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A B S T R A C T   

Background: Recent developments in literature on sample size calculations for time-to-event outcomes involve 
assumption of Weibull distributed times. These methods require a point estimate of the Weibull shape parameter 
obtained from historical studies. However, very limited guidance exists in published literature to assess how 
reliable this point estimate is when it is obtained from published results of a historical study. 
Methods: We conduct simulations to assess how accurate and reliable the point estimate of the Weibull shape 
parameter is when it is estimated from published results of median survival time and/or corresponding inter-
quartile range. Accuracy of this estimate is assessed using the criteria of average relative bias, root mean square 
error, and coefficient of variation for various combinations of sample sizes and censoring rates. Sensitivity of 
these calculations is assessed first, by increasing the number of survival quantiles used to calculate accuracy, and 
second, by using the full Kaplan Meier (KM) curve from the historical study. 
Results: Our simulations suggest that point estimate of the shape parameter is reasonably accurate when esti-
mated from historical studies with sample size � 50 with censoring rate approximately 20%. Knowledge of the 
median and inter-quartile range seems to be adequate for this purpose. For historical studies with small sample 
sizes or higher censoring rates, more information needs to be abstracted from the published KM curves to 
improve accuracy. 
Conclusions: We conclude that assessing the accuracy of Weibull shape parameter estimate is important before it 
can be used to conduct sample size calculations for a subsequent trial.   

1. Introduction 

Sample size calculation is an integral component of designing clinical 
trials. While randomized two-arm trials are considered the gold standard 
in biomedical research in assessing the clinical effect of a new treatment 
relative to a control, there are situations where single-arm trials are 
inevitable owing to certain practical constraints. In case of clinical trials 
with a time-to-event endpoint, traditional methods of sample size 
calculation for the two-arm case involve the nonparametric log-rank 
test, assumption of exponential distribution for the survival times, or 
the assumption of proportional hazards between the two arms. While 
standard statistics software can be used to conduct sample size calcu-
lations using these traditional methods for two-arm trials, surprisingly 
few options are available for the single-arm and multi-arm scenarios. In 
the single-arm case, the most popular option available in standard 

software and in online calculators (for example, see SWOG [1]) assumes 
that the survival time for the single-arm trial follows an exponential 
distribution. However, when the assumption of exponentially distrib-
uted survival times (resulting in hazard that is constant over time) is 
inappropriate, a statistician designing the trial is left with limited op-
tions. Although some methods using the weighted logrank test have 
been proposed in literature in the single-arm case (see for example, 
Finkelstein et al. [2], Kwak and Jung [3], Jung [4], and Sun et al. [5]), 
the logrank test proposed by Wu [6] is the only option available in 
commercial software such as PASS [7] and nQuery [8]. By assuming that 
survival times follows a Weibull distribution (thereby providing the 
flexibility to account for hazards that are increasing or decreasing over 
time) Wu [6] has improved on the earlier versions of the logrank test and 
has provided sample size formula based on the exact variance of the test 
statistic. More recently, Phadnis [9] has extended the exact parametric 
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Table 1 
Simulation result for NIP ¼ 2 (25th and 50th percentile) under various censoring proportions.  

Censor 2 data points Complete data set 

β  N bβavg  
BIAS ARB RMSE SRMSE bβMLE  

MARB RARB 

0% 0.50 25 0.613 0.113 0.225 0.195 0.390 0.529 0.057 0.329 
50 0.534 0.034 0.064 0.110 0.220 0.514 0.027 0.192 
100 0.517 0.017 0.035 0.074 0.148 0.507 0.014 0.131 
200 0.508 0.008 0.016 0.052 0.104 0.503 0.007 0.093 
500 0.504 0.004 0.007 0.033 0.066 0.501 0.003 0.059 

0.75 25 0.919 0.169 0.225 0.292 0.389 0.793 0.057 0.329 
50 0.801 0.051 0.064 0.162 0.216 0.770 0.027 0.192 
100 0.776 0.026 0.035 0.111 0.148 0.076 0.014 0.131 
200 0.762 0.012 0.016 0.077 0.103 0.755 0.007 0.093 
500 0.755 0.005 0.007 0.049 0.065 0.752 0.003 0.059 

1 25 1.225 0.225 0.225 0.390 0.390 1.057 0.057 0.329 
50 1.067 0.064 0.064 0.219 0.219 1.027 0.027 0.192 
100 1.035 0.035 0.035 0.148 0.148 0.014 0.014 0.131 
200 1.016 0.016 0.016 0.103 0.103 0.007 0.007 0.093 
500 1.007 0.007 0.007 0.065 0.065 0.003 0.003 0.059 

1.25 25 1.531 0.281 0.225 0.487 0.389 1.321 0.057 0.329 
50 1.334 0.084 0.064 0.274 0.219 1.284 0.027 0.192 
100 1.293 0.043 0.035 0.185 0.148 1.267 0.014 0.131 
200 1.269 0.019 0.016 0.129 0.103 1.259 0.007 0.093 
500 1.259 0.009 0.007 0.082 0.065 1.253 0.003 0.059 

