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The rapid and accurate evaluation of chemical toxicity is of great significance for estimation
of chemical safety. In the past decades, a great number of excellent computational models
have been developed for chemical toxicity prediction. But most machine learning models
tend to be “black box”, which bring about poor interpretability. In the present study, we
focused on the identification and collection of structural alerts (SAs) responsible for a series
of important toxicity endpoints. Then, we carried out effective storage of these structural
alerts and developed a web-server named SApredictor (www.sapredictor.cn) for
screening chemicals against structural alerts. People can quickly estimate the toxicity
of chemicals with SApredictor, and the specific key substructures which cause the
chemical toxicity will be intuitively displayed to provide valuable information for the
structural optimization by medicinal chemists.
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INTRODUCTION

Nowadays, the development of chemical toxicology studies has provided us with extensive
compound toxicity data. By analyzing and mining the existing toxicological experimental data,
computational models can be established to predict the toxicity of chemical compounds around our
lives. Compared with biological experimental methods, the computational methods were always
green, fast, cheap, and accurate (Yang et al., 2018c). More importantly, toxicity can be predicted with
computational models even before a chemical is synthesized or isolated. In the past decades, several
expert systems, for example, Toxtree (Patlewicz et al., 2008) and OECD QSAR Toolbox (https://
qsartoolbox.org/etc), and web-servers, for example, admetSAR (Yang et al., 2018a), ToxAlerts
(Sushko et al., 2012), ADMETlab (Xiong et al., 2021), pkCSM (Pires et al., 2015), and vNN (Schyman
et al., 2017) have also been proposed for in silico toxicity estimation.

The quantitative structure activity relationships (QSAR) method is one of the most widely used
computational approaches for toxicity prediction, and many QSAR models are reported every year.
However, these QSAR models based on machine learning methods tend to be “black box” models,
which have limited the application in the prediction of various properties for regulatory agencies
(Alves et al., 2016). In addition, the machine learning models need to face the problem of
applicability domains (ADs) definition. Defining ADs are essential for regulatory acceptance of
QSAR models, but there is less standard definition of AD for the global QSAR model nowadays, and
many published QSAR models do not provide ADs (Wang et al., 2021).
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Structural alert (SA) is another widely accepted tool for
toxicity prediction in recent years, which can be defined as the
key substructure which can cause specific toxicity. SA has been
commonly used for assessment of many toxicity endpoints
(Benigni et al., 2013; Li et al., 2017a; Limban et al., 2018;
Kalgutkar, 2020; Cui et al., 2021; Huang et al., 2021; Shi et al.,
2022) since Ashby and Tennant (1988) proposed the concept in
1985. The SAs can visually alert the toxicity of chemicals by
displaying the key fragments responsible for drug toxicity because
of the direct derivation from mechanistic knowledge. Therefore,
SAs can provide valuable guidance and reference for structural
optimization bymedicinal chemists to reduce the risk (Yang et al.,
2018c).

In the present study, we focused on screening chemicals
against structural alerts, including 1) the identification of
specific SAs responsible for the toxicity endpoints most
concerned in drug studies based on a database with high
quality toxicity data and the collection of reported SAs from
research publications; and 2) the development of web-server for
screening chemicals against structural alerts.

MATERIALS AND METHODS

Data Collection and Preparation
The data for identification of structural alerts were collected from
1) the databases such as ChEMBL (Gaulton et al., 2011),
ChemIDplus (Tomasulo, 2002), Comparative Toxicogenomics
Database (CTD) (Davis et al., 2018), Carcinogenic Potency
Database (CPDB) (Gold et al., 1984) and DrugBank (Wishart
et al., 2017) and 2) peer-reviewed publications through manually
filtering and processing. We focused on 22 toxicity endpoints
which are of most concern in environmental toxicology and
drug discovery, including acute oral toxicity (Li et al., 2014),

