classifier achieved a precision of only 36% at a
cutoff that correctly labeled 48% of known cases of
redundancy. The ROC curve analysis showed that no
single attribute classifier performed better than SVM at
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any point in the analysis of true positives vs. false posi-
tives. Overall, the performance of the machine learning
using multiple attributes was about twice as high as sin-
gle attribute methods. The ability to predict redundancy
at reasonable precision and recall rates constitutes a
resource for studying genome evolution and redundancy
in genetics.

Informative attributes

The strength of the machine learning approach is that it
can take advantage of multiple types of information and
give each type a different weight. While more than 40
attributes were used in the analysis, the effective number
of gene pair attributes was likely much smaller due to
correlations among attributes. However, four or five dis-
tinct sets of attributes showed low correlation to
each other and were shown to be informative for
classification.

Among attributes related to sequence composition,
the most informative ones were not those typically used
to assess genetic redundancy. The highest-ranking attri-
bute was an index of the difference in isoelectric points.
The fifth highest-ranking attribute was an index of the
difference in molecular weights. An index of predicted
domain sharing also ranked highly, largely because
results were sensitive to its removal from the machine
learning process, indicating that it provided relatively
unique information. It was surprising that BLAST
E-values provided little information at values lower than
le-4, the cutoff for the pairwise comparisons. This
implies that, within gene families, other measures such
as changes in the charge, composition of proteins or
alterations in the domain structure are better indicators
of functional redundancy than direct sequence compari-
son metrics.

Two types of expression-based attributes were infor-
mative, including those comprised of many experiments
and those that resolved mRNA localization into specific
tissues or transcriptional response to an environmental
stimulus. While the large expression datasets were
highly correlated (e.g., “Genetic Modification” and
“Organism Part, R = 0.81), they were much less corre-
lated with the high-resolution data (e.g., “Root Cells”
and “Genetic Modification”, R = 0.30). Thus, it appears
that different types of expression data are contributing
at least some distinct information, with high spatial
resolution datasets providing informative contextual
information and larger datasets tracking the broad beha-
vior of duplicate genes.

Functional trends in redundancy

Genes annotated with roles in transcriptional regulation,
including many transcription factors, showed a tendency
toward functional divergence. The opposite trend
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occurred at another level of signal transduction with
kinases showing a tendency toward redundancy. Inter-
estingly, divergent redundant transcriptional regulators
showed, on average, a divergence in isoelectric points
compared to the background or even other redundant
categories. This global trend fits arguments, based on
case studies, that modular changes in transcription fac-
tor proteins are plausible mechanisms for evolutionary
change [34]. For example, it has been postulated that
subtle changes in proteins such as insertions of short
linear motifs that mediate protein-protein interactions
and simple sequence repeats of amino acids could play a
role in functional divergence of transcription factors
outside of dramatic changes to the DNA binding site
[35,36]. Still, a more systematic examination of protein
interactions among transcription factors is needed to
corroborate these findings. In general, the ability to clas-
sify large groups of genes enables an analysis of the
functional trends that shape redundancy in a genome.

Implications for Genome Organization

The high level of redundancy predicted in this study is
in accordance with low hit rates in reverse genetic
screens in Arabidopsis and the high number of studies
that have shown novel phenotypes in higher order
mutants. However, the estimated redundancy rates still
leave room for other explanations to account for the
lack of single mutant phenotypes. For example, the
machine learning approach predicted that 50% of
genes are not buffered by paralogous redundancy but
reverse genetic screens rarely achieve such a high rate
of phenotype discovery. The predicted redundancy rate
may be an underestimate, as about 23% of all gene
pairs identified in the study could not be analyzed.
Still, one implication of our results is that other preva-
lent phenomenon are likely to buffer gene function
including, for example, network architecture or non-
paralogous genes. Machine learning could eventually
be applied to these other forms of redundancy but a
comprehensive training set for these phenomena is
currently lacking.