1.50 25 1.838 0.338 0.225 0.585 0.390 1.586 0.057 0.329 
50 1.600 0.100 0.064 0.328 0.218 1.541 0.027 0.192 
100 1.552 0.052 0.035 0.222 0.148 1.521 0.014 0.131 
200 1.523 0.023 0.016 0.155 0.103 1.510 0.007 0.093 
500 1.511 0.011 0.007 0.098 0.065 1.504 0.003 0.059 

20% 0.50 25 0.617 0.117 0.234 0.209 0.418 0.532 0.064 0.356 
50 0.550 0.050 0.101 0.125 0.250 0.515 0.031 0.217 
100 0.525 0.025 0.050 0.082 0.164 0.508 0.016 0.145 
200 0.513 0.013 0.026 0.052 0.104 0.504 0.008 0.100 
500 0.505 0.005 0.010 0.036 0.072 0.501 0.003 0.064 

0.75 25 0.926 0.176 0.234 0.313 0.417 0.798 0.064 0.356 
50 0.826 0.076 0.101 0.187 0.249 0.773 0.031 0.217 
100 0.788 0.038 0.050 0.123 0.164 0.762 0.016 0.145 
200 0.769 0.019 0.026 0.085 0.113 0.756 0.008 0.100 
500 0.757 0.007 0.010 0.054 0.072 0.752 0.003 0.064 

1 25 1.234 0.234 0.234 0.417 0.417 1.064 0.064 0.356 
50 1.101 0.101 0.101 0.249 0.249 1.031 0.031 0.217 
100 1.050 0.050 0.050 0.163 0.163 1.016 0.016 0.145 
200 1.026 0.026 0.026 0.114 0.114 1.008 0.008 0.100 
500 1.010 0.010 0.010 0.071 0.071 1.003 0.003 0.064 

1.25 25 1.543 0.293 0.234 0.521 0.416 1.330 0.064 0.356 
50 1.376 0.126 0.101 0.312 0.249 1.288 0.031 0.217 
100 1.313 0.063 0.050 0.204 0.163 1.270 0.016 0.145 
200 1.282 0.032 0.026 0.142 0.114 1.260 0.008 0.100 
500 1.262 0.012 0.010 0.089 0.071 1.254 0.003 0.064 

1.50 25 1.851 0.351 0.234 0.626 0.417 1.596 0.064 0.356 
50 1.651 0.151 0.101 0.374 0.249 1.546 0.031 0.217 
100 1.575 0.075 0.050 0.245 0.163 1.524 0.016 0.145 
200 1.539 0.039 0.026 0.171 0.114 1.512 0.008 0.100 
500 1.514 0.014 0.010 0.107 0.071 1.504 0.003 0.064 

40% 0.50 25 0.849 0.349 0.698 0.442 0.884 0.538 0.075 0.825 
50 0.601 0.101 0.202 0.176 0.353 0.517 0.034 0.314 
100 0.550 0.050 0.100 0.107 0.214 0.509 0.018 0.194 
200 0.530 0.030 0.060 0.073 0.146 0.505 0.009 0.131 
500 0.514 0.014 0.028 0.045 0.091 0.502 0.003 0.083 

0.75 25 1.274 0.524 0.698 0.663 0.883 0.806 0.075 0.825 
50 0.902 0.152 0.202 0.264 0.353 0.776 0.034 0.314 
100 0.825 0.075 0.100 0.161 0.214 0.764 0.018 0.194 
200 0.795 0.045 0.060 0.109 0.146 0.757 0.009 0.131 
500 0.771 0.021 0.028 0.068 0.091 0.752 0.003 0.083 

1 25 1.698 0.698 0.698 0.883 0.883 1.075 0.075 0.825 
50 1.202 0.202 0.202 0.353 0.353 1.034 0.034 0.314 
100 1.100 0.100 0.100 0.214 0.214 1.018 0.018 0.194 
200 1.060 0.060 0.060 0.146 0.146 1.009 0.009 0.131 
500 1.028 0.028 0.028 0.091 0.091 1.003 0.003 0.083 

1.25 25 2.123 0.873 0.698 1.104 0.883 1.344 0.075 0.825 
50 1.503 0.253 0.202 0.441 0.353 1.293 0.034 0.314 
100 1.375 0.125 0.100 0.268 0.214 1.273 0.018 0.194 
200 1.324 0.074 0.060 0.182 0.146 1.261 0.009 0.131 
500 1.285 0.035 0.028 0.114 0.091 1.254 0.003 0.083 

1.50 25 2.547 1.047 0.698 1.325 0.883 1.613 0.075 0.825 
50 1.807 0.303 0.202 0.529 0.353 1.552 0.034 0.314 

