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Abstract

For most HIV-infected patients, antiretroviral therapy controls viral replication. However, in some patients drug resistance
can cause therapy to fail. Nonetheless, continued therapy with a failing regimen can preserve or even lead to increases in
CD4+ T cell counts. To understand the biological basis of these observations, we used mathematical models to explain
observations made in patients with drug-resistant HIV treated with enfuvirtide (ENF/T-20), an HIV-1 fusion inhibitor. Due to
resistance emergence, ENF was removed from the drug regimen, drug-sensitive virus regrown, and ENF was re-
administered. We used our model to study the dynamics of plasma-viral RNA and CD4+ T cell levels, and the competition
between drug-sensitive and resistant viruses during therapy interruption and re-administration. Focusing on resistant
viruses carrying the V38A mutation in gp41, we found ENF-resistant virus to be 1763% less fit than ENF-sensitive virus in
the absence of the drug, and that the loss of resistant virus during therapy interruption was primarily due to this fitness cost.
Using viral dynamic parameters estimated from these patients, we show that although re-administration of ENF cannot
suppress viral load, it can, in the presence of resistant virus, increase CD4+ T cell counts, which should yield clinical benefits.
This study provides a framework to investigate HIV and T cell dynamics in patients who develop drug resistance to other
antiretroviral agents and may help to develop more effective strategies for treatment.
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Introduction

Antiretroviral therapy has been used to successfully treat HIV-1

infection. However, a subset of patients develops drug resistance

followed by an observable increase in plasma HIV viral load. This

‘‘virological failure’’ usually triggers a change in the drug regimen.

Here we examine a situation in which patients had developed

resistance to most common drugs and a novel agent, enfuvirtide,

was added to their failing drug regimen. When resistance to

enfuvirtide developed the use of this agent was discontinued in the

hope that drug-sensitive virus would outcompete the resistant virus

and enfuvirtide could be given again. Despite the fact that

resistance developed when enfuvirtide was re-administered and

viral loads were unable to be suppressed, CD4+ T cell counts were

preserved or increased. Observing increasing CD4+ T cell counts

without viral suppression is intriguing and suggests that issues of

viral fitness may play a role. Fitness costs have been associated

with drug resistance not only to enfuvirtide but also to other drug

classes [1–6]. Further, despite virologic failure due to the

emergence of drug resistance, continued treatment that imposes

selective pressure on drug sensitive virus and causes outgrowth of

resistant HIV is often associated with benefits such as higher

sustained CD4+ T cell counts and reduction in the risk of

morbidity and mortality [2–5]. To uncover the nature of the CD4+

T cell increase and to determine a general principle that may be

useful in developing treatment strategies in the face of drug

resistance, we performed a detailed viral kinetic analysis of a set of

patients treated with enfuvirtide in which longitudinal measure-

ments of drug sensitive and drug resistant viral levels, as well as

CD4 counts, were available.

Enfuvirtide (ENF), formerly called T-20, is a 36 amino acid

synthetic peptide that binds to the HR-1 region of the HIV-1 gp41

molecule, thereby preventing fusion of the viral membrane with

the target cell membrane [7]. It is the first FDA-approved HIV-1

fusion inhibitor [8]. As ENF is expensive and must be admi-

nistered parenterally, it is often reserved for heavily pretreated

patients with limited therapeutic options [9–13]. ENF acts

extracellularly prior to viral entry. This feature provides a number
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of benefits, such as less susceptibility to cellular efflux transporters

that lower the effective intracellular concentrations of other classes

of antiretroviral drugs and little or no drug-drug interactions with

drugs metabolized by the CYP 450 or N-acetyltransferase route

[14].

As with other antiviral drugs, in patients treated with ENF, the

high replication rate of HIV and the low fidelity of HIV reverse

transcriptase can lead to the development of drug resistance [14].

Resistance to ENF occurs due to amino acid substitutions within

the HR-1 region of gp41 at amino acids 36–45 of HIV-1 gp41

with G36D, G36S, G36V, G36E, V38A, V38M, V38E, Q40H,

N42T, and N43D being the most common ENF resistant

mutations [12,13,15]. These mutations result in significantly

reduced binding of ENF to HR-1 [16]. Since ENF is expensive

and poorly tolerated, many individuals interrupt this drug once

virologic failure is confirmed. In a single arm prospective study of

individuals exhibiting virologic failure on ENF, selective interrup-

tion of ENF was not associated with any appreciable increase in

HIV RNA levels, suggesting that the drug had only limited

residual activity and hence its use during failure may not be

warranted [11,17]. Observational data from other groups,

however, have suggested that there may be a CD4+ T cell benefit

associated with certain ENF-associated mutations [18]. These data

suggest that despite virological failure the drug may have

continued benefit due to alterations in the virus’s pathogenic

effects.

Interruption of ENF in individuals with ENF-resistance is

associated with a rapid decay in the resistant variant [11,13,17].

The reason resistant virus decays in the absence of drug is not fully

understood. Although the rebound of archived more ‘‘fit’’ wild-

type virus is often cited as the major mechanism whereby HIV

resistance decays in the absence of therapy [13,17], ongoing

evolution within the envelop gene and the eventual selection of the

wild-type virus may also account for the loss of ENF resistance

when this drug is interrupted [9].

Despite marked differences in fitness of drug-sensitive and drug-

resistant viruses and evidence of ongoing viral evolution, plasma

HIV-1 RNA levels remain almost constant during ENF interrup-

tion [13]. This apparent paradox suggests that viral fitness may not

be a major determinant of the steady-state level of viremia. To

more fully understand the role of viral fitness as well as other

parameters determining the dynamics of HIV-1 during ENF

interruption, we use mathematical models to study the competition

between ENF sensitive and ENF resistant viruses after the

interruption of ENF and during subsequent re-administration.