chemical aquatic toxicity [Tetrahymena pyriformis (Cheng et al.,
2011),Daphnia magna (Gajewicz-Skretna et al., 2021), and fathead
minnow (Sun et al., 2015)], chemical-induced hematotoxicity (Hua
et al., 2021), drug-induced neurotoxicity (Jiang et al., 2020), drug-
induced autoimmune diseases (Wu et al., 2021), drug-induced
ototoxicity (Huang et al., 2021), drug-induced rhabdomyolysis
(Cui et al., 2019), endocrine disruption (Chen et al., 2014), eye
irritation (Wang et al., 2017), hepatotoxicity (Li et al., 2018), hERG
inhibition (Li et al., 2017c), honey bee toxicity (Li et al., 2017b),
inhalation toxicity (Cui et al., 2021), mitochondrial toxicity (Nelms
et al., 2015), mutagenicity (Yang et al., 2017), nephrotoxicity (Shi
et al., 2022), non-genotoxic carcinogenicity (Benigni et al., 2013),
reproductive and development toxicity (Fan et al., 2018; Jiang et al.,
2019), skin sensitization (Di et al., 2019), and toxicity on avian
species (Zhang et al., 2015). For each toxicity endpoint, we searched
the literature separately and included the publications with the
same definition of the toxicity endpoint and consistent toxic/non-
toxic classification criteria.

The datasets were prepared in following steps to guarantee the
quality and reliability of the data: 1) removing mixtures,
inorganic, salts, and organic metallic compounds; 2) removing
compounds without explicit description for toxicity properties or
have inconsistent results in different experimental groups; 3)
removing the fuzzy, uncertain, and obviously uncorrected data
points; and 4) standardization and representing as canonical
SMILES (O’Boyle, 2012).

Identification of Structural Alerts
The structural alerts were identified with two different methods,
including SARpy (Ferrari et al., 2013) and fingerprints filter
(Yang et al., 2020). Both the methods were based on
frequency analysis, the general idea of which was to find some
substructures presented more frequently in toxic compounds
than in non-toxic ones (Yang et al., 2020). If a substructure

FIGURE 1 | SARpy and fingerprints filter approaches implemented for structural alerts identification. (A) SARpymethod is a fragment-basedmethod, which can cut
all possible bonds to obtain substructures. (B) Fingerprints filter approach would regard the predefined substructures as potential structural alerts.
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presented far more frequently in toxic compounds than non-toxic
compounds, the presence of such a substructure could alert to
toxicity. Thus, this substructure should be regarded as a structural
alert responsible for the specific toxicity. The flow of these two
methods for identifying structural alerts was shown in Figure 1.
SARpy is a python-based standalone software program for
automated QSAR modeling. This program has been well-
described in detail by Ferrari et al. (2013). Using SMILES-
based algorithms, SARpy can cleave the compounds to obtain
all possible fragments, and the potential structural alerts can be
obtained by frequency analysis. In this study, rule sets were
generated using standard settings; the substructures are
composed of minimum two and maximum 18 atoms and
occurring in a minimum of three substances. For the
fingerprints filter method, the well-defined fingerprints of
various lengths were utilized as the source of substructures. In
the present study, the structural alerts were identified with a
f-score and positive rate of each substructure from Klekota-Roth
fingerprint (KRFP) calculated with a PaDEL-Descriptor (Yap,
2011), which contained 4,860 predefined structural fragments.
The positive rate (PR) of a substructure is defined as Eq. 1:

PR � Nfragment positive

Nfragment
. (1)

where Nfragment_positive is the number of toxic compounds containing
the fragment, and Nfragment is the total number of compounds
containing the fragment. For each specific endpoint, only the
fragments presented in six or more compounds were maintained.
The fragments with f-score ≥0.005 and positive rate ≥0.65 were
identified as structural alerts.

The structural alerts were converted into SMARTS patterns
(Hanson, 2016) and stored in theMySQL database. The SMARTS
pattern is a language that allows users to specify substructures
using the rules, which are straightforward extensions of SMILES.
With SMARTS, flexible, and efficient substructure-search
specifications can be made in terms that are meaningful to
chemists, a compound can be matched against the alert in an
automatic manner using one of the available chemical libraries
(Sushko et al., 2012).

In addition, we also collected the structural alerts reported in
the peer-reviewed publications. The collected structural alerts
were also converted into SMARTS patterns, and the duplicates
were removed.