(continued on next page) 
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approach of Narula and Li [10] for sample size calculation using the 
assumption of Weibull distribution for single-arm trial with 
time-to-event endpoint. While the Weibull distribution has been used in 
reliability and manufacturing engineering with regularity (see for 
example, Gerokostopoulos et al. [11], Yang et al. [12], Jeng [13], 
Meeker Jr. [14], and Pina-Monarrrez et al. [15] for approximate 
methods of sample size calculation) its use in biomedical settings for the 
purpose of sample size calculation has been limited. While Heo et al. 
[16] and Han et al. [17] have proposed approximate methods in the 
biomedical setting, Phadnis et al. [18] have provided exact method of 
sample size calculation supported by simulations. The methods of Wu 
[6] and Phadnis [9] (single-arm trials), and, Phadnis et al. [18] (two-arm 
trials) can be used to calculate sample sizes for a clinical trial. However, 
their accuracy depends on a user-provided value for the shape parameter 
of the Weibull distribution. All these authors have recommended that 
such an estimate can be obtained from historically published data on 
previously conducted trials. As the sample size calculation of these 
methods depends on multiple factors such as effect size, type I error, 
target power, drop-out rate, accrual and follow-up times, small changes 
in the point estimate may lead to widely varying sample sizes. Thus, 
while the Weibull distribution offers the flexibility to model 
non-constant hazards and is being considered in recent literature for 
designing both single-arm and multi-arm trials, it is important to justify 
the choice of the point estimate of the shape parameter used in the 
sample size calculation. If a reasonably strong justification is available 
for choosing a specific value for this point estimate, a statistician 
designing a clinical trial will able to correctly utilize the properties of the 
Weibull distribution. 

To obtain a reliable point estimate of the Weibull shape parameter 
from historical sources, a statistician has to approach his/her clinical 
collaborators and often this information is provided in the form of 
previously published papers that either {i} provide a descriptive sum-
mary (median, and/or inter-quartile range of survival quantiles, or {ii} 
Kaplan Meier (KM) plot of a standard control (either as a single curve, or 
as part of a prior study comparing the standard control to some other 
treatment). The statistician must use this information to obtain a point 
estimate of the shape parameter to be able to conduct sample size cal-
culations for the current trial. It is therefore important to assess how 
accurate this point estimate and its impact on the sensitivity of sample 
size calculations. For example, a point estimate obtained from a large- 
sample historical study is expected to be more accurate (closer to the 
true value) than the one obtained from small-sample historical study. 
Since many historical phase II trials in cancer are themselves small-to- 
moderate sized trials, the statistician has to be careful in using this 
point estimate in his/her calculations. A point estimate that is greater 
than 1 (increasing Weibull hazard) will result in a smaller sample size 
compared to a point estimate of 1 (constant hazard – exponential dis-
tribution). Conversely, a point estimate less than 1 (decreasing Weibull 
hazard) will lead to large sample size for the trial under consideration. 
That is, an inaccurately estimated shape parameter may result in un-
derestimation or overestimation of the sample size for the current trial 
adversely impacting the study design and future analysis considerations. 

To address these concerns, it is important to conduct a simulation 
study to assess the accuracy of the Weibull shape parameter when it is 
estimated from historical data. To the best of our knowledge, there is 
limited guidance in previously published literature on how to assess this 
accuracy when historical information is available from KM curves or 

median (and IQR) and our work aims to fill this gap. In this paper, we 
focus on the following ideas – first, the minimum sample size needed 
from a historical study to obtain a reliable estimate of the shape 
parameter is assessed. Secondly, the optimum number of survival 
quantiles needed from the historical study for fixed sample size is 
assessed. Accuracy of these estimates is calculated for various combi-
nations of sample size, information points from the Kaplan Meier curve, 
and varying levels of right-censoring proportions. This accuracy is 
assessed using the criteria of average relative bias, average coefficient of 
variation, and root mean square error. A real-life example from a clinical 
trial on cholangiocarcinoma with progression-free survival (PFS) as the 
time-to-event endpoint is used throughout our discussion. Results from 
our simulation study can be used to justify the choice of the point esti-
mate of the Weibull shape parameter when using it to perform sample 
size calculation for a new study. 

2. Methods 

2.1. Background 

The probability density function (PDF) for two-parameter Weibull 
distribution is given by 

f ðtÞ ¼
β
θβtβ� 1e

�

�
t
θ

�β

; θ; β > 0; t � 0 (1)  

Here, θ is the scale parameter and β is the shape parameter. The hazard 
or failure function of Weibull distribution can be written as 

hðtÞ ¼
β
θ

� t
θ

�β� 1
(2) 

When β > 1, the hazard increases over time. When β < 1, hazard 
decreases over time, and, when β ¼ 1 (exponential distribution), the 
hazard is constant over time. We also note that when at least two (or 
more) Weibull times are known along with their corresponding survival 
probabilities, the Weibull shape parameter β can be estimated by fitting 
a least squares regression line using the relationship given below. 

logð � logðSðtÞÞ ¼ β logðtÞ � β logðθÞ (3) 