While the machine learning approach predicted that
half the genes in the genome had a redundant paralog,
most genes had no more than two other highly redun-
dant paralogs. This leads to the paradoxical conclusion
that, while the function of many or even most genes is
buffered by a redundant paralog, redundancy is a rela-
tively rare outcome of gene duplication. In addition, the
forces that shape redundancy appear to be complex and
not strictly a function of time. For example, a large pro-
portion of predicted redundant gene pairs were quite
ancient in their origin. And, the mode of duplication, by
either single or large segmental duplication, also
strongly influenced the tendency for gene pairs to
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diverge, according to predictions. Together, these find-
ings suggest that redundancy between pairs is a rela-
tively rare but targeted phenomenon with complex
causes, including mode of duplication, time, and gene
function.

Implications for Genetic Research

From a practical standpoint, SVM predictions still carry
enough uncertainty of false positive and false negative
calls that they should be considered a guide to be used
with researcher knowledge rather than a certain predic-
tion. We envision that geneticists who are already inter-
ested in conducting reverse genetic studies of a gene of
interest will often want to explore the possibility of
redundancy within the same gene family. The gene of
interest can then be queried in our predictions to first
evaluate the number of predicted redundant genes. A
large number of predicted redundant genes may be
grounds for prioritizing another gene. If a small number
of gene family members are implicated in redundancy
and single mutants fail to display a genotype, research-
ers can use predictions to guide the construction of
double or higher mutants. Quite often the most
sequence-similar gene is not the one predicted to most
likely be redundant.

In the future, predictions can be improved by having
more training data to learn redundancy in more nar-
rowly defined phenotypes. In addition, a more objective
and quantitative definition of redundancy would likely
improve the quality of the training set. For example, the
set of downstream targets for transcription factors could
provide a standardized quantitative measure for single
and double mutant phenotypes. These types of data
would require significant work from any individual
research group. However, the training set is continu-
ously under expansion due to the efforts of the genetic
research community as a whole. Studies investigating
direct targets of transcription factors are also increas-
ingly common. Thus, the predictions of the machine
learning approach will improve over time. We view this
report as a first generation approach to exploring the
genome-wide outcomes of gene duplications using
machine learning approaches, where reasonable predic-
tions are now feasible.

Methods

Defining Gene Families

We used gene family annotations available through The
Arabidopsis Information Resource (TAIR) [37] which
included 6,507 genes in 989 families. To group genes
that were not annotated into gene families in TAIR, we
established “ad-hoc” gene families, in which all members
had at least one member in the family with a protein-
protein BLAST E-value lower than le-4 and no
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members appear in the annotated families. Among
genes for which we generated predictions, there were a
total of 17,158 genes grouped into ad-hoc gene families.
We did not make predictions on the singletons or genes
lacking a probe on the ATH1 microarray. Thus, these
genes were removed from the analysis. After this step,
there were 5,644 genes in the annotated families and
12,851 genes in the ad hoc gene families.

Attribute Data Sources and Comparative Measures

For expression based characteristics, we downloaded
all available microarray experiments from Nottingham
Arabidopsis Stock Centre (NASC)[8] for the ATH1
microarray. We further partitioned these experiments
using the categorical ontology developed by NASC
using the MGED classification as found in the Treeview
section in NASC. If two or more partitions overlapped
by more than 50 percent, we eliminated the smaller par-
tition. We created additional partitions using data from
several different cell type-specific profiling experiments
[38-40], root developmental zones [28], fine-scale root
developmental zones [29], dynamic profiling of root
cells under treatment with nitrogen [41], and root cells
responding to abiotic stress [42]. Pearson correlation
was used to compare gene expression of gene pairs in
each partition separately. Gene expression was normal-
ized by MAS5 [43], a normalization method that
appears to have less likelihood of spurious inter-array
Pearson correlation as described in [44].