Applicability Domain Definition
As emphasized by OECD principles, a well-defined
applicability domain (AD) was preferred to make models
more precise and robust (Yang et al., 2020). From the
viewpoint of predictive performance, AD can also be helpful
for improving the accuracy of SAs. Numerical relationships
between chemical descriptors and toxicity values from training
set are the basis of many applicability domain definition
techniques, especially for QSAR models. However, AD for
SAs have not been defined using these methods since the alerts
are always a combination of structural information, toxic or
non-toxic testing outcomes, and expert knowledge, which are
used to directly link substructures with potential activity
(Ellison et al., 2011). To date, there has been no single
generally accepted algorithm for determining the AD on
SAs. Since no chemical descriptors were used for SA model
building, structural similarity could be the most appropriate

TABLE 1 | Number of data points and structural alerts in the data set.

Endpoints Species Annotated data points Structural alerts

Positive Negative Total

Acute oral toxicity Rat 3,722 2,129 5,851 35
Chemical aquatic toxicity: Tetrahymena pyriformis Tetrahymena pyriformis 1,088 350 1,438 110
Chemical aquatic toxicity: Daphnia magna Daphnia magna 307 178 485 57
Chemical aquatic toxicity: fathead minnow Fathead minnow 451 510 961 51
Chemical-induced hematotoxicity Human 632 1,515 2,147 12
Drug-induced autoimmune diseases Human 148 450 598 12
Drug-induced neurotoxicity Human 329 355 684 18
Drug-induced ototoxicity Human 497 740 1,237 15
Drug-induced rhabdomyolysis Human 183 1,321 1,504 8
Endocrine disruption In vitro and in vivo assays 433 835 1,268 7
Eye irritation Rabbit 1,874 1,046 2,920 9
Hepatotoxicity Human and animals 1,338 857 2,195 51
hERG inhibition In vitro assays 1,186 1,148 2,334 24
Honey bee toxicity Honey bee 74 176 250 7
Inhalation toxicity Human 136 468 604 81
Mitochondrial toxicity Human 171 113 284 41
Mutagenicity Salmonella 3,503 1,709 5,212 809
Nephrotoxicity Human and animals 287 238 525 117
Non-genotoxic carcinogenicity Rat 603 460 1,063 129
Reproductive and development toxicity Rodents 862 961 1,823 20
Skin sensitization Rodents 370 417 787 121
Toxicity on avian species Avian species 140 149 289 22
Summary 19,053 16,663 35,716 1,834
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measure to define the AD. Structural similarity is a popular AD
definition method based on the concept that if a query
chemical can be defined as similar to the chemicals in the
training data, then it can be considered within the AD (Kühne
et al., 2006; Ellison et al., 2011). In the present study, the
similarity matrix was calculated employing the Tanimoto
coefficient (Tc) (Godden et al., 2000; Bajusz et al., 2015)
based on the KRFP fingerprint. The Tc is defined as Tc =
Nab/(Na+ Nb− Nab), with Na being the number of bits set on
in molecule a, Nb is the number of bits set on in molecule b,
and Nab is the number of bits set on common to both
molecules (Godden et al., 2000). The cutoff similarity value
was defined as 0.5, thus if a query compound had a similarity
value of ≥0.5 to at least one compound in the training set, it
would be considered to be within the AD.

Toxicity Prediction With Structural Alerts
The structural alerts were assessed with the specific dataset of
each endpoint. The compounds were input as SMILES and
queried for matching the specific structural alerts with RDKit
(Lovrić et al., 2019). If a compound contains one or more
structural alerts, it would be predicted to have the specific
toxicity. The evaluation was based on the counts of true
positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). Several statistical parameters were also
calculated, including the total accuracy (Q), sensitivity (SE),
specificity (SP), and positive predictive value (PPV). These
parameters are calculated with Eqs. 2–5:

Q � TP + TN

TP + FN + TN + FP
, (2)

SE � TP

TP + FN
, (3)

SP � TN

TN + FP
, (4)

PPV � TP

TP + FP
. (5)

Web-Server Implementation
The prediction system was developed employing the Python web
framework ofDjango. The systemwas deployed on an elastic compute
service from Huawei Cloud running an Ubuntu Linux system. The
web access was enabled via the Nginx web-server and the interactions
between Django and proxy server were supported by mod_wsgi v3.3.
A user-friendly web interface was provided for computational
prediction using a cascading style sheet (CSS) and Python script.