This procedure is also known as median rank regression estimators 
(MRRS) and it allows us to obtain a point estimate of β as the slope of the 
fitted regression line. For example, consider a historical study that has 
published results related to 25th, 50th (median), and 75th percentile of 
survival times related to the performance of a standard-of-care control 
arm. Then β and its corresponding standard error can be estimated using 
equation (3). If only two survival quantiles (say, median and 75th 
percentile) are available, we can still obtain a point estimate of β even 
though the standard error cannot be estimated. The scale parameter θ 
can then be estimated from the intercept, or, simply as: bθ ¼
ðmedian  survival  timeÞ=logð2Þ

1
β. However, doing this calculation does 

not guarantee accurate estimation of β due to multiple reasons. Firstly, 
the historical study may be a small sample study and hence our estimate 
of β may be inaccurate. Secondly, if we use only 25th, 50th, and 75th 
percentile of survival times for this estimation, then there is a possibility 
that information from very early and late failures may not be utilized. 
Further, some studies may have been terminated early and so only the 
25th percentile and median may have been reported, allowing us only 

Table 1 (continued ) 

Censor 2 data points Complete data set 

β  N bβavg  
BIAS ARB RMSE SRMSE bβMLE  

MARB RARB 

100 1.650 0.150 0.100 0.321 0.214 1.527 0.018 0.194 
200 1.589 0.089 0.060 0.218 0.146 1.514 0.009 0.131 
500 1.542 0.042 0.028 0.136 0.091 1.505 0.003 0.083  
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Table 2 
Simulation result for NIP ¼ 2 (25th and 75th percentile) under various censoring proportions.  

Censor 2 data points Complete data set 

β  N bβavg  
BIAS ARB RMSE SRMSE bβMLE  

MARB RARB 

0% 0.50 25 0.562 0.062 0.124 0.121 0.241 0.529 0.057 0.173 
50 0.516 0.016 0.033 0.075 0.149 0.514 0.027 0.112 
100 0.508 0.008 0.016 0.051 0.101 0.507 0.014 0.079 
200 0.504 0.004 0.009 0.036 0.072 0.503 0.007 0.056 
500 0.502 0.002 0.003 0.023 0.046 0.501 0.003 0.036 

0.75 25 0.843 0.093 0.124 0.181 0.241 0.793 0.057 0.173 
50 0.774 0.024 0.033 0.112 0.149 0.770 0.027 0.112 
100 0.762 0.012 0.016 0.076 0.101 0.760 0.014 0.079 
200 0.757 0.007 0.009 0.054 0.072 0.755 0.007 0.056 
500 0.753 0.003 0.003 0.034 0.046 0.752 0.003 0.036 

1 25 1.124 0.124 0.124 0.241 0.241 1.057 0.057 0.173 
50 1.033 0.033 0.033 0.149 0.149 1.027 0.027 0.112 
100 1.016 0.016 0.016 0.101 0.101 1.014 0.014 0.079 
200 1.009 0.009 0.009 0.072 0.072 1.007 0.007 0.056 
500 1.003 0.003 0.003 0.046 0.046 1.003 0.003 0.036 

1.25 25 1.405 0.155 0.124 0.301 0.241 1.321 0.057 0.173 
50 1.291 0.041 0.033 0.187 0.149 1.284 0.027 0.112 
100 1.270 0.020 0.016 0.127 0.101 1.267 0.014 0.079 
200 1.261 0.011 0.009 0.090 0.072 1.259 0.007 0.056 
500 1.254 0.004 0.003 0.057 0.046 1.253 0.003 0.036 

1.50 25 1.686 0.186 0.124 0.362 0.241 1.586 0.057 0.173 
50 1.549 0.049 0.033 0.224 0.149 1.541 0.027 0.112 
100 1.524 0.024 0.016 0.152 0.101 1.521 0.014 0.079 
200 1.513 0.013 0.009 0.108 0.072 1.510 0.007 0.056 
500 1.505 0.005 0.003 0.069 0.046 1.504 0.003 0.036 

20% 0.50 25 0.551 0.051 0.103 0.118 0.236 0.532 0.064 0.169 
50 0.524 0.024 0.048 0.078 0.156 0.515 0.031 0.113 
100 0.512 0.012 0.025 0.054 0.107 0.508 0.016 0.079 
200 0.507 0.007 0.013 0.038 0.076 0.504 0.008 0.056 
500 0.502 0.002 0.005 0.024 0.048 0.501 0.003 0.036 

0.75 25 0.827 0.077 0.103 0.177 0.236 0.798 0.064 0.169 
50 0.786 0.036 0.048 0.117 0.156 0.773 0.031 0.113 
100 0.768 0.018 0.025 0.080 0.107 0.762 0.016 0.079 
200 0.760 0.010 0.013 0.057 0.076 0.756 0.008 0.056 
500 0.754 0.004 0.005 0.036 0.048 0.752 0.003 0.036 

1 25 1.102 0.103 0.103 0.236 0.236 1.064 0.064 0.169 
50 1.048 0.048 0.048 0.156 0.156 1.031 0.031 0.113 
100 1.025 0.025 0.025 0.107 0.107 1.016 0.016 0.079 
200 1.013 0.013 0.013 0.076 0.076 1.008 0.008 0.056 
500 1.006 0.005 0.005 0.048 0.048 1.003 0.003 0.036 