For sequence based attributes, we used TAIR protein
sequence to generate pairwise attributes for gene dupli-
cates on protein BLAST E-values, BLAST scores, and
Clustal W alignments [45]. We also calculated non-
synonymous substitution rates using PAML [46]. The
predicted domain sharing index was based on the inter-
section/union of predicted domains for each protein
pair, where the predicted domains were downloaded
from TAIR. We also used percent difference in isoelec-
tric points where values for each protein were down-
loaded from TAIR. To remove redundant attributes, we
manually selected the subset in which all the pair-wise
Pearson correlations between attributes in the subset are
lower than 0.85.

For the on-line supplementary data, predictions were
derived from either using all attributes or subsets of the
data for assessing redundancy in specific biological con-
texts. When subsets of the data were used, all sequence
attributes were used but in combination with only sets
of microarray data that corresponded to biological cate-
gories, such as stress, hormone treatment, root cell type
expression profiles, or light manipulation. The training
set that consists of all the attributes is also available in
Additional file 9, and redundancy predictions are avail-
able in Additional file 10.
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Description of Machine Learning Programs

We tested six different machine-learning programs and
selected Support Vector Machine (SVM) for detailed
analysis, based on the principle of Occam’s razor [47].
All programs were compared using Weka’s implementa-
tion [48]. For SVM, we used Weka’s wrapper for
LibSVM [49] for performance evaluation but used
LibSVM directly when predicting functional overlap.
Below is a brief summary of each:

Decision trees involve creation of a tree (often bifur-
cating) in which each tree node specifies an attribute
and a threshold to choose a decision path. A particular
instance of the data (e.g. gene pair) is mapped starting
from the root and proceeding until a leaf is reached.
Each leaf contains a specific label (e.g. overlapping or
non-overlapping function). At each node in the decision
tree, the gene pair is interrogated about its value on a
specific attribute (such as expression correlation in a
particular experiment). Thus, the path through the tree
depends on the specific attributes of the gene pair. We
used Weka’s C4.5 [50] implementation to generate the
decision tree from the training set. For each attribute,
the algorithm selects the threshold that maximally sepa-
rates the positive and negative instances in the training
set by using the information gain measure. Therefore,
decisions are taken sequentially until a terminal leaf is
reached. The label of the leaf is determined by the
majority rule of labels from the training set. We set the
PruningConfidenceFactor to 0.25 (to address overfitting
in the training set) and minNumObj to 2.

Decision rules specify conditions that must simulta-
neously be satisfied in order to assign a label. Given a
list of decision rules, these rules are tested sequentially
until a label is assigned, or otherwise the default label
applies [51]. PART [52] was used to learn the decision
rules from the training set. It learns a rule by building a
decision tree on the current subset of instances, con-
verting the path from root to the leaf that covers the
most instances into a rule. It then discards the tree,
removes the covered instances, and learns the next rule
on the remaining instances. We used Weka’s implemen-
tation of PART with the parameters PruningConfidence-
Factor set to 0.25 and minNumODbj set to 2.

Bayesian network is a generalized graphical model that
assigns probabilities to specific labels. Bayesian networks
model conditional dependencies as the network topology:
in this network, attributes and the label are modeled as
nodes and their conditional dependencies are specified by
directed edges. Each node also stores a probability table
conditioned on its parent nodes. The probability for a
label is proportional, based on Bayes rule, to the joint
probability density function of all attributes and the label,
which is further decomposed into the product of condi-
tional probability of each node given its parents. We used
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K2 [53] to learn the network structure. It employs a
hill-climbing strategy to iteratively refine the network
structure by adding directed edges and maximizing the
likelihood such that it best describes the training data.
We used Weka’s implementation of K2 with the para-
meter MaxNrOfParent set to 1, which essentially restricts
the learned network to be Naive Bayes [54].

Logistic regression uses a statistical model that
assumes a linear relationship among attributes[55]. It
uses the logistic function that relates the linear combi-
nation of attributes to the probability of the label. One
way to learn the coefficients in the linear equation is to
maximize the log-likelihood function that estimates the
fitness between the predicted probability and the actual
label specified in the training data. We used Weka’s
implementation and default parameters.

