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Abstract

Motivation: RNA binding proteins (RBPs) play important roles in post-transcriptional control of

gene expression, including splicing, transport, polyadenylation and RNA stability. To model

protein–RNA interactions by considering all available sources of information, it is necessary to inte-

grate the rapidly growing RBP experimental data with the latest genome annotation, gene function,

RNA sequence and structure. Such integration is possible by matrix factorization, where current

approaches have an undesired tendency to identify only a small number of the strongest patterns

with overlapping features. Because protein–RNA interactions are orchestrated by multiple factors,

methods that identify discriminative patterns of varying strengths are needed.

Results: We have developed an integrative orthogonality-regularized nonnegative matrix factoriza-

tion (iONMF) to integrate multiple data sources and discover non-overlapping, class-specific RNA

binding patterns of varying strengths. The orthogonality constraint halves the effective size of the

factor model and outperforms other NMF models in predicting RBP interaction sites on RNA. We

have integrated the largest data compendium to date, which includes 31 CLIP experiments on 19

RBPs involved in splicing (such as hnRNPs, U2AF2, ELAVL1, TDP-43 and FUS) and processing of

3’UTR (Ago, IGF2BP). We show that the integration of multiple data sources improves the pre-

dictive accuracy of retrieval of RNA binding sites. In our study the key predictive factors of protein–

RNA interactions were the position of RNA structure and sequence motifs, RBP co-binding and

gene region type. We report on a number of protein-specific patterns, many of which are consistent

with experimentally determined properties of RBPs.

Availability and implementation: The iONMF implementation and example datasets are available

at https://github.com/mstrazar/ionmf.

Contact: tomaz.curk@fri.uni-lj.si

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

RNA-binding proteins (RBPs) play a major role in the control of gene

expression. Misregulation of RBPs is associated with diseases such as

fragile X syndrome, neurologic disorders and cancer (Darnell, 2013).

Our understanding of protein–RNA interaction has been greatly im-

proved by the use of genomic methods such as individual-nucleotide

resolution UV crosslinking and immunoprecipitation (iCLIP), which

identifies RBP crosslinking sites on a genome-wide scale. Past iCLIP

studies have shown that RBPs bind and regulate a large number of

transcripts. Computational analysis and prediction of these inter-

actions is therefore critical to gain a comprehensive understanding of

RBP functions (Dieterich et al., 2013).

Current approaches to model protein–RNA interactions focus

on individual data sources and require precise structural knowledge

of the involved proteins (Cirillo et al., 2013; Klus et al., 2014; Puton

et al., 2012). They rarely exploit other available omics data. General

approaches such as Bayesian networks (Zhang et al., 2010), Hidden

Markov models (Zhang et al., 2013), or SVMs (Livi et al., 2014),

have been applied to model protein–RNA interactions using mul-

tiple data sources. However, their application was limited to indi-

vidual RBPs and the importance of only a limited number of

features governing protein–RNA interaction were highlighted, such

as single degenerate motifs. The lack of presented features is partly

due to the difficulties associated with interpretation of inferred mod-

els. We have developed a modeling technique based on multiple ma-

trix factorization that is capable of integrating data sources for

multiple RBPs. The generated models are both accurate and inter-

pretable. New biological knowledge can be gained by exploring the

identified combinatorial effects among various features of data sour-

ces that define patterns of protein–RNA binding sites on RNA.

Nonnegative matrix factorization (NMF) methods have been ex-

tensively applied in machine learning for clustering, community de-

tection, classification, etc. (Carmona-Saez et al., 2006; Gao et al.,

2005; Wang et al., 2013). The classic NMF algorithm (Lee et al.,

2001) finds an approximation of a data matrix that is described as a

product of two or more matrices with lower ranks – a factor model.

An advantage of NMF is the interpretable, parts-based representa-

tion of patterns present in the data. This is due to the latent factors

being constrained to non-negative values, which can then be com-

bined in an additive way to approximate the original data.

Integrative NMF approaches provide biologically meaningful re-

sults in various bioinformatics applications. For example, NMF was

used to integrate multiple matrices with a common dimension and

to discover miRNA and gene regulatory modules (Zhang et al.,

2011), or to discover modules of genes, miRNA targets and DNA

methylation markers in cancer patients (Zhang et al., 2012).

Various improvements of the NMF algorithm have been sug-

gested to obtain more comprehensive models. The sparsity of factor

models improves the interpretability and modularity of projections.