1.25 25 1.378 0.128 0.103 0.295 0.236 1.330 0.064 0.169 
50 1.310 0.060 0.048 0.194 0.156 1.288 0.031 0.113 
100 1.281 0.031 0.025 0.134 0.107 1.270 0.016 0.079 
200 1.266 0.016 0.013 0.095 0.076 1.260 0.008 0.056 
500 1.256 0.006 0.005 0.06 0.048 1.254 0.003 0.036 

1.50 25 1.653 0.153 0.103 0.354 0.236 1.596 0.064 0.169 
50 1.572 0.072 0.048 0.233 0.156 1.546 0.031 0.113 
100 1.537 0.037 0.025 0.161 0.107 1.524 0.016 0.079 
200 1.520 0.020 0.013 0.114 0.076 1.512 0.008 0.056 
500 1.507 0.007 0.005 0.072 0.048 1.504 0.003 0.036 

40% 0.50 25 0.576 0.076 0.152 0.149 0.298 0.538 0.075 0.215 
50 0.537 0.037 0.075 0.093 0.186 0.517 0.034 0.136 
100 0.523 0.023 0.045 0.063 0.126 0.509 0.018 0.093 
200 0.515 0.015 0.031 0.044 0.089 0.505 0.009 0.063 
500 0.507 0.007 0.015 0.028 0.057 0.502 0.003 0.044 

0.75 25 0.864 0.114 0.152 0.224 0.298 0.806 0.075 0.215 
50 0.806 0.056 0.075 0.139 0.186 0.776 0.034 0.136 
100 0.784 0.034 0.045 0.095 0.126 0.018 0.018 0.093 
200 0.773 0.023 0.031 0.067 0.089 0.009 0.009 0.063 
500 0.761 0.011 0.015 0.043 0.057 0.003 0.003 0.044 

1 25 1.152 0.152 0.152 0.298 0.298 1.075 0.075 0.215 
50 1.075 0.075 0.075 0.186 0.186 1.034 0.034 0.136 
100 1.045 0.045 0.045 0.126 0.126 1.015 0.018 0.093 
200 1.031 0.031 0.031 0.089 0.089 1.009 0.009 0.063 
500 1.015 0.015 0.015 0.057 0.057 1.003 0.003 0.044 

1.25 25 1.440 0.190 0.152 0.373 0.298 1.344 0.075 0.215 
50 1.344 0.094 0.075 0.232 0.186 1.293 0.034 0.136 
100 1.307 0.057 0.045 0.158 0.126 1.273 0.018 0.093 
200 1.289 0.039 0.031 0.111 0.089 1.261 0.009 0.063 
500 1.269 0.019 0.015 0.071 0.057 1.254 0.003 0.044 

1.50 25 1.728 0.228 0.152 0.448 0.298 1.613 0.075 0.215 
50 1.612 0.112 0.075 0.278 0.186 1.552 0.034 0.136 

(continued on next page) 
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two points of information to estimate β. Thirdly, many published studies 
provide a KM curve but only the median survival time is reported and so 
we would have to use this curve to obtain additional information to 
estimate β. On some occasions, the published KM curves are presented in 
small sized figures making it difficult to obtain such information. 
Further, visual assessment of such KM curves for obtaining this infor-
mation may itself contribute to the inaccuracy in estimating β due to 
human error and therefore it may be important to use customized soft-
ware for this purpose. Thus, overall it can be said that there is no known 
general strategy on how to choose a point estimate of β when it is ob-
tained from historical sources. 

2.2. Simulation study design 

We conducted an extensive simulation study to assess the accuracy of 
the Weibull shape parameter for different values of β ¼ 0:25; 0:5; 1;
1:25; 1:5 to reflect the decreasing, constant and increasing hazard 
functions. The event time distribution was simulated from Weibull (β;θE) 
for each of the β values mentioned above. The value of the scale 
parameter was taken as θE ¼

2:5
logð2Þ

1
β 

to be consistent with a median 

survival time of 2.5 months as described in the example discussed in 
Phadnis [9]. The censoring time distribution was also generated from 

Weibull (β;θC) with θc ¼ θE*
�

m
1� m

�1
β for predefined event rate m using the 

technique discussed in Wan [19]. We considered the right-censoring 
mechanism with a censoring rate of 0%, 20% and more extreme case 
of 40%, and N ¼ 10,000 simulations were run for small to moderately 
large sample sizes of n ¼ 25, 50, 100, 200, 500. For each of these 10,000 
simulations, we obtained the KM estimates of the survival quantiles. 
Next, we considered various scenarios representing the “number of in-
formation points (NIP)” that were used to obtain the point estimate of β 
using (3). That is, following scenarios were considered: 

{i} NIP ¼ 2: Estimating β from only the 25th and 50th percentile of 
KM curve 
{ii} NIP ¼ 2: Estimating β from only the 25th and 75th percentile of 
KM curve 
{iii} NIP ¼ 3: Estimating β from the 25th, 50th and 75th percentile of 
KM curve 
{iv} NIP ¼ 4: Estimating β from the 20th, 40th, 60th and 80th 
percentile of KM curve 
{v} NIP ¼ 5: Estimating β from the 17th, 33rd, 50th, 67th, and 83rd 
percentile of KM curve 