Stacking (StackingC) [56] is a meta algorithm, which
makes prediction by combining the predictions from the
participating machine learning algorithms. StackingC
employs a linear regression scheme to merge the predic-
tions: the final predicted probability of a label is the linear
combination of the probabilities predicted by participating
algorithms; in other words, it is a weighted average of pre-
dictions where the weights for participating algorithms
were learned from the training set through a nested cross-
validation process. We used Weka’s implementation of
StackingC to combine predictions from decision trees, deci-
sion rules, Bayesian network, logistic regression, and SVM.

Support vector machine (SVM) predicts the label of
each instance by mapping it into a data point in a high
dimensional space, whose coordinates are determined by
the values of attributes [57]. The hyperplane is learned
from the training set such that it separates instances
with different labels and also maintains the maximum
margin to the nearest data points. A test case is then
labeled functionally overlapping or non-overlapping
depending on which side of the hyperplane it falls. One
important property of maximum margin is that the
error rate, when generalized to all the data points from
the sample space, is mathematically bounded. Further-
more, through the use of a kernel function, points can
be transformed non-linearly into a higher or even infi-
nite dimensional space where a better separating hyper-
plane might exist. We used LibSVM [49] with linear
kernel and default parameters. We tested a range of the
penalty parameter C (from 107> to 10 with the log-
scaled interval) and found performance to be robust to
a range of settings for C. We used the default parameter
(C = 1), which had the best performance. Attributes
were normalized to 0[1] before learning and prediction.

Platt’s probabilistic outputs for SVM provide a quanti-
tative way for the confidence of redundancy predictions
[58]. This calibrated posterior probability for the redun-
dancy label is based on the distance from each data
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point to the hyperplane: larger distances on the redun-
dant side of the hyperplane result in larger probabilities,
and similarly, larger distances on the non-redundant
side of the hyperplan lead to smaller probabilities for
the redundant label. LibSVM rescaled these distances
and then transformed them by a sigmoid function into
probabilistic measures.

In preliminary testing, we used two other non-linear
methods, Bayesian networks and MultilayerPerceptron. In
the case of Bayesian network (a generative model), the
performance degraded when we tried MaxNrOfParent > 1,
which relaxed the number of parents and learned more
complicated network structures (data not shown). In the
case of the neural network implemented by Weka’s Multi-
layerPerceptron (a non-linear classifier), the performance
was worse than SVM regardless of the number of hidden
layers (data not shown). Similarly, Radial Basis Function
kernel in SVM and the Stacking meta-algorithm did not
provide better performance possibly due the same limita-
tion on the training size. Thus, non-linear methods did
not appear to provide increased performance in this pro-
blem and increased opportunities to overfit the data. This
might be due to the large number of attributes (43) but
relatively fewer training instances (368), as in [59].

Other pre-processing steps included removing gene
pairs with missing values instead of substituting their
values with the averages. In addition, highly correlated
attributes were also removed because some machine
learning algorithms (such as SVM) assume indepen-
dence among attributes.

SVM Sensitivity Analysis

We used Pearson correlation of the predicted probabil-
ities before and after removing single attributes to quan-
tify the sensitivity of single attributes when they were
removed during the machine learning process. First, a
smaller subset of attributes were selected, as described
in [60], to ensure they are both informative (by finding
attributes that maximize the correlation between them
and the redundancy label) and independent (by mini-
mizing the inter-correlations among the selected attri-
butes). This step was necessary because the original set
of attributes contained redundant information, so
removing any one of them was compensated by other
attributes and didn’t change the predictions significantly.
We used SVM to make predictions using this smaller
subset of attributes (19) and then compared with the
predictions where each of the attributes was removed
from the subset in turn (Additional file 5).