Sparsity is achieved by including L1 norm constraints on the model

coefficients. Alternatively, the L1=L2 norm ratio of the resulting pro-

jection can be explicitly tuned (Hoyer, 2004), which produces

sparser solutions, but does not guarantee modularity. Other meth-

ods constrain the basis vectors to convex sets (Ding et al., 2010;

Guan et al., 2012). The mentioned methods, however, do not focus

on modular decompositions where samples and features do not

overlap within clusters. This is a substantial drawback when classes

are discriminated by multiple patterns of varying strengths. This

phenomenon is common in the domain of protein–RNA inter-

actions, as strong patterns, e.g. U-rich tracts present in binding sites

(König et al., 2010) of many proteins, may occlude weaker signals

that discriminate between proteins. A possible solution is to require

the basis vectors found by NMF to be orthogonal. One such ex-

ample is the orthogonality-constrained NMF (Ding et al., 2006) that

assumes an initial orthogonal model, e.g. obtained by k-means clus-

tering, which may bias the final model.

We have developed an integrative, orthogonality-regularized

nonnegative matrix factorization method (iONMF). The method

finds modular projections of data matrices, where data instances are

assigned to modules described by non-overlapping features. In a

supervised setting, orthogonality regularization prevents multicolli-

nearity (Chatterjee et al., 2015; Nicodemus et al., 2009), where a

feature vector can be expressed as a linear combination of a subset

of remaining feature vectors. This is important, as RBPs differ in

specificity and their binding target patterns differ in number and

strength. We applied iONMF on the largest integrative analysis in

the number of RBPs and different data sources used. The analysis

included a compendium of 31 published CLIP experiments on 19

RBPs and other genomic data sources to predict RBP crosslinking

sites at a nucleotide-resolution. We discovered discriminative pat-

terns across different data sources and learned a comprehensive

model of protein–RNA interaction for each of the 19 RBPs. We

visualized the discovered patterns and used them to cluster RBPs

into functionally related groups. Our results demonstrate the applic-

ability of iONMF for fast and accurate prediction of RBP target sites

on a genome-wide scale.

2 Methods

2.1 Data sources and sampling
We analyzed data on 19 proteins with one or more experimental

replicates, 31 experiments in total. Three experimental protocols

were used to determine protein–RNA crosslinking sites: PAR-CLIP:

Ago/EIF2C1-4, IGF2BP1-3, PUM2 (Hafner et al., 2010); Ago2-

MNase, ELAVL1, ELAVL1-MNase, ELAVL1A (Kishore et al.,

2011); ESWR1, FUS, TAF15 (Hoell et al., 2011); MOV10 (Sievers

et al., 2012); iCLIP: hnRNPC, U2AF2 (Zarnack et al., 2013);

hnRNPC (König et al., 2010); hnRNPL, hnRNPL-like (Rossbach

et al., 2014); Nsun2 (Hussain et al., 2013); TDP-43 (Tollervey et al.,

2011); TIA1, TIAL1 (Wang et al., 2010); CLIP-SEQ/HITS-CLIP:

Ago2, ELAVL1 (Kishore et al., 2011); eIF4AIII (Saulière et al.,

2012); SRSF1 (Sanford et al., 2009); Ago2 (Boudreau et al., 2014).

When clusters of interaction sites were reported (e.g. PAR-CLIP,

Ago/EIF2C1-4), we treated all positions within clusters as interact-

ing. Technical or biological replicates of the same selected RBP were

grouped. We use the term experimental group to refer to one such

group; see Supplementary Table S1. Data were obtained from ser-

vers iCount (http://icount.biolab.si) and DoRiNA (Anders et al.,

2012).

2.1.1 Sampling of crosslinked sites

In each experiment, we first identified up to 100 000 nucleotide pos-

itions with the highest cDNA counts. These were used as a pool of

positive examples of protein–RNA crosslinking nucleotides. Among

positions, which were less than 15 nucleotides apart, we considered

only the positions with the highest cDNA count and ignored all

others within a 15-nucleotide distance, as suggested in the original

iCLIP publication (König et al., 2010). With this step we prevented

the sampling of consecutive genomic positions, which are very simi-

lar in composition. Among neighboring positions with the same

cDNA count, one was randomly picked. To reduce processing time

and ensure comparable results among experiments, we sampled up
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to 10 000 positions. For proteins with less than 20 000 identified

crosslinking sites, we randomly split the sites into training and test

sets. Including more positive examples did not change the predictive

performance of our models (Supplementary Fig. S1). Negative ex-

amples of protein–RNA interaction sites were sites within genes that

were not detected as interacting in any experiment (in total 1 293

531 975 sites). Among them we sampled at least 40 000 positions

and used them as negative examples of crosslinking nucleotides. In

total, the training set included 50 000 positions (Fig. 1a,b) which

were uniformly drawn from the genome.

The test set (Fig. 1c) was constructed similarly. To assure a clear

separation between the two sets, positions for the test set were

sampled only from genes not used for training. The total number of

detected clusters and crosslink sites are listed in Supplementary

Table S1.