This approach was adopted to assess the minimum NIP required to 
obtain reasonably accurate estimate of β as a function of sample size and 
predefined censoring rate. While scenarios {i} – {iii} are likely to occur 
in practice, scenarios {iv} and {v} were used to obtain a better idea of 
how accuracy of β changes as NIP increases. In case of smaller sample 
sizes of n ¼ 25 or n ¼ 50 with 40% censoring, some of simulations did 
not yield KM estimates for “low” values of survival probability and in 
such cases we modified the simulations to capture the event times at the 
closest step boundary. For example, with NIP ¼ 4, say a particular 
simulation provided an estimate of the 20th, 40th, 60th percentile but 
did not yield an estimate for the 80th percentile. In this case we took the 
lowest possible value (say 70th percentile as the fourth piece of 
information). 

2.3. Metrics 

We used the following metrics to assess the accuracy of the Weibull 
shape parameter from our simulation study. Note that bβðiÞ is the estimate 

of β from the ith simulation (i ¼ 1, 2, …, N) and bβavg ¼

PN
i¼1
bβ ðiÞ

N is the 

average of all bβðiÞ values.  

(a) The average relative bias of the parameter estimate bβ is defined 
as: 

Average Relative Bias ðARBÞ ¼
1
N
XN

i¼1

ðbβðiÞ � βÞ
β

¼
bβavg � β

β
(4)    

(b) Root mean square (RMSE) of the parameter estimate bβ defined as: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N
XN

i¼1
ðbβðiÞ � βÞ2

v
u
u
t (5)    

(c) Scaled Root mean square (SRMSE) of the parameter estimate bβ 
defined as: 

SRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
XN

i¼1
ðbβðiÞ � βÞ2

r

β
(6)    

(d) Coefficient of variation (CV) of the parameter estimate bβ defined 
as: 

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varð bβÞ
q

bβavg

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1
XN

i¼1

�
bβðiÞ � bβavg

�2
r

bβavg

(7)    

(e) The bias of bβ relative to the maximum likelihood estimate bβMLE is 
calculated as: 

RARB ¼
bβavg �

bβMLE

bβMLE

(8)  

where bβMLE is the estimate of β obtained from maximum likelihood 
estimation method. 

2.4. Shape parameter estimation using the full KM curve 

The five scenarios discussed in Section 2.2 allow estimation of β 
when such survival quantiles have been reported in literature. Literature 
on historical study data is often in the form of a KM plot and hence it is 
important to evaluate the accuracy of the point estimate of β when it is 
estimated by all points from a published KM plot. This can be done in 

Table 2 (continued ) 

Censor 2 data points Complete data set 

β  N bβavg  
BIAS ARB RMSE SRMSE bβMLE  

MARB RARB 

100 1.568 0.068 0.045 0.189 0.126 1.527 0.018 0.093 
200 1.546 0.046 0.031 0.133 0.089 1.514 0.009 0.063 
500 1.269 0.019 0.015 0.071 0.057 1.254 0.003 0.044  
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Table 3 
Simulation result for NIP ¼ 3 (25th, 50th and 75th percentile) under various censoring proportions.  

Censor 3 data points (25th, 50th,75th) Complete data set 

β  N bβavg  
SE BIAS ARB RMSE SRMSE CV bβMLE  

MARB RARB 

0% 0.5 25 0.550 0.067 0.050 0.100 0.117 0.233 0.125 0.529 0.057 0.170 
50 0.511 0.043 0.011 0.022 0.074 0.148 0.085 0.514 0.027 0.114 
100 0.505 0.030 0.005 0.011 0.051 0.101 0.06 0.507 0.014 0.079 
200 0.503 0.022 0.003 0.006 0.036 0.072 0.044 0.503 0.007 0.056 
500 0.501 0.014 0.001 0.002 0.023 0.046 0.028 0.501 0.003 0.036 

0.75 25 0.825 0.101 0.075 0.100 0.175 0.233 0.125 0.793 0.057 0.170 
50 0.766 0.064 0.016 0.022 0.111 0.148 0.085 0.770 0.027 0.114 
100 0.758 0.045 0.008 0.011 0.076 0.101 0.060 0.760 0.014 0.079 
200 0.755 0.033 0.005 0.006 0.540 0.072 0.044 0.755 0.007 0.056 
500 0.752 0.021 0.002 0.002 0.035 0.046 0.028 0.752 0.003 0.036 

1 25 1.100 0.135 0.100 0.100 0.233 0.233 0.125 1.057 0.057 0.170 
50 1.022 0.086 0.022 0.022 0.148 0.148 0.085 1.027 0.027 0.114 
100 1.011 0.061 0.011 0.011 0.101 0.101 0.06 1.014 0.014 0.079 
200 1.006 0.044 0.006 0.006 0.072 0.072 0.044 1.007 0.007 0.056 
500 1.002 0.028 0.002 0.002 0.046 0.046 0.028 1.003 0.003 0.036 