We consider only the V38A mutant because this single substitution

in HIV-1 gp41 is the most frequently observed in drug resistant

virus [19] and data on the population size of mutants with V38A

are available [13]. We estimate the rate of forward and backward

mutations, the replication capacity of both drug-sensitive and

drug-resistant viruses, and the efficacy of ENF against viral fusion

when it is re-administered after interruption. We also examine the

effect of target cell level on the dynamics and steady states of drug

sensitive and resistant viruses during ENF interruption and

subsequent re-administration. Lastly, we discuss virus population

turnover and plasma viral RNA levels during the presence and

absence of the drug.

Methods

Patient Data
We obtained wild-type and V38A mutant viral load and CD4+

T cell data from Department of Medicine, University of

California-San Francisco, CA, USA, San Francisco General

Hospital, San Francisco, CA, USA and Section of Retroviral

Therapeutics, Brigham and Women’s Hospital and Division of

AIDS, Harvard Medical School, Boston, MA, USA. Viral load

and CD4+ data were obtained for three HIV-1 infected subjects

(P1, P2, and P3) during ENF interruption who continued to

receive the other drugs in their antiretroviral regimen. Before ENF

interruption, subjects P1, P2 and P3 were treated with ENF for 27,

33 and 39 weeks, respectively, and each of them had the V38A

mutation as the predominant virus population (more than 85%

frequency). Viral load and CD4+ data were also obtained during

subsequent 4-week re-administration of ENF after interruption for

76, 68 and 38 weeks, respectively. For subject P3, the data were

also collected during a second interruption of ENF. Therefore,

there were two data sets during ENF interruption for subject P3.

Mathematical Model
A schematic diagram of the model is shown in Fig. 1. The

model contains five variables: uninfected target cells, T, cells

infected by ENF-sensitive virus, Is, cells infected by ENF-resistant

virus, Ir, ENF-sensitive virus, Vs, and ENF-resistant virus, Vr. The

model assumes that target cells are produced at a constant rate, l,

and die at rate dT. ENF-sensitive virus infects target cells to

produce infected cells, Is, at rate bsTVs, among which a fraction

msbsTVs, become ENF-resistant during the process of reverse

transcription of viral RNA to DNA due to mutation at rate ms.

Similarly, the infection by ENF-resistant virus produces infected

cells, Ir, at rate brTVr, with a fraction mrbrTVr undergoing

backward mutation to the drug sensitive strain at rate mr. Cells

infected by ENF-sensitive and ENF-resistant virus produce new

virions at rates psIs and prIr, and die at rates dIs and dIr,

respectively. Both viruses are cleared at the same rate c per virion.

Whether the V38A mutation in gp41 affects viral production

remains unclear. For simplicity, we assume ps = pr, and describe the

resistance-associated fitness loss only by a reduced infectivity rate,

i.e., br = (12a) bs, where the fitness cost of the mutant virus, a,

satisfies 0#a#1. ENF is a fusion inhibitor and reduces infection of

target cells by free virus. We assume es and er are the efficacies of

ENF against ENF-sensitive and ENF-resistant virus, respectively,

with 0#es, er#1.

In the patient data we analyze the populations of both drug-

resistant and drug-sensitive virus always remain high (above 2.8

log10 HIV RNA copies/ml). Thus, stochastic effects would not be

significant and we formulate the model as a deterministic model –

Author Summary

The impact of antiretroviral drug-resistance on viral load,
CD4+ T cells, and clinical outcomes is complex. We used
mathematical models to evaluate the benefits of HIV drug
therapy in the presence of drug-resistant virus. As an
example, we considered resistance to enfuvirtide, the first
FDA-approved fusion inhibitor. If viral load increases on
drug therapy due to drug resistance, therapy with this
drug may be stopped. We found that the drug resistant
virus is less fit than the drug-sensitive virus in the absence
of drug, and this fitness disadvantage causes the loss of
drug-resistant virus during drug interruption. After the
drug-sensitive virus replaces resistant virus, enfuvirtide
therapy was re-administered. Analyzing the resulting viral
kinetics, we demonstrate that despite the inability of the
re-administered drug to suppress viral load because of the
continued presence of drug resistant virus, therapy still
provides benefit to the patient by preserving or increasing
peripheral blood CD4+ T cell levels.

Benefit of HIV Drugs in the Presence of Resistance
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a standard two-strain viral dynamic model – similar to the ones in

[20,21]. The model is described by the following differential

equations:

dT

dt
~l{dT{(1{es)bsTVs{(1{er)brTVr, ð1Þ

dIs

dt
~(1{ms)(1{es)bsTVs{dIszmr(1{er)brTVr, ð2Þ

dIr

dt
~(1{mr)(1{er)brTVr{dIrzms(1{es)bsTVs, ð3Þ

dVs

dt
~psIs{cVs, ð4Þ

dVr

dt
~prIr{cVr: ð5Þ

As measured by Ki-67 antigen expression, only a small percentage

of CD4+ T cells in peripheral blood appear to be activated into

proliferation and hence are preferred targets for HIV-1 infection

[22]. Therefore, we take only a fraction of the total CD4 count, i.e.

the activated cells, as targets for HIV-1 infection and estimate this

fraction. The total CD4+ T cell count is assumed to be given by

(T+Is+Ir)/a, where a denotes the fraction of CD4+ T cells that are

activated. In principle, a could be time-varying or in particular

depend on the CD4+ T cell count [22]. However, the CD4 count

of the patients in this study always remains below 200/ml, and

according to the relationship between CD4 count and activated

cell percentage given in [22], a 10-fold change in CD4 count (from

20 to 200/ml) causes only a minor change in activation percentage

(from 8.6% to 10.4%). Therefore, for our study we felt it reason-

able to assume a is constant.