2.1.2 Data matrices

Each training data matrix included up to 50 000 rows. For experi-

ments performed on a smaller number of rows, the number is expli-

citly stated. Each row represents a nucleotide position described

using various data sources. The number of columns varies for each

data source:

Y: selected RBP experiment CLIP cDNA count, 50000� 1. pro-

tein–RNA cDNA counts are reported for a selected RBP experiment

on the current nucleotide position (in row), resulting in 1 column.

This column was used for model fitting and to evaluate the predict-

ive performance.

XCLIP: other proteins CLIP cDNA counts, 50000� 3131. For

each of the remaining (up to 30) RBP experiments that were not

from the same group as the selected RBP experiment, the cDNA

counts at positions ½�50::50� relative to the current nucleotide (in

row) were reported as 1 for nonzero cDNA counts or 0 otherwise,

resulting in up to 30� 101 ¼ 3030 columns. By explicitly ignoring

experiments within the same replicate group (shown in

Supplementary Table S1), we assured that replicate information was

not used in evaluation.

XRG: Region type, 50000� 505. Each position ½�50::50� relative

to the current nucleotide (in row) was assigned into five types of

gene regions, as determined by the Ensembl annotation version

ensembl69 for human genome assembly hg19 (Hubbard et al.,

2002): exon, intron, 5’UTR, 3’UTR, CDS, resulting in 5 � 101 ¼
505 columns. Precise boundaries of regions near crosslink sites could

thus be captured. For each gene region type, its presence at a relative

position was indicated with a binary value.

XRNA: RNA secondary structure, 50000� 101. Sequences at

positions ½�50::50� relative to the current nucleotide (in row) were

processed with RNAfold software (Denman, 1993), resulting in

probabilities of double-stranded RNA secondary structure at each of

101 relative positions.

XKMER: RNA k-mers, 50000� 25856. Positions ½�50::50� rela-

tive to the current nucleotide (in row) were scanned for the presence

of RNA k-mers, with k ¼ 4 in all experiments. The presence of a

k-mer at a relative position was indicated with a binary value.

XGO: Gene annotation. Genomic positions within known genes

were annotated with Gene Ontology (Ashburner et al., 2000) terms

for goa_human, 39560 terms (revision 5758736 from 2014-10-06).

Test data matrices ðŶ; X̂CLIP; X̂RG; X̂RNA; X̂KMER; X̂GOÞ have the

same structure, but they described a different subset of positions not

included in the training set.

2.2 Analysis overview
A factor model of the training set was inferred with iONMF

(Fig. 1a). The resulting coefficient matrix W determined the group-

ing of nucleotides into r modules, based on similarity across all data

sources. A module is defined as characteristic features in each data

source, represented as a column vector in matrices Hi, correspond-

ing to: co-binding to the same targets as other RBPs (HCLIP), RNA

k-mers (HKMER), surrounding region types (HRG), RNA secondary

structure (HRNA) and Gene Ontology terms (HGO) (Fig. 1b).

Having learned the coefficient and basis matrices with iONMF,

we estimated the crosslinking affinity of the samples in the test set

for all RBP experiments (columns) in the target Y column (Fig. 1d).

The test samples were projected into the learned low dimensional

space spanned by W, using all additional data sources ðX̂CLIP; X̂RG;

X̂RNA; X̂KMER; X̂GOÞ that describe the test set. Each step is described

in detail in the following.

Threefold cross-validation was used to estimate the predictive

accuracy. Internal cross-validation (80%=20% sampling, repeated

three times) on the training set was used to select best hyperpara-

meter values.

(a)

(b)

(c)

(d)

Fig. 1. Overview of the analysis procedure. (a) Target column vector Y and

other data sources Xi used for training. (b) iONMF factorization (Algorithm 1)

approximates the data sources with a factor model (common coefficient ma-

trix W and a basis matrix Hi for each data source). (c) Prediction of test sam-

ples (Algorithm 2) uses the basis matrices Hi and other data sources Xi , HY

and test sample data X̂i to estimate the coefficient matrix Ŵ and predict Ŷ

(d) Samples are assigned to modules based on rows in W. Row p in HT
i de-

scribes the characteristic feature values of each module (p)
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2.3 Integrative orthogonality-regularized nonnegative

matrix factorization (iONMF)
Data sources are represented with matrices Xi, with m rows repre-

senting samples and ni columns representing features from each data

source. The classic NMF approximates each Xi 2 R
m�ni with a fac-

tor model - a product of a common coefficient matrix W 2 R
m�r

and data source-specific basis matrices Hi 2 R
ni�r, where the rank

r << minðm;
P

i niÞ. Empirically, a low approximation error model

is achieved when patterns repeat across multiple data sources.

Each sample (row) is assigned to one or more of the r modules,

which is reflected by the learned weights in W. Features relevant to

each module are reflected in corresponding basis vectors in Hi (rows

in HT
i ). Highly correlated positions are assigned to common mod-

ules, depending on their similarity across all data sources Xi.