1.25 25 1.374 0.169 0.124 0.100 0.292 0.233 0.125 1.321 0.057 0.170 
50 1.277 0.107 0.027 0.022 0.186 0.148 0.085 1.284 0.027 0.114 
100 1.263 0.076 0.013 0.011 0.127 0.101 0.060 1.267 0.014 0.079 
200 1.257 0.055 0.007 0.006 0.090 0.072 0.044 1.259 0.007 0.056 
500 1.253 0.035 0.003 0.002 0.058 0.046 0.028 1.253 0.003 0.036 

1.50 25 1.649 0.202 0.149 0.100 0.350 0.233 0.125 1.586 0.057 0.170 
50 1.533 0.129 0.033 0.022 0.223 0.148 0.085 1.541 0.027 0.114 
100 1.516 0.091 0.016 0.011 0.152 0.101 0.060 1.521 0.014 0.079 
200 1.509 0.066 0.009 0.006 0.108 0.072 0.044 1.51 0.007 0.056 
500 1.503 0.042 0.003 0.002 0.069 0.046 0.028 1.504 0.003 0.036 

20% 0.5 25 0.538 0.071 0.038 0.076 0.114 0.229 0.133 0.532 0.064 0.168 
50 0.518 0.048 0.018 0.035 0.077 0.154 0.093 0.515 0.031 0.114 
100 0.509 0.033 0.009 0.018 0.054 0.107 0.065 0.508 0.016 0.08 
200 0.505 0.023 0.005 0.01 0.038 0.076 0.045 0.504 0.008 0.057 
500 0.502 0.014 0.002 0.004 0.024 0.048 0.029 0.501 0.003 0.037 

0.75 25 0.807 0.106 0.057 0.076 0.172 0.229 0.133 0.798 0.064 0.168 
50 0.777 0.071 0.027 0.035 0.115 0.154 0.093 0.773 0.031 0.114 
100 0.764 0.050 0.014 0.018 0.080 0.107 0.065 0.762 0.016 0.080 
200 0.758 0.034 0.008 0.010 0.057 0.076 0.045 0.756 0.008 0.057 
500 0.753 0.022 0.003 0.004 0.036 0.048 0.029 0.752 0.003 0.037 

1 25 1.075 0.141 0.075 0.075 0.229 0.229 0.133 1.064 0.064 0.168 
50 1.035 0.095 0.035 0.035 0.154 0.154 0.093 1.031 0.031 0.114 
100 1.018 0.066 0.018 0.018 0.107 0.107 0.065 1.016 0.016 0.080 
200 1.010 0.046 0.010 0.010 0.076 0.076 0.045 1.008 0.008 0.057 
500 1.004 0.029 0.004 0.004 0.048 0.048 0.029 1.003 0.003 0.037 

1.25 25 1.344 0.176 0.094 0.075 0.286 0.229 0.133 1.33 0.064 0.168 
50 1.294 0.119 0.044 0.035 0.192 0.154 0.093 1.288 0.031 0.114 
100 1.273 0.083 0.023 0.018 0.134 0.107 0.065 1.27 0.016 0.080 
200 1.263 0.057 0.013 0.010 0.095 0.076 0.045 1.26 0.008 0.057 
500 1.254 0.036 0.004 0.004 0.06 0.048 0.029 1.254 0.003 0.037 

1.50 25 1.613 0.212 0.113 0.075 0.343 0.229 0.133 1.596 0.064 0.168 
50 1.553 0.143 0.053 0.035 0.231 0.154 0.093 1.546 0.031 0.114 
100 1.528 0.099 0.028 0.018 0.161 0.107 0.065 1.524 0.016 0.08 
200 1.515 0.069 0.015 0.01 0.114 0.076 0.045 1.512 0.008 0.057 
500 1.505 0.043 0.005 0.005 0.072 0.048 0.029 1.504 0.003 0.037 

40% 0.50 25 0.555 0.088 0.055 0.11 0.143 0.286 0.163 0.538 0.075 0.210 
50 0.528 0.058 0.028 0.057 0.091 0.181 0.111 0.517 0.034 0.134 
100 0.519 0.04 0.019 0.037 0.062 0.125 0.077 0.509 0.018 0.093 
200 0.514 0.027 0.014 0.028 0.045 0.089 0.053 0.505 0.009 0.067 
500 0.507 0.017 0.007 0.014 0.029 0.057 0.034 0.502 0.003 0.045 

0.75 25 0.833 0.132 0.083 0.110 0.214 0.286 0.163 0.806 0.075 0.210 
50 0.793 0.087 0.043 0.057 0.136 0.181 0.111 0.776 0.034 0.134 
100 0.778 0.060 0.028 0.037 0.094 0.125 0.077 0.764 0.018 0.093 
200 0.771 0.041 0.021 0.028 0.067 0.089 0.053 0.757 0.009 0.067 
500 0.761 0.026 0.011 0.014 0.043 0.057 0.034 0.751 0.003 0.045 