We note that in the study we analyze [13], ENF is given in

combination with other drugs, the infection rates bs, br and the

virus production rates ps, pr that we estimate include the effects of

the other drugs in the background regimen. However, since the

background regimen was failing to suppress HIV replication, these

effects may be minimal. Moreover, the data have taken only V38A

mutants into account with other mutants being included in the

‘‘wild-type’’. Therefore ENF efficacy against wild-type, es, in our

model also incorporates the possible reduction in efficacy due to

other mutants included in the wild-type. Further, loss of V38A

mutation at rate mr, can lead to any of a variety of viral variants

Figure 1. Schematic diagram of the viral dynamic model.
doi:10.1371/journal.pcbi.1001012.g001
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that we include in the drug sensitive population. Lastly, virus

variants carrying the V38A mutation may also carry other

mutations, such as compensatory mutations or other drug

resistance mutations, which may affect the fitness of the drug-

resistant population as well as its level of drug resistance.

We note that there is loss of some free virus due to the infection

of target cells as virus must enter a cell in order to infect. To

incorporate this effect, one can add the terms 2(12es)bsTVs and

2(12er)brTVr to Eqs. (4) and (5), respectively. For the measured

range of T in the subjects considered here, and the estimates of bs

and br determined below, bsT and brT are ,0.05 d21 which is

,500 times lower than the viral clearance rate c (23 d21),

indicating that virion loss due to infection will have negligible

effect on the viral dynamics compared to the term 2cV. We

confirmed this by fitting the model with the terms 2(12es)bsTVs

and 2(12er)brTVr in Eqs. (4) and (5), respectively, in which we

found almost no change in parameter estimates. Therefore, we

neglected virion loss due to infection and left only the viral

clearance term (2cV) in the V equations.

Parameter Estimation
The dynamics of free virus is typically fast in comparison with

that of infected cells [23–25]. Therefore, we assume a quasi-steady

state, which from Eqs. (4) and (5) provides Vs = (ps/c)Is and Vr = (pr/

c)Ir. This simplifies the model leaving only equations for T, Is and

Ir. Further, we set Is(0) = (c/ps)Vs(0) and Ir(0) = (c/pr)Vr(0) for data

fitting as well as all simulations, where Vs(0) and Vr(0) are

determined by direct measurement at the start of interruption or

the start of ENF re-administration.

As measured by Mohri et al. [26], we take the uninfected CD4+

T cell death rate d = 0.01 day21. Recent estimates show that the

virion clearance rate constant, c, varies between 9.1 day21 and 36

day21, with an average of 23 day21 [25,27]. Therefore, we take

c = 23 day21.

During ENF interruption, we estimate the parameters l (target

cell recruitment rate), bs (drug sensitive virus infection rate), ms

(forward mutation rate), mr (backward mutation rate), a (fitness cost

of ENF-resistance), ps (production rate of drug sensitive virus), d
(infected cell death rate), T0 (initial uninfected target cell

concentration) and a (fraction of CD4+ T cells that are activated)

by fitting the model to the ENF-sensitive viral load, the ENF-

resistant viral load and the CD4 count data simultaneously for

each patient. Since fewer data points are available during re-

administration of ENF, we fix some parameters at the values

obtained by estimation during ENF interruption; and only

estimate es (ENF efficacy against the sensitive strain), er (ENF

efficacy against the resistant strain), l, T0 and a. We also fitted the

data during ENF interruption and ENF re-administration allowing

the initial concentrations of drug sensitive and drug resistant

viruses to be free parameters, but the fit could not be improved.

We solved Eqs. (1)–(5) numerically using the Runge-Kutta 4

algorithm in Berkeley Madonna [28]. We also used it to obtain the

best-fit parameters via a nonlinear least squares regression method.

The predicted log10 values of the ENF-sensitive and ENF-resistant

viral loads and the CD4 count for each patient were fit to the

corresponding log-transformed data. Of note, to avoid the

difficulty of assigning different weights to the viral loads and

CD4 counts in the objective function being minimized, and give

equal importance to all the widely varied values in the data set, we

fitted the data in the log-scale rather than linear-scale for both viral

loads and CD4 count. Finally, for each best fit parameter estimate,

we provide a 95% confidence interval (CI) using 200 bootstrap

replicates [29], which we performed in MATLAB.

Results

Viral Dynamic Parameters during ENF Interruption
The estimated viral dynamic parameters during ENF interrup-

tion along with their mean and sample standard deviation, and

their 95% confidence interval are summarized in Table 1 and

Table 2, respectively. Using the estimated parameters, we found

the predictions of the model agree well with the data for each of

the study participants (Fig. 2). All the parameters are approx-

imately the same for two ENF-interruptions in P3, suggesting that

the viral dynamic parameters remain stable over time.

We estimated the rates of forward and backward mutation as

2.2460.3261025 and 1.7360.3061025, respectively. Even though

the backward mutation rate is slightly lower than the forward

mutation rate, early after ENF interruption the ENF-resistant virus

population is significantly larger than the ENF-sensitive virus

population, and consequently the amount of backward mutation

during the early post ENF interruption is usually higher than the

amount of forward mutation. Although there is a continued

evolution in gp41 after ENF interruption, our results show that

the rate of on-going evolution including backward mutation

accumulation is not sufficient to explain the rapid waning of

ENF-resistant virus. For example, during the first week (month) post

interruption, the contribution of ongoing evolution and backward

mutation to the loss of cells carrying a drug-resistant proviral

genome is only about 0.2 (0.4) cells per ml, which corresponds to the

loss of 26 (70) drug resistant virions per ml per week (month). Since

the contribution of these de-novo mutations is small, we also fitted

the data using the model without de-novo mutation, i.e., ms = mr = 0,

Table 1. Estimated parameters during ENF interruption.