Non-overlapping features relevant to each module are obtained

by imposing orthogonality on the basis vectors. Therefore, we de-

veloped integrative, Orthogonality-regularized NMF (iONMF),

which employs the scalarization approach for orthogonality regular-

ization, optimizing the trade-off between orthogonality and ap-

proximation error. The iONMF model is learned by solving the

following optimization problem. Given multiple data matrices Xi,

minimize the cost function:

JðW;HiÞ ¼
XN
i¼1

ðjjXi �WHT
i jj

2
F þ ajjHT

i Hi � Ijj2FÞ (1)

such that W;Hi � 0 and I is the identity matrix. The first term in the

sum represents approximation error and second term the orthogon-

ality of column vectors in Hi, where the trade-off is controlled by

hyperparameter a. The problem is non-convex and can be solved by

(projected) gradient descent, alternating-least squares (Lee et al.,

2001), multiplicative update rules (Lin, 2007) or second order gradi-

ent methods (Zdunek et al., 2006). Due to computational efficiency

and a principled way to include orthogonality and non-negativity

constraints, we propose an iterative multiplicative update Algorithm 1,

which is an instance of gradient descent with variable learning rate.

The algorithm starts by initializing the values in W and Hi randomly,

uniformly distributed on ½0; 1�, and updates them with the following

rules until convergence:

W ¼W �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

XiHiX
i

WHT
i Hi

vuuuuut (2)

Hi ¼ Hi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

i Wþ aHi

HiW
TWþ 2aHiH

T
i Hi

s
(3)

where � represents the element-wise (Hadamard) product. The treat-

ment of the target column vector Y and its corresponding basis ma-

trix HY is equivalent to other data sources except for the

orthogonality constraints, which are not used since HY consists only

of a single column. Further discussion on the choice of algorithm,

derivation of update rules, relation to gradient descent, and conver-

gence to a stationary point are shown in Supplementary Section S2.

The algorithm is run for multiple random initializations and the fac-

tor model with the lowest approximation error is selected.

2.4 Predicting crosslinked sites
Running matrix factorization on large datasets requires a trade-off

between the number of samples considered and the computational

time. A common assumption when applying NMF for prediction is

that all objects in the domain, including the test samples, are used in

learning (Yoo et al., 2009). Cold-start approaches (Zhou et al.,

2011) or regression on the obtained factors (Joshi et al., 2010) can

be used to predict test samples. Alternatively, non-negative least-

squares optimization is used to approximate the coefficient matrix

values from available matrices describing new samples (Zitnik et al.,

2015). These methods suffer from substantial drawbacks, namely

the requirements of additional functions/classifiers, high computa-

tional cost, or lack of interpretability.

Our model-based approach reuses the learned low-rank matrices

to predict test samples. Having learned the iONMF model of cDNA

counts on a smaller subset of genomic positions, we therefore used it

to predict cDNA counts for all other genomic positions (matrix Ŷ).

Predicted counts were in turn used to classify positions as cross-

linked or not crosslinked.

Algorithm 2 uses the learned factor model to address the prob-

lems mentioned above and is a special case of Algorithm 1. Given

the learned and fixed basis matrices Hi, HY , and new samples with

known X̂i , we use the update rule 2 to first solve for Ŵ and then

predict Ŷ ¼ ŴHT
Y .

2.5 Discovering relevant modules and features
The obtained coefficient matrix W is used to assign data samples (in

rows) to specific modules (in columns); see Figure 1d. The values of

W are determined based on all Xi and define the modules, while in-

dividual Hi are determined based only on the corresponding data

sources Xi.

Algorithm 1. iONMF on multiple data matrices.

Input: data matrices Xi, target vector Y, approximation rank r,

orthogonality-approximation trade-off a
Output: coefficient matrix W, basis matrices Hi;HY

1: W � U½0; 1�m�r

2: for each i: Hi � U½0; 1�ni�r

3: HY � U½0; 1�r�1

4: until convergence:

5: W ¼W �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i XiHiþYHYP
i WHT

i HiþWHT
Y HY

r

6: for each i: Hi ¼ Hi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XT
i WþaHi

HiW
T Wþ2aHiH

T
i Hi

r

7: HY ¼ HY �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

YT W
HY WT W

q

Algorithm 2. Prediction of test samples.

Input: data matrices X̂i , target source basis matrix Hy, basis

matrices Hi

Output: coefficient matrix Ŵ, prediction Ŷ

1: Ŵ � U½0;1�m�r

2: until convergence:

3: Ŵ ¼ Ŵ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i X̂i HiP
i ŴHT

i Hi

r

4: Ŷ ¼ ŴHT
Y
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Proposed methods include assigning the sample to the module

with maximum row value or restricting the assignment to only one

module (Brunet et al., 2004). Alternatively, the ability to assign sam-

ples to multiple modules may be desired. One such approach, de-

veloped by Zhang et al. (2012), converts each entry in the

coefficient matrix to the corresponding column-wise z-score.