Description of Information Gain Ratio used on single
attribute classifier

Binary partitioning a single attribute by setting a fixed
threshold value is the most straightforward classification.
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Every gene pair with a greater attribute value can thus
be predicted redundant (or non-redundant), with the
predicted probability corresponding to the ratio of
redundant (or non-redundant) pairs over the whole
training set. We determined this threshold value by
exhaustively testing each possible value of the attribute
and kept the one with the maximum information gain
ratio to the known label. C4.5 uses the same strategy to
select and branch on the attribute iteratively.

The Withholding Strategy

We used 10-fold stratified cross-validation to evaluate
the performance of machine learning algorithms. The
original training set was first partitioned into 10 equal-
sized subsets. For each fold, a different subset was evalu-
ated using the model learned from the other subsets.
The overall performance measures were tallied among
all folds; therefore, the method evaluates every instance
in the training set. This procedure essentially reduces
the variation in estimating the performance by averaging
out the bias caused by particular instances. The strati-
fied sampling procedure also reduces the variation by
ensuring that the proportion of instances with different
labels in each bin is the same as the whole training set.
We used two measures for evaluation: recall rate of a
particular label is the ratio of true positives over all
known positives, and, precision rate is the ratio of true
positives over both true positives and false positives.

Gene Ontology (GO) Analysis

For analysis of over-represented GO terms among
redundant and non-redundant genes, genes were split
into redundant or non-redundant sets for each size class
(large, medium or small if the number of closely related
genes are >20, between 5 and 20, or < 5, repectively,
using BLAST cutoff of 1le-4). This meant that large gene
families were sometimes broken up into more than one
paralogous group, depending on how many closely
related genes they had. We calculated overrepresented
GO terms for cellular component, biological process
and molecular function classification systems and then
merged results. We then asked what GO terms were
over represented (P < 107%) in each set for each size
class. GO terms or their descendents were used. We
used Bioconductor’s GOstats package [61,62] to find the
overrepresented GO terms, which derives p-values
of over-represented GO terms based on the hypergeo-
metric distribution. We then examined average
attributes for genes in each set that mapped to over-
represented categories.

List of abbreviations
SVM: Support Vector Machine; ROC: Receiver Operat-
ing Characteristic; AUC: area under the curve; TAIR:
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The Arabidopsis Information Resource; NASC: Notting-
ham Arabidopsis Stock Centre; GO: Gene Ontology

Additional material

Additional file 1: Attribute characteristics of the redundant and
non-redundant training sets. Frequency distribution of redundant vs.
non-redundant pairs in the training set grouped by (a) BLAST E-value (b)
Pearson correlation of gene pairs in expression profiles across the
category “All Experiments.”

Additional file 2: A table of precision and recall rates for various
probability thresholds.

Additional file 3: Trend in redundancy calls at varying probability
thresholds. The percentage of all gene pairs tested that were classified
as redundant at different probability thresholds

Additional file 4: The synonymous substitution rates (Ks) of
redundant and non-redundant training sets. Frequency distribution of
redundant v.s. non-redundant pairs in the training set grouped by
intervals of Ks values.

Additional file 5: A table quantifying contributions of attributes
toward redundancy predictions.

Additional file 6: A table of functional trends of redundant or non-
redundant genes in various sizes of paralog groups.

Additional file 7: A table of gene family sizes for each of the over-
represented GO terms.

Additional file 8: Duplication origins of paralogous gene pairs.
Frequency distribution of large-scaled duplication events (recent and
old), as well as single and tandem duplications grouped by (a)
Synonymous Substitution Rates (Ks) (b) Pearson correlation of gene pairs
in expression profiles across the category "All Experiments”.

Additional file 9: The training set used by SVM. The training set
includes 97 redundant pairs (class = plus), and 271 non-redundant ones
(class = minus). Each line includes 43 pair-wise attributes and the
redundancy class for a gene pair.

Additional file 10: The redundancy predictions generated by SVM.
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