Patient l bs ms mr a ps d T0 a

(cells/ml/day) (1027) (/ml/day) (1025) (1025) (virions/infected cell) (1/day) (log10)

P1 343 10.26 2.49 1.80 0.18 4770 0.28 4.16 0.23

P2 1059 9.09 1.78 1.30 0.20 3296 0.28 4.94 0.07

P3 (1st)* 911 4.05 2.30 1.80 0.16 2742 0.27 5.33 0.06

P3 (2nd)* 845 4.87 2.40 2.00 0.13 3704 0.31 5.16 0.06

Mean 790 7.07 2.24 1.73 0.17 3628 0.29 4.90 0.11

SD 311 3.07 0.32 0.30 0.03 857 0.02 0.52 0.08

*For patient P3, there are two interruptions of ENF.
doi:10.1371/journal.pcbi.1001012.t001
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and found that the changes in estimated parameter values lie within

a range of 0–6%. As the loss of resistant virus due to backward

mutation is negligible, we find the fitness cost, i.e., the reduction of

the infectivity of the resistant virus compared to the wild-type virus,

plays a more important role in the decay of ENF-resistant virus and

the increase of ENF-sensitive virus. Fitting our model to the data

suggests that ENF-resistant virus is 1763% less fit (i.e.,

a = 0.1760.03, Table 1) than ENF-sensitive virus in the absence

of ENF. This fitness loss is consistent with the results in Marconi

et al. [13], although they obtained a higher estimate of the relative

fitness cost (25–65%) using a different fitness estimation method.

Our estimates of the virion production rate, ps = pr = 36286857

virions day21, the infected cell death rate, d = 0.2960.02 day21, and

the sensitive virus infection rate, bs = 7.163.161027 ml21 day21

(Table 1), are approximately consistent with the estimates

142762000 virions day21, 0.3760.19 day21 and 11.86

1461027 ml21 day21, respectively, in Stafford et al. [30]. However,

the estimate of d is much smaller than that in some other studies [31].

We also estimated the uninfected cell recruitment rate l = 7906311

cells ml21 day21. Our estimate of a suggests that 11% of CD4+ T cells

are activated, consistent with the finding that ,10% of CD4+ T cells

in peripheral blood are Ki-67+ in the patients with CD4 count less

than 200 cells/ml [22].

Effectiveness of ENF Re-Administration after ENF-
Interruption

After ENF interruption, ENF was re-administered to the study

subjects for 4 weeks while keeping the same ‘‘background’’

regimen. During this re-administration of ENF, we estimated the

ENF efficacies against sensitive and resistant viruses, es and er.

Estimated values and their 95% confidence intervals are

summarized in Table 3 and Table 4, respectively. Comparisons

of model predictions with the patient data are shown in Fig. 3.

Our estimates indicate that ENF re-administered following

interruption is 6666% effective in reducing infection by ENF-

sensitive virus, while the effectiveness is reduced to 2966% in

reducing infection by ENF-resistant virus. This indicates that

ENF-resistant variants still remain partially sensitive to ENF even

though they have reduced susceptibility. We note that the efficacy

of ENF against drug sensitive virus obtained here is a minimal

estimate as it might have included the reduction of efficacy due to

inclusion of other mutant virus in the drug sensitive virus data.

Other estimated parameters during ENF re-administration

(Table 3) are more or less the same as those estimated during

ENF interruption (Table 1). The continued activity of ENF against

the drug-resistant virus is supported by the apparent immediate

albeit transient and small increase in plasma HIV RNA levels

observed when ENF was interrupted in a larger cohort of

individuals (see Figure 1 in [11]).

Plasma Viral Load
Despite the difference in replication capacity and changes in the

proportion of ENF-sensitive and ENF-resistant viruses (Fig. 2a),

the total plasma viral load remains approximately the same during

ENF interruption (Fig. 2b). The plasma viral load also remains

unchanged during ENF re-administration (Fig. 3) except for a

nominal transient post-readministration suppression followed by a

rebound. This raises a question: what determines the plasma viral

load?

We first studied the effect of ENF-resistant virus fitness cost on

plasma viral load. In Figs. 4a and 5a, we show the plasma viral

load obtained from our model for different fitness costs during

ENF interruption and ENF re-administration, respectively, with

other parameter values held to their estimated values. When we

varied the fitness cost from 5 to 50% we did not find any

observable change in plasma viral load. This suggests that the

fitness cost has a minor role in determining the total viral load. We

next studied the effect of different initial proportions of the mutant

virus at the time of ENF interruption (Fig. 4b) and ENF re-

administration (Fig. 5b). The initial proportion of ENF-resistant

virus does not seem to have any effect on plasma viral load either.

From the model we can calculate the steady state level of

infected cells, I~IszIr, which given our assumption that

ps = pr = p, is proportional to the total viral load, V~VszVr, i.e.

V~pI=c, where an over-bar denotes a steady state value. As the

resistant virus population decays to a low level during ENF

interruption, the net effect of backward mutation on the steady

state is negligible. Therefore, we neglect backward mutation and

obtain the following expression for the steady state total viral load,

V~VszVr:

V~
pl

cd
{

d

(1{ms)bs

: ð6Þ

Note that V is independent of the fitness cost, a.

Similarly, during ENF re-administration we neglect the forward

mutation rate as the sensitive virus replication is largely inhibited,

and obtain the steady state total viral load in the presence of ENF,

VE , as

Table 2. The 95% confidence intervals obtained by 200 bootstrap replicates for parameter estimates in Table 1.