Samples are assigned to modules where the corresponding z-score

exceeds a predefined threshold (empirically set to 1.96). For each of

the r modules, we obtain a count Cr of how many samples are

related to the corresponding module.

Since we are interested in modules describing the positive data

samples (crosslinked sites) for a particular protein in question, we

sorted the modules on descending value of Cr. The corresponding

(column) vectors of matrices Hi were then examined to discover the

relevant features of each data source that determine protein cross-

linking and binding (see Fig. 1d).

To extract complex RNA motifs of arbitrary length from the

k-mer frequency and positional information encoded in the learned

factor model (HKMER), we used an approach similar to Hutchins

et al. (2008). In contrast, we consider all data sources to identify the

sequence motifs and their positional distribution associated with

protein binding. For details on the algorithm, see Supplementary

Section S7.6 and Supplementary Algorithm 2.

3 Results and discussion

3.1 Predictive performance
We compared iONMF against factorization methods using various

constrained optimization techniques: NMF with multiplicative up-

dates (Zhang et al., 2012); Sparse NMF (SNMF) using alternating

non-negative least-squares with L1 regularization (Kim et al., 2007);

NMF-QNO using quasi-newton optimization and L1 regularization

(Zdunek et al., 2006).

For each RBP experiment, the methods were run on the training

set for three different initializations. The model with the lowest ap-

proximation error was used for prediction of the test set with

Algorithm 2 (adapted for NMF, SNMF and NMF-QNO to assume

fixed Hi). Samples were projected into the low dimensional space Ŵ

to predict Ŷ. Empirically, algorithms converged in less than 100 iter-

ations (change in cost function value < 10�6). The factorization

rank was set to r ¼ 10 for all methods.

We used cross-validation on the training set of 30 000 positions to

choose hyperparameters: orthogonality regularization a (iONMF), L1

regularization (SNMF, NMF-QNO). Hyperparameters were sampled

from range ½10�3::103�. The reported predictive performances are

measured with the Area under ROC curve (AUC) on the prediction

on the independent hold-out test set of size 1000. Prediction using

iONMF resulted in highest AUC in 24 out of 31 cases. iONMF,

NMF and NMF-QNO methods consistently outperformed SNMF.

The critical distance diagram (Demšar, 2006) shown in Table 1 con-

firms the statistical significance (P < 0.05) of the observed differences

in ranks of classifiers over multiple datasets, confirming the feasibility

of orthogonality as a way to induce discriminative and parsimonious

factor models.

We compared iONMF with GraphProt and RNAContext on the

same dataset used by Maticzka et al. (2014). iONMF performed best

on 13 out of 24 RBP experiments (AUC ¼ 0:90760:041). Critical dif-

ference diagrams show equivalent performance of iONMF and

GraphProt (AUC ¼ 0:887 6 0:079), while RNAContext was signifi-

cantly lower (AUC¼0.830 6 0.119), see Supplementary Section S3

for details.

Next, we investigated the influence of hyperparameter a on

sparseness and average angle between vectors in Hi. Higher angle val-

ues indicate greater orthogonality of the respective vectors.

Supplementary Figure S2 shows the average AUC across all 31 experi-

ments with varying a. As a is increased, sparseness (Hoyer, 2004)

Table 1. Predictive performance measured with area under ROC curve (AUC) on the hold-out test sets for the evaluated matrix factorization