RESULTS AND DISCUSSION

Compound Libraries and Sets of Structural
Alerts
In total, more than 35,716 annotated measurements of about
27,500 unique compounds were collected, including thousands of
FDA-approved and experimental drugs, pesticides,
environmental agents, and industrial chemicals. As shown in
Table 1, these chemicals were checked and divided into
22 subsets, according to different toxicity endpoints.

Through the identification and literature retrieval, a total of
1,834 structural alerts were identified and collected for the
aforementioned 22 toxicity endpoints, as shown in Table 1.
ToxAlerts and Toxtree are two popular tools for the estimation of
potential adverse reactions of chemicals. ToxAlerts is a web-server of
structural alerts, which collected SAs defined by experts or detected by
computational tools. The latest ToxAlerts (accessed on 8 April 2022)

TABLE 2 | Performance of toxicity prediction with structural alerts.

Endpoints SE (%) SP (%) Q (%) PR (%)

Acute oral toxicity 66.01 60.69 64.07 74.59
Chemical aquatic toxicity: Tetrahymena pyriformis 75.92 90.29 79.42 96.05
Chemical aquatic toxicity: Daphnia magna 80.46 65.73 75.05 80.19
Chemical aquatic toxicity: fathead minnow 72.95 75.88 74.51 72.79
Chemical-induced hematotoxicity 11.87 98.09 72.71 72.12
Drug-induced autoimmune diseases 26.35 97.11 79.60 75.00
Drug-induced neurotoxicity 34.65 96.90 66.96 91.20
Drug-induced ototoxicity 21.53 98.11 67.34 88.43
Drug-induced rhabdomyolysis 22.40 98.41 89.16 66.13
Endocrine disruption 21.25 94.49 69.48 66.67
Eye irritation 45.20 64.63 52.16 69.60
Hepatotoxicity 76.38 39.79 62.10 66.45
hERG inhibition 81.79 47.82 65.08 61.82
Honey bee toxicity 75.68 92.61 87.60 81.16
Inhalation toxicity 89.71 81.41 83.28 58.37
Mitochondrial toxicity 32.16 87.61 54.23 79.71
Mutagenicity 97.52 43.30 79.74 77.90
Nephrotoxicity 85.37 47.48 68.19 66.22
Non-genotoxic carcinogenicity 60.53 55.43 58.33 64.04
Reproductive and development toxicity 24.71 89.39 58.80 67.62
Skin sensitization 79.46 50.36 64.04 58.68
Toxicity on avian species 73.57 46.98 59.86 56.59
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contains 814 structural alerts for 13 toxicity endpoints, as shown in
SupplementaryTable S1. Toxtree is another user-friendly open-source
application, which is able to estimate toxic hazard by applying a
decision tree approach. In the latest version (Toxtree 3.1.0), in addition
to the three Cramer Decision Trees (Cramer Rules, Revised Cramer
Decision Tree, and Cramer Rules, with Extensions), it contains
499 structural alerts for 13 toxicity endpoints, as shown in
Supplementary Table S2. To our knowledge, this may be the
largest structural alert database with specific toxicity endpoints until
now. In addition, several toxicity endpoints which get a lot of concerns
(hepatotoxicity, nephrotoxicity, reproductive and development toxicity,
hERG inhibition, hematotoxicity, mitochondrial toxicity, etc.) were
included in SApredictor while not in ToxAlerts or Toxtree.

Performance of Toxicity Prediction With
Structural Alerts
The performances of the structural alerts on toxicity prediction
are shown in Table 2. The results suggested that for most

endpoints, the structural alerts can well distinguish toxic
compounds from non-toxic ones. For different toxicity
endpoints, the disparity was observed in the performance. This
can be attributed to that the complexity of the mechanisms of
action (MOAs) of different toxicity endpoints vary greatly, and
the sizes of the data are also different, which lead to differences in
the representativeness of SAs and the ability to distinguish
between toxic and non-toxic compounds.