Patient l bs ms mr a ps d T0 a

(cells/ml/
day)

(1027)
(/ml/day) (1025) (1025)

(virions/
infected cell) (1/day) (log10)

P1 Lower 322 9.1 2.32 0.92 0.17 4582 0.27 4.14 0.22

Upper 394 12.8 5.49 5.08 0.20 4856 0.33 4.18 0.25

P2 Lower 997 8.12 0.82 0.77 0.15 3014 0.27 4.93 0.06

Upper 1335 14.17 5.32 3.83 0.21 3944 0.40 4.94 0.08

P3 Lower 879 4.01 1.12 1.00 0.16 2217 0.19 5.30 0.06

Upper 982 6.00 5.33 4.81 0.24 2942 0.33 5.33 0.07

P4 Lower 810 3.89 2.10 1.21 0.12 3353 0.29 5.12 0.05

Upper 1108 7.45 5.42 5.48 0.15 3787 0.36 5.16 0.08

doi:10.1371/journal.pcbi.1001012.t002
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Figure 2. Dynamics during ENF interruption. (a) Wild-type (green) and ENF-resistant (red) HIV-1, (b) the total plasma viral load (blue), and (c)
CD4+ T cells (blue), predicted by the model using estimated parameters (solid curve) and experimentally observed data (N).
doi:10.1371/journal.pcbi.1001012.g002

Benefit of HIV Drugs in the Presence of Resistance
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VE~
pl

cd
{

d

(1{mr)(1{er)(1{a)bs

: ð7Þ

In this case, the total viral load depends upon the fitness cost, a.

However, using our estimated parameters (Table 3), the second

term on the right hand side is ,20-fold smaller than the first term

and hence the effect is negligible as seen in Fig. 5a. Therefore, the

fitness cost again does not have any effect on setting the total viral

load.

We next studied the effect of target cells on the total viral load.

We considered two approaches: one by changing the initial target

cell level and another by changing the recruitment rate of target

cells. We did not observe any effect of the initial target cell level on

the total viral load during ENF interruption (Fig. 4c) or re-

administration (Fig. 5c).

Marked differences in the level of plasma viral load is seen when

the target cell recruitment rate, l, changes while keeping all other

parameters fixed, during both ENF interruption (Fig. 4d) and re-

administration (Fig. 5d). After early transient changes in viral load

upon ENF interruption, the plasma viral load level remains

relatively constant during the interruption with the level related to

the target cell source rate l. A similar result is found during ENF

re-administration except that it takes longer to initially stabilize the

viral load level during ENF re-administration than during ENF

interruption. While we demonstrated the dependence of the viral

load on l (Figs. 4d and 5d), the level of plasma viremia can also be

seen by simulation to depend on p, c and d. This is also supported

by the analytical expressions (6) and (7) for the steady state level of

total virus, which to a good approximation are equal to, pl/(cd),

during ENF interruption and re-administration.

The Target Cell Level
The changes over time of the CD4 count, and of the proportion

of uninfected cells, cell infected with sensitive virus, and cell infected

with resistant virus are shown in Figs. 6a and 6c, respectively. After

ENF re-administration, the proportion of uninfected cells increases,

reaches a peak and then decays to a steady-state level higher than

the level before ENF re-administration. In a study by Deeks et al.

[11] on a larger cohort of individuals, the subjects received an ENF-

based regimen (the same as the one received by individuals in this

study) for 34 weeks (approximately the same period as in our study)

followed by the interruption of ENF. During a screening period of 4

weeks just before the interruption began, they found a negligible

change in CD4+ T cell counts (mean change: 0.13 cells/ml/week)

suggesting that steady state was reached by the end of this long-term

treatment. They also observed the steady state T cell level after a

long period of ENF interruption. Below we calculate from our

model the steady state level of uninfected CD4+ T cells to

understand how the uninfected target cell level differs between

long-term ENF interruption and long-term ENF re-administration.

The steady state level of target cells during ENF interruption,

TE, and ENF re-administration, TE , can be calculated from our

model and are given by

TE~
dc

(1{ms)pbs

, ð8Þ

TE~
dc

(1{mr)(1{er)(1{a)pbs

, ð9Þ

respectively. Before ENF is re-administered, er = 0, as no drug is

present. After drug is given, er.0 and Eq. (8) shows that the target

cell level should increase. Furthermore, in addition to the efficacy of

the drug against resistant virus, er, the fitness cost, a, also contributes

to the maintenance of a higher level of uninfected target cells during

ENF re-administration. In fact, even if the drug is completely

ineffective against resistant virus (i.e., er = 0), and the viral load is

approximately equal during both ENF interruption and ENF re-

administration as shown above, HIV infected patients with ENF re-

administration will still have a higher uninfected target cell level due

to the fitness loss of resistant virus (i.e., for a.0). Above we showed

that during re-administration the total viral load, and hence the total

number of infected cells also stays approximately constant. Hence

the CD4+ T cell count, which includes both uninfected and infected

CD4+ T cells, is expected to increase with the increase in target cells.

This is an important result as it shows that even though the resistant

virus becomes dominant during ENF re-administration (Fig. 3), the

CD4+ T cell count should increase, which represents an immu-

nologic benefit to patients.

Competition between Two Strains
Before ENF interruption, the ENF-resistant viral load is on

average 100-fold higher than ENF-sensitive viral load. After ENF

interruption the proportion of ENF-resistant virus decreases (Fig. 2)

and after several weeks ENF-sensitive virus becomes dominant.