methods

Protein iONMF NMF SNMF QNO Protein iONMF NMF SNMF QNO

[1] Ago/EIF. 0.89 0.89 0.85 0.87 [17] hnRNPC 0.97 0.96 0.48 0.70

[2] Ago2M. 0.71 0.69 0.66 0.69 [18] hnRNPL 0.74 0.73 0.70 0.77

[3] Ago2 0.81 0.81 0.76 0.83 [19] hnRNPL 0.66 0.62 0.56 0.61

[4] Ago2 0.84 0.82 0.79 0.82 [20] hnRNPLl. 0.69 0.67 0.63 0.68

[5] Ago2 0.73 0.71 0.65 0.66 [21] MOV10 0.96 0.96 0.89 0.92

[6] eIF4AIII 0.92 0.91 0.78 0.95 [22] Nsun2 0.81 0.80 0.69 0.82

[7] eIF4AIII 0.93 0.93 0.67 0.64 [23] PUM2 0.93 0.92 0.86 0.89

[8] ELAVL1 0.91 0.89 0.71 0.80 [24] QKI 0.84 0.77 0.52 0.62

[9] ELAVL1M. 0.71 0.70 0.68 0.70 [25] SRSF1 0.85 0.85 0.73 0.86

[10] ELAVL1A 0.94 0.93 0.91 0.92 [26] TAF15 0.91 0.89 0.82 0.91

[11] ELAVL1 0.95 0.94 0.90 0.95 [27] TDP-43 0.84 0.78 0.45 0.57

[12] ESWR1 0.87 0.85 0.80 0.85 [28] TIA1 0.93 0.92 0.86 0.90

[13] FUS 0.81 0.73 0.55 0.65 [29] TIAL1 0.87 0.86 0.73 0.85

[14] Mut FUS 0.96 0.95 0.91 0.94 [30] U2AF2 0.82 0.74 0.61 0.70

[15] IGF2.1-3 0.93 0.92 0.89 0.91 [31] U2AF2 0.80 0.74 0.60 0.74

[16] hnRNPC 0.95 0.93 0.45 0.63

A critical distance diagram of average ranks is shown above.
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increases from 0.46 to 0.79, effectively halving the number of non-

zero model parameters. Also, the pairwise angle between vectors in

Hi increases from 658 to 908. Even for extreme values of a, AUC

changes from 0.88 to 0.83. We compared the feature vectors found

by all factorization methods in more detail, see Supplementary

Section S4.2.

A single run of iONMF model training for a single RBP experi-

ment runs for 12 minutes on a 2.5 GHz CPU. With a trained model,

prediction is performed at a rate 300 000 positions/h.

3.2 Estimating the importance of combinations of data

sources
To estimate the importance of data sources, we measured AUC as

stated above, for each possible subset of data sources and each se-

lected RBP experiment (Supplementary Tables S7–S9 for AUC of in-

dividual experiments). We then calculated the average AUC and

standard error obtained for each data source subset across all se-

lected RBP experiments, shown in Figure 2 and Supplementary

Table S6. To ensure fair comparison, the factorization rank r was

selected such that the total number of model parameters was ap-

proximately equal for each subset of data sources (Supplementary

Table S6).

We turn to estimation of the importance or particular data sour-

ces. According to AUC, the most informative data source is RNA

structure (col. R, average AUC ¼ 0.744 6 0.024, Fig. 2,

Supplementary Table S6). This agrees with previous observations

about the importance of particular RNA structure interaction inter-

faces (Kazan et al., 2010; Li et al., 2010), but may also reflect the

need for RNA bases to be single stranded to allow UV crosslinking

(Sugimoto et al., 2012). The second most informative data source is

information on interaction of other proteins within the same gene

region (col. C, average AUC ¼ 0.732 6 0.018, Fig. 2,

Supplementary Table S6). This agrees with combinatorial protein–

RNA interactions that compete or cooperate for RNAs binding

(Chan et al., 2014; Jens and Rajewsky, 2015), but may also indicate

that many RNA nucleotides may have generally increased accessibil-

ity and crosslinking efficiency.

The most informative pair of data sources are RNA k-mers (K)

and type of genomic region (T) with average AUC ¼ 0.860 6 0.017

(col. KT, Fig. 2, Supplementary Table S6). These features describe

the genomic organization and sequence content biases of functional

subunits, e.g. exon, intron, UTR and exon-intron boundaries.

The poor performance when using XGO alone (col. G, AUC ¼
0.492 6 0.008, Fig. 2, Supplementary Table S6) is likely due to

sparse and incomplete gene function annotation, which is in great

contrast to other data sources that are two orders of magnitude

denser (density of XGO is 0:01%, while density of XRG is 16%).

Inclusion of XGO into the most informative subset (col. CKRT,

AUC ¼ 0.920 6 0.006, Fig. 2, Supplementary Table S6) does not

change the predictive accuracy significantly (col. CGKRT, AUC ¼
0.886 6 0.011, Fig. 2, Supplementary Table S6).

The average AUC correlates with the total number of included

data sources. The best accuracy was achieved on fXCLIP;XKMER;

XRNA;XRGg, col. CKRT. Except for XGO, combining two or more

data sources resulted in better accuracy than in models obtained on

individual data sources, supporting the benefit of data integration. A

more detailed, Spearman correlation-based comparison of all data

source combinations confirms several binding preferences supported

by the literature (Supplementary Section S6 and Supplementary

Fig. S5).

3.3 Identifying factors associated with RBP binding
Factor models were used to identify features associated with

each discovered module. As explained in Section 2.5 and shown in

Figure 1d, each module reveals common feature values of cross-

linked sites (samples) assigned to the module. These values are re-

flected in Hi, one row for each of r modules. The identified modules

of crosslinked sites with common features were visualized and used

to predict functionally relevant protein–RNA interactions.

Visualization of a complete set of RBP experiments and the

three most relevant feature vectors are shown in Supplementary

Section S8.