It was worth pointing out that compared with QSAR models,
the prediction accuracy of structural alerts did not have any
advantage in most cases. However, different from the QSAR’s
black box model, the structural alerts can visually display the
fragments that lead to specific toxicity of compounds, which is
conducive to the targeted optimization of toxic structures and the
study of toxic mechanisms (Yang et al., 2018c; Shi et al., 2022).

To ensure usefulness of the prediction system, it will be
updated regularly with additional structural alerts based on
available data, whether identified by ourselves or reported by
peer-reviewed publications. If high quality datasets with new

FIGURE 2 | SApredictor main page. From this page, users can submit the query structure.

Frontiers in Chemistry | www.frontiersin.org July 2022 | Volume 10 | Article 9166145

Hua et al. SApredictor for Structural Alerts

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


endpoints are reported, new structural alerts will be identified and
implemented in our database.

Web Interface and Usage of the Structural
Alerts
Based on distributed storage architectures, a piece of software for
the estimation of chemical toxicity with structural alert was
developed. The software provides a user-friendly interface via
www.sapredictor.cn. A screenshot of the web-server is shown in
Figure 2. Users can submit compound structures in two different
ways: 1) enter the SMILES of small compounds in the dialog box;
2) click the “Select File” button to upload the structure file of
compounds with SMILES format. After entering the verification
code, users can click the “Predict” button to complete the task
submission.

After the matching of the structural alerts, it will be redirected
to the results page, as shown in Figure 3. On the left is the 2D
structure of the query compound and on the right is the toxicity
endpoints and corresponding predicted result. Where “Yes”
indicates that the query structure contains one or more
structural alerts of the specific toxic property, that is, the
compound has the potential of the specific toxicity, while
“No” indicates the query compound does not have the
potential of the specific toxicity. For the toxicity endpoint with
the result of “Yes,” click the name of the toxicity endpoint and a
drop-down list will appear listing the ID of structural alerts.
When clicking the ID, the fragments of the compound will be
highlighted in red, and the SMARTS of the alert will also be

available on the page. The researchers can view the specific
substructure that causes the toxicity of the compound.

CONCLUSION AND PERSPECTIVES

In summary, we have described here a web-server, named
SApredictor, for screening chemicals against structural alerts
via www.sapredictor.cn. In SApredictor, 1,834 structural alerts
for 22 different toxicity endpoints were extracted frommore than
35,716 toxicity annotated data points or collected from peer-
reviewed publications. Users can quickly estimate the toxicity of
compounds and visually display the fragments, which contribute
to their toxicity. The web-server will never retain any information
submitted to it because of the confidentiality of users’ projects.
We hope that the software should facilitate the process of drug
discovery and development by enabling the rapid and rational
screening, design, evaluation, and prioritization of drug
candidates.

It is worth pointing out that use of structural alerts alone may
suffer from false positives, such as skin sensitization and toxicity
on avian species in the present study. The structural alerts were
always identified by statistics-based methods or knowledge of
toxic mechanisms, which would make them be overtly common
and lead to many non-toxic structures being estimated as toxic.
On the other hand, it is debatable whether compounds which do
not contain any SA can be classified as non-toxic. Toxicity
prediction based on SA is based on the existing knowledge.
The compounds with SAs are always toxic, but whether those

FIGURE 3 | Structural alert-based toxicity predictions result page. When clicking the name of the toxicity endpoint withe positive result, a drop-down list will appear
with the ID of structural alerts. Users can click the ID, and then the fragments of the compound will be highlighted in red, so that researchers can view the specific
substructure that causes the toxicity of the compound.
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without SA are non-toxic needs more toxicity data support. Yang
et al. (2018b) proposed a concept of non-toxic substructures,
whose appearance will reduce the probability of a compound
becoming toxic (Yang et al., 2018b). In Wang et al. (2012) work,
modulating factors that suppressed the toxic effects of SAs were
extracted and practice on carcinogens (Wang et al., 2012). Non-
toxic substructures and modulating factors could be beneficial
supplements to SAs. In addition to optimizing the identification
method of structural alerts, defining the applicability domain for
the structural alerts in a reasonable strategy may be helpful to
improve the predictive performance and eliminate the worries.
We will continue to work in both directions to improve the
predictive ability of structural alerts and make them more useful.
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