According to our simulations, the time it takes for ENF-sensitive

virus to take over the viral population mainly depends upon the

fitness cost (Fig. 4e) and the initial proportion of ENF-resistant

virus (Fig. 4f). To look at this more closely, we simplify the

problem by neglecting mutation and by assuming the target cell

Table 3. Estimated parameters during ENF re-administration
after interruption.

Patient e
s

e
r

l T0 a

(cells/ml/day) (log10 cells/ml)

P1 0.71 0.27 206 4.03 0.15

P2 0.67 0.36 1106 4.72 0.07

P3 0.58 0.25 949 4.66 0.08

Mean 0.66 0.29 754 4.47 0.10

SD 0.06 0.06 481 0.38 0.04

doi:10.1371/journal.pcbi.1001012.t003

Table 4. The 95% confidence intervals obtained by 200
bootstrap replicates for parameter estimates in Table 3.

Patient es er l T0 a

(cells/ml/
day)

(log10

cells/ml)

P1 Lower 0.66 0.14 192 3.96 0.11

Upper 0.83 0.28 207 4.05 0.16

P2 Lower 0.63 0.30 1005 4.69 0.07

Upper 0.72 0.47 1303 4.73 0.08

P3 Lower 0.50 0.10 869 4.62 0.07

Upper 0.75 0.29 1023 4.66 0.09

doi:10.1371/journal.pcbi.1001012.t004
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level remains constant, i.e. we assume T~TE , the steady state

target cell in the presence of drug (i.e. before the interruption).

This results in a system of two linear differential equations in Is and

Ir. Solving these equations, we obtain the following expression for

r (t) = Vr (t)/Vs(t), the ratio of the two strains:

r(t)~r(0) exp
{adt

(1{a)(1{mr)(1{er)

� �
, ð9Þ

where r(0)<100, i.e. resistant virus is approximately 100-fold more

plentiful than sensitive virus. As time off therapy increases the level

of resistant virus falls and r(t) decreases. When r(t),1, the sensitive

virus is the dominant strain. The time, th, for the proportion of

resistant virus to reach r(th) during ENF interruption is

th~
(1{a)(1{mr)(1{er)

ad
ln

r(0)

r(th)
, ð10Þ

As indicated by the above expression, and as seen in Figs. 4e and

4f, an increase in the fitness cost, a, causes the ENF-sensitive virus

to be dominant sooner, while an increase in initial ENF-resistant

virus proportion, r(0), results in a longer time for the ENF-sensitive

virus to be dominant. Varying the T-cell count at the time of

interruption from 50 to 250 or 500 ml-1 or increasing the T cell

source rate, l, does not significantly impact the proportion of

ENF-resistant virus (Figs. 4g and 4h).

Figure 3. Dynamics during ENF re-administration after interruption. (a) wild-type (green) and ENF-resistant (red) HIV-1, (b) the total plasma
viral load (blue), and (c) CD4+ T cells (blue), predicted by the model using estimated parameters (solid curve) and experimentally observed data (N).
doi:10.1371/journal.pcbi.1001012.g003
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Figure 4. Simulation results during ENF interruption. Plasma HIV-1 RNA level (a–d), and V38A mutant virus proportion (e–h), for different V38A
mutant virus fitness costs (a,e), initial V38A mutant virus proportion (b,f), initial T cell counts (c,g) and T cell source rate (d,h). Parameters used are the
average values of P1, P2, P3 in Table 1.
doi:10.1371/journal.pcbi.1001012.g004
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Figure 5. Simulation results during ENF re-administration. Plasma HIV-1 RNA level (a–e), and V38A mutant virus proportion (f–j), for different
V38A mutant virus fitness costs (a,f), initial V38A mutant virus proportion (b,g), initial T cell counts (c,h), T cell source rate (d,i) and ENF efficacy against
ENF-resistant virus (e,j). Parameters used are the average values in Table 3.
doi:10.1371/journal.pcbi.1001012.g005

Benefit of HIV Drugs in the Presence of Resistance

PLoS Computational Biology | www.ploscompbiol.org 10 November 2010 | Volume 6 | Issue 11 | e1001012



Figure 6. CD4 count and the proportion of uninfected and infected cells. (a) Predicted temporal variation of the CD4 count during ENF
interruption (red) and with ENF re-administration (green). Parameters used are the average values in Tables 1 and 3. The vertical dashed line indicates
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We also studied the competition of the virus populations during

ENF re-administration (Figs. 5f–j). Following ENF re-administra-

tion ENF-resistant virus reemerges rapidly and attains the

proportion r(tw) in an approximate time tw (obtained as in ENF

interruption case above) given by

tw~
1{ms

d½(1{er)(1{a){(1{es)�
ln

r(tw)

r(0)
, ð11Þ

For the parameters in Tables 1 and 2, the virus population

changes more rapidly during ENF re-administration than during

ENF interruption, and the time for the virus population to become

dominated by resistant virus, i.e. for r.1, mainly depends upon

the combined effect of fitness cost and efficacy of ENF against the

ENF-resistant virus. If ENF is sufficiently effective against ENF-

resistant virus or if the fitness cost is sufficiently high, the turnover

is significantly delayed. In addition to ENF efficacy and the fitness

cost, there appear to be nominal effects of the initial ENF-resistant

virus proportion, and target cell generation rate on the turnover of

the virus population during ENF re-administration (Figs. 5g,i).

Benefits of ENF Re-Administration Following an
Interruption

Despite the resistance to ENF, re-administration of ENF might

provide some benefits if ENF has partial activity against resistant

virus. Using our model to study this, we found re-administration of

ENF results in transient nominal viral suppression for about 2

weeks followed by a rapid rebound in plasma HIV-1 RNA level

and then attainment of a steady state viral load higher than the

initial viral load in about 7 weeks (Fig. 5e). This shows that ENF

re-administration is not effective in suppressing plasma viral load.