In the following paragraphs we present the results and provide

an explanation for U2AF2 [30], a known splicing factor, where the

most informative single data sources are XKMER (AUC ¼ 0.754),

XRG (AUC ¼ 0.695), XCLIP (AUC ¼ 0.632), XRNA (AUC ¼ 0.554),

XGO (AUC ¼ 0.372); see Supplementary Table S9. The most inform-

ative data subset is fXCLIP;XKMER;XRNA;XRGg (AUC ¼ 0.933).

RNA secondary structure. In agreement with U2AF2 being a sin-

gle-strand RNA binding protein, the probability of double stranded

Fig. 2. Average AUCs over 31 experiments, for all combinations of data sour-

ces: CLIP experiments (C; XCLIP), RNA k-mers (K; XKMER), region type (T; XRG),

Gene Ontology terms (G; XGO) and RNAfold structure prediction (R; XRNA)

Fig. 3. Three modules most associated with positions bound by U2AF2 [30]

are shown, top to bottom: HKMER;HRG;HCLIP;HRNA Top bars show the per-

centage of nucleotides included in the corresponding module

1532 M.Stra�zar et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
Deleted Text: e
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
Deleted Text: protein-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
Deleted Text: i
Deleted Text: protein-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw003/-/DC1


RNA decreases around its crosslinked sites. Features in HRNA are

shown in Figure 3. Hierarchical clustering of feature vectors in

HRNA are shown in Supplementary Figures S8, S9 and

Supplementary Section S8.3.

RBP co-binding and k-mer composition. Examining features in

HCLIP , one is able to discover factors associated with binding of in-

dividual or groups of RBPs. The features that are common to each

module allow us to define hypotheses on cooperative or competitive

binding of multiple proteins, which can then be experimentally

tested. Figure 3 shows results for U2AF2. It also shows that splicing

factor hnRNPC interacts with the same RNA positions as U2AF2.

Competition between the two is reported by (Zarnack et al., 2013).

The two factors also share similar binding motifs (compare Fig. 3

and k-mers in Supplementary Section S8.1). The relationship is fur-

ther confirmed by recognition of U-rich motifs, appearing in the cor-

responding module in XKMER.

Orthogonality regularization provides an advantage in interpret-

ation over NMF. iCLIP and CLIP based methods are subject to a

U-rich sequence preference due to UV-C cross-linking. As reported

previously (Sugimoto et al., 2012), the detection of U-rich motifs

may occur at crosslinks for RBPs not associated with U-rich tracts,

such as TDP-43 (Supplementary Fig. S4). The NMF method dis-

covers both U-rich motif and known tandem UG repeats in a single

module (column vector in HKMER), while iONMF successfully dis-

tinguishes the two. Assigning the data samples to corresponding

modules (Section 2.5), 41.6% of positive samples are related to UG-

rich component, while 80.3% are related to U-tracts (note that the

two sets are overlapping). The similarity of proteins based on k-mer

composition and co-binding is shown in Supplementary Figures S6,

S7, S10 and Supplementary Sections S8.1, S8.4.

Region type. Figure 3 shows HRG features for U2AF2. The in-

tron-exon boundary can be seen at �30 nucleotides upstream from

the crosslinked site. This is expected since U2AF2 is a splicing factor

that generally crosslinks to a 3’ splice site (Zarnack et al., 2013).

Protein similarity based on region types is shown in Figure 4b, con-

firming the ability of iONMF feature vectors to cluster the proteins

into functionally related groups. Detailed data is shown in

Supplementary Figure S11 and individual feature vectors in

Supplementary Section S8.2.

Sequence motif content and positioning. Figure 3 shows the se-

quence content and positions of RNA sequence k-mers (features in

HKMER) for U2AF2. The most associated k-mers are U-rich and are

similar to recognition sites of hnRNPC, an experimentally con-

firmed competitor for the same binding sites (Zarnack et al., 2013).

Co-binding of the two can be seen in HCLIP matrices; see

Supplementary Section S8.4.

Gene annotation. Gene Ontology terms associated with targets

of RBPs are shown in Supplementary Section S8.5 and in

Supplementary Figure S12.

3.4 Comparison with previously known motifs
We estimated more complex and longer motifs from features in

HKMER, as explained in Supplementary Section S7.6. For example,

Supplementary Figure S14 shows the top ranked 4-mers from data

on PUM2 [23], and the reconstructed complex motif UGUANAUA,

using the algorithm described in Supplementary Section S7.6. The

identified motif perfectly matches the motif reported for PUM2 in

(Hafner et al., 2010). Supplementary Figure S14 also shows that the

log probability of motif presence increases significantly in the vicin-

ity of the crosslinked sites compared to the presence in random pos-

itions within protein coding genes. This important result shows the

partial information in 4-mers can be used to infer longer and com-

plex motifs.