However, our model simulations show that re-administration of

ENF helps in maintaining a higher CD4+ T cell level (Fig. 6a).

After ENF re-administration, the CD4 count increases, reaches a

peak and decays to a steady state level higher than the steady state

level before the re-administration. While the CD4+ T cell count

decreases by 15% in the absence of ENF, re-administration of

ENF results in an increase of the CD4+ T cell count by 18% over

the treatment period of 3 months (Fig. 6b), which can be clinically

significant. This gain of about 35% in the CD4 count due to ENF

re-administration predicted by our model is consistent with a

,36.8% increase in CD4 count (from 95 cells/ml to 130 cells/ml)

during ENF-treatment observed in a study of 25 individuals [11].

According to our model, this increase is observed because during

re-administration of ENF, ENF-sensitive virus is replaced by ENF-

resistant virus that has less ability to infect CD4+ target cells

(Fig 6c). Therefore, there appears to be an immunological benefit,

i.e., achieving a higher CD4+ T cell count, in patients taking ENF,

even though they might suffer virologic failure due to the

emergence of resistance. The level of CD4+ T cells increases as

fitness cost or/and the efficacy of ENF against ENF-resistant virus

increases because an increase in fitness cost or/and efficacy further

decreases the infectivity of resistant virus.

Discussion

The impact of antiretroviral drug-resistance on viral load, CD4+

T cell counts and clinical outcomes is complex. Although the

emergence of resistance to protease inhibitors and reverse

transcriptase inhibitors clearly affects viral fitness (as defined in

vitro and in vivo) [2–5,32], its impact on viral load and CD4+ T

cell counts is unclear. At comparable plasma viral loads, drug

resistant HIV can be associated with more sustained CD4+ T cell

gains and reduction of the risk of morbidity and mortality

[2,4,5,32] than wild-type (drug-sensitive) HIV. To understand the

mechanism for this apparent beneficial effect on immunologic and

clinical outcomes independent of viremia, we use ENF resistance

as a ‘‘probe’’ to explore the impact of fitness on viral and

immunologic dynamics in vivo. Although the data linking ENF

resistance to viral load, CD4 and clinical outcomes is limited, the

preliminary data that does exist is consistent with the more

extensive literature pertaining to protease inhibitor resistance.

Specifically, despite the emergence of ENF-resistant mutations,

CD4+ T cell counts have been observed to increase during therapy

as the ENF resistant virus with less capacity to infect T cell

replaces the ENF-sensitive virus. A large prospective study has

recently been completed in which ENF was given as a ‘‘pulse’’ to

determine if the expansion of ENF resistance positively affects

CD4+ T cell counts. Preliminary data from 3 individuals has

previously been published [13]. Given the richness of this data-set,

we developed a mathematical model to study the benefits of ENF

re-administration after interruption of therapy due to virological

failure.

Interruption of ENF after the emergence of ENF resistance

results in a rapid decay of the resistant variant [13]. One of the key

questions is what factors play a role in the waning of the ENF-

resistant virus and in determining the time for the ENF-sensitive

virus to become dominant. Similar questions arise for the period of

ENF re-administration in which ENF-resistant virus rapidly

increases and takes over the ENF-sensitive virus. Moreover,

despite the rapid turnover of the virus population, the plasma

HIV-1 RNA level remains unchanged during ENF interruption

raising a question of what determines the plasma viral load. In this

study, we took advantage of mathematical models to address these

issues.

Our model, which describes the dynamics of ENF-sensitive

virus, ENF-resistant virus, target cells, cells infected by ENF-

sensitive virus and cells infected by ENF-resistant virus, includes

the fitness cost of ENF-resistant virus as well as forward and

backward mutations. The model was used to fit data concerning

the level of ENF-sensitive viruses, V38A ENF-resistant viruses and

the CD4+ T cell count from HIV-1 infected patients, who

underwent ENF interruption and subsequent re-administration

while continuing to receive the other drugs in their regimen [13].

The data fitting during ENF interruption allowed us to estimate

the forward mutation rate, the backward mutation rate and the

fitness cost of the ENF-resistant virus along with the virus

production rate, the infected cell death rate, the infection rate,

the source rate of the target cells and the fraction of T cells that

were target cells. Moreover, the data fitting allowed us to estimate

the ENF efficacy against ENF-sensitive and ENF-resistant viruses

during ENF re-administration.

Our parameter estimates, model analysis and numerical

simulations produced several interesting observations. First, the

magnitude of the backward mutation rate of V38A is approxi-

mately the same as that of the forward mutation rate. This

indicates that ongoing viral evolution might have some contribu-

tions to the loss of ENF-resistance during ENF interruption,

the time of ENF re-administration. (b) Bar diagram showing the percentage change of CD4 count at the end of one year without ENF (red) and at the
end of 3 months with ENF re-administration (green). (c) Change over time of the proportion of uninfected cells, T (blue), cells infected with drug-
sensitive virus, Is (green), and cells infected with drug-resistant virus, Ir (red). The vertical dashed line indicates the time of ENF re-administration.
doi:10.1371/journal.pcbi.1001012.g006
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supporting the results of phylogenetic analysis in Kitchen et al. [9].

However, we observe that backward mutation barely contributes

to the loss of drug resistant viruses (26 virions/ml in the first week

and 70 virions/ml in the first month post interruption), and thus is

not sufficient to achieve the rapid waning of ENF-resistant viruses

observed when therapy is interrupted. Outgrowth of the wild-type

virus with a fitness advantage in the absence of drug is a more

plausible explanation.

Second, we found that the fitness cost of ENF-resistant

mutations has a major role in the loss of ENF-resistant virus and

the turnover of the virus population during ENF interruption. We

estimated that the ENF-resistant virus is 1763% less fit than the

ENF-sensitive virus. This reduced fitness of V38A ENF-resistant

virus agrees with the experimental finding of reduced fitness of the

V38A mutant virus compared to wild-type virus in vitro [1]. Our

simulations and analysis showed that the time needed for the

sensitive virus to dominate the resistant virus during ENF

interruption is mainly determined by the combined effect of

fitness cost and the initial ENF-resistant virus proportion. Not

surprisingly, the higher the fitness cost, the shorter the turnover

time; and the higher the initial ENF-resistant virus proportion, the

longer the turnover time (Fig. 4e,f). During ENF re-administration,

the ENF efficacy against ENF-resistant virus also plays an

important role in determining the time for the resistant virus to

outcompete sensitive virus. A higher ENF efficacy against ENF-

resistant virus results in a longer turnover time (Fig. 5j).

Interestingly, there is a negligible effect of the target cell level on

determining the turnover time of the virus population (Figs. 4g,h

and 5h,i).

Third, we found that the fitness cost and the initial proportion of

the ENF-resistant virus do not have any observable role in defining

plasma HIV RNA levels. Neither does ENF efficacy during ENF

re-administration contribute to setting plasma viral levels. The

plasma viral RNA level is determined mainly by the target cell

generation rate, l, the virus production rate, p, the infected cell

death rate, d, and the virus clearance rate, c. A higher value of p or

l and/or a lower value of d or c give rise to a higher plasma HIV

RNA level.

Our next observation is related to the advantage or disadvan-

tage of re-administrating the drug following an interruption. Once

the drug is re-administered, the resistant virus rapidly reemerges

and becomes dominant over the sensitive virus. This indicates a

strong selective pressure of the drug on the virus population. The

turnover rate of the virus population is more rapid during the drug

re-administration than during the drug interruption. This shows

that the advantage of the drug-resistant virus over drug-sensitive

virus during the drug re-administration is greater than the

disadvantage of the drug-resistant virus over the drug-sensitive

virus during the drug interruption. The rapid reemergence of the

resistant virus also indicates the persistence of actively replicating

resistant virus as suggested in [33,34]. Our parameter estimates

indicate that ENF when re-administered is ,29% effective against

ENF-resistant virus and ,66% effective against ENF-sensitive

virus. This supports the antiviral activity against ENF-resistant

viruses observed previously [11]. After re-administration of ENF,

our model predicts a small transient suppression of viral load

followed by a rebound to a higher plasma RNA level, consistent

with the pattern shown by the data. This shows that the re-

administration of ENF cannot suppress plasma virus for the long

term.

One of the most interesting results demonstrated by our model

is that despite sustained high levels of viral load, re-administration

of ENF helps in maintaining a significantly higher level of CD4+ T

cells (Figs. 5e and 6). During ENF re-administration patients can

achieve more than 35% higher CD4+ T cell count over the period

of 3 months compared to the same patients during ENF inter-

ruption (Fig. 6b). The CD4 count increase predicted by our model

(,35%) is consistent with the CD4 count gain in a study on a

larger cohort of individuals [11] in which the subjects (with the

same background regimen as in our study) maintained a 36.8%

higher CD4 during ENF treatment than during ENF interruption.

This immunologic benefit of ENF occurs even in the presence of

high-level ENF resistance, in agreement with the findings in some

individuals harboring viruses with ENF-resistance mutations under

long-term ENF therapy [35]. This outcome on administering ENF

can be explained by the presence of resistant viruses with a

reduced infection capacity (Figs. 2 and 6c). The treatment alters

the fitness of the virus by selecting the less fit resistant virus that

helps in maintaining a higher CD4 count even though it is

ineffective in suppressing the viral load. A similar effect has been

seen in patients treated with reverse transcriptase and protease

inhibitors such as proD30N, rtK65R and rtM184V [2–5]. The

benefit of the drug is mediated by changes in both the fitness of the

virus and the efficacy of the drug against resistant virus. The CD4+

T cell level during the drug re-administration increases as the

efficacy of the drug against resistant virus increases or/and the

fitness cost of resistant virus increases.

There are several limitations of this study. The results are based

on limited data from only three subjects. Moreover, there are

fewer data points available during ENF re-administration, which

might produce more uncertainty in the results derived from ENF

re-administration. To gain more confidence in the results obtained

here, extensive studies with more data are necessary. We have

considered the V38A mutant virus as a representative of all ENF-

resistant viruses. However, there are many other mutant viruses,

which may possess different fitness costs and different mutation

rates. It should be noted that in the experiment only the

proportion of V38A was measured, and so there might be other

mutant virus resistant to ENF that would have been included in

the ENF-sensitive viral load. A detailed quasi-species model, as in

Murray and Perelson [36], may provide a better explanation of the

phenomena and help in estimating a more accurate value of the T-

cell benefit. However, such complex models require more detailed

data sets in which the population levels of other members of the

quasi-species are measured. Currently, such data is unavailable.

In summary, we have used mathematical models to help explain

the viral dynamic properties of drug sensitive and resistant viruses

in the presence and the absence of the drug ENF. Our results show

that even though forward and backward mutations occur during

therapy interruption, the primary factor leading to the loss of

resistant virus during therapy interruption is the fitness cost of the

resistant virus. In the presence of drug, the efficacy of drug against

resistant virus is also one of the main factors determining

dominance of the drug resistant virus in the population. More

importantly, even though the drug is ineffective in suppressing

plasma viral load due to the presence of resistant virus, our results

support the concept that continued therapy may have a residual

immunologic benefit by preserving peripheral blood CD4+ T cell

levels.
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