To validate our approach, we compared the identified motifs

with motifs obtained from the in vitro RNAcompete assay (Ray

et al., 2013). We compared motifs of nine RBPs that are included in

both studies. Motifs were aligned to minimize the Levenshtein dis-

tance (D) between motifs derived with the procedure from

Supplementary Section S7.6. Ten out of twelve motifs match their

reported counterparts with D � 1; see Supplementary Figure S15

for results and visual rendering of the comparison. Moreover, the

discovered motif agree in large part to GraphProt (Maticzka et al.,

2014).

Fig. 4. (left) Hierarchical clustering (Ward’s linkage) of proteins and 20 most common complex motifs, estimated from row vectors HKMER obtained with iONMF.

Heatmap shows log odds ratios of observed motif probability in sites proximal to crosslinked sites divided by the expected probability (at random positions).

Weblogos of motifs are shown in Supplementary Figure S13. (right) Protein similarity based on gene region types row vectors in HRG. For each region type, the

interval [-50..50] relative to the crosslinked sites is shown
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To identify groups of proteins with similar interaction proper-

ties, we performed k-means clustering on binding motif preference.

We obtained 10 candidate motifs for each RBP (310 motifs in

total; see Supplementary Section S7.6). Using k-means clustering

(k ¼ 20), we reduced the set to 20 most common complex motifs.

For each experiment and for each of the 20 selected motifs, we cal-

culated the log odds ratio of observed versus expected occurrence

in positive and negative positions. These values were then used in

hierarchical clustering of proteins and motifs; see Figure 4a. For

clustering and motif weblogos obtained for k ¼ 50, see

Supplementary Figure S13.

Four groups of proteins and three groups of motifs can be seen.

We found that hnRNP proteins that bind to introns to regulate

splicing bind to U-rich motifs (hnRNPs, U2AF2, ELAVL1, TDP-

43, TAF15, FUS, QKI), whereas those binding to exons to regulate

splicing (SR), spliced mRNA (eIF3E3), or 3 UTR (Ago, IGF2BP)

mRNA are GC-rich, in agreement with the fact that introns are

U-rich, and exons are GC-rich (Amit et al., 2012; Aznarez et al.,

2008). Motifs associated with hnRNPC, e.g. GGCUGG,

GCCCAG, CCUGCC, GCCGGG, commonly occur in antisense

Alu elements next to the U-tract that directly interacts with

hnRNPC (Supplementary Figs S16 and S17). Hence, iONMF can

detect common neighboring motifs even if these are not part of the

primary binding site.

4 Conclusion

Computational approaches already play a crucial role in protein–

RNA interaction prediction by aiding experiment planning and

interpretation of results. Genome-wide assays of protein–RNA inter-

action mapping (Castello et al., 2012) has identified close to a thou-

sand human RNA-binding proteins. Data on RNA binding proteins

is growing rapidly, emphasizing the need for integrative methods

which jointly consider all available data sources.

An interesting finding of our study is that in addition to RNA

structure and sequence, the position relative to genomic features

(exons, etc.) and CLIP data of other RBPs is informative for predict-

ing binding sites of a specific RBP. Genomic regions are informative

as many proteins bind at specific positions relative to these features,

e.g. U2AF2 generally binds upstream of exons (Fig. 3). We show

that CLIP data are predictive, as subsets of examined RBPs exhibit

similar binding patterns (Fig. 4, Supplementary Figs S6–S13 and

Supplementary Section S8.4). Importantly, overlap is only seen be-

tween a subset of RBPs, but we find no evidence that some sites or

features are generally shared across all RBPs. While contribution of

non-specific background should be considered, we find it most likely

that co-binding profiles result from biologically relevant features.

For example, many RBPs bind to similar RNA sequences or struc-

tures (Supplementary Figs S6–S9, S13).

Several of the examined RBPs are known to bind similar motifs,

such as the U-rich motifs bound by ELAVL, TIA, hnRNPC and

U2AF2, which are also detected in our analyses (Fig. 4). Moreover,

RBPs may interact at the protein level, either directly or indirectly

via co-factors, which could stabilize their binding to proximal RNA

sites. Few experimental studies have explored the impact of protein–

protein interactions on coordinated RNA binding, but our analyses

could be used to explore such potential interactions in the future.

Data integration in iONMF yields improvements in accuracy

when compared to state-of-the-art approaches. Orthogonality regu-

larization favors non-overlapping and sparse solutions, which are

desired by domain experts, providing class-specific descriptions and

model interpretation. The resulting predictions are in strong accord-

ance with a published in vitro study and identified a number of

promising candidates for further investigation. Together, our experi-

mental findings establish iONMF as the data integration technique

of choice where sparse, modular models are desired.
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