1 25 1.110 0.175 0.11 0.11 0.286 0.286 0.163 1.075 0.075 0.210 
50 1.057 0.116 0.057 0.057 0.181 0.181 0.111 1.034 0.034 0.134 
100 1.037 0.08 0.037 0.037 0.125 0.125 0.077 1.018 0.018 0.093 
200 1.028 0.055 0.028 0.028 0.089 0.089 0.053 1.009 0.009 0.067 
500 1.014 0.034 0.014 0.014 0.057 0.057 0.034 1.003 0.003 0.045 

1.25 25 1.388 0.219 0.138 0.110 0.357 0.286 0.163 1.344 0.075 0.210 
50 1.321 0.144 0.071 0.057 0.227 0.181 0.111 1.293 0.034 0.134 
100 1.297 0.099 0.047 0.037 0.156 0.125 0.077 1.273 0.018 0.093 
200 1.285 0.068 0.035 0.028 0.111 0.089 0.053 1.261 0.009 0.067 
500 1.268 0.043 0.018 0.014 0.072 0.057 0.034 1.254 0.003 0.045 

1.50 25 1.665 0.263 0.165 0.110 0.428 0.286 0.163 1.613 0.075 0.21 
50 1.585 0.173 0.085 0.057 0.272 0.181 0.111 1.552 0.034 0.134 

(continued on next page) 
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two ways described below. 

{i} Using customized software to estimate all possible survival 
quantiles: 

We used the DigitizeIt [20] software to perform this task. This soft-
ware allows a user to generate X and Y coordinate values from any “Y vs 
X” plot. To do this, a figure of a previously published KM curve is loaded 
into the software. The range of values on the x-axis (time values ranging 
from 0 to tmax) and the y-axis (survival probability ranging from 0 to 1) is 
entered by the user. On selecting the KM curve with a mouse, the soft-
ware can generate a dataset with corresponding values of time and 
survival probabilities. These values can then be used to estimate β using 
(3). It is possible to create datasets corresponding to NIP ranging from as 
less as 2 or 3 observations to as large as a few hundred observations. 
That is, for each value of NIP we can obtain a point estimate of β. Ac-
curacy of this estimate can be assessed numerically by the metrics 
defined in Section 2.3 and visually by plotting the estimated β versus NIP 
to assess the how the point estimate changes as a function of NIP. See 
Section 3.2 for results related to a real-life application discussing this 
approach. 

{ii} Approximate manual observation of KM plot to estimate all 
possible survival quantiles: 

In cases, where a software like DigitizeIt [20] is not available to a 
statistician, he/she can try to perform the same task manually. However, 
this would require the statistician to visually scrutinize the published 
KM plot inducing additional source of variation due to human error in 
the calculations. If the published KM plot is in the form of a small-sized 
figure, then it is possible that manual approximation may not be accu-
rate. It is therefore important to assess the performance of such an 
approximation using simulations. We have therefore conducted an 
additional simulation study to assess the accuracy of obtaining all point 
estimates from a KM curve when this task is performed manually. Our 
simulations assumed that the human eye can capture measurements 
from a plot with moderate accuracy (neither very accurate nor very 
inaccurate). That is, approximate estimates of event times and corre-
sponding survival probabilities can be obtained through eyeballing of 
the figure, but that some error is inevitable in this approach. This task 
was accomplished in the following way: 

Step 1. Generate right-censored Weibull data representing a hypo-
thetical historical trial as described in Section 2.2. Obtain the KM 
estimates from this data and denote them as bSðtiÞ at survival times ti 
for i ¼ 1;2;…;n. 
Step 2. Assume that the researchers working on this historical trial 
have published a KM plot, and that, we as a statistician, intend to first 
obtain estimates of time and corresponding survival probabilities, 
and then to obtain a point estimate of β using (3). We assume that the 
time axis on this plot has the time values marked on it at regular 
intervals (say, in increments of 1 month) and that we are now 
required to estimate the KM survival probabilities at each of these 
time values. We further assume that in performing this visual 
abstraction task, the human eye errs in estimating the survival 
probability by a magnitude that is equal to half the standard error of 
the actual KM estimates available to us in Step 1. As an example, say, 

the true KM estimate at time ¼ 6 months was 0.775 with a standard 
error of 0.05. A statistician would “inaccurately” estimate this as 
somewhere between 0.75 and 0.80. 
Step 3. At each time point of interest tj (marked on the time-axis), 

make a single random draw from a uniform U
�

bSðtjÞ�1
2 SE½bSðtjÞ  �

�

representing the corresponding visually estimated survival proba-
bility and denote these as bSvisualðtjÞ. Since the ti may not always 
exactly coincide with tj, linear interpolation may be used to obtain 
estimates of survival probability bSvisualðtiÞ from bSvisualðtjÞ. 
Step 4. Obtain point estimate of β using (3). Denote this estimate by 
bβvisual. 
Step 5. Compare bβvisual to bβ obtained from NIP ¼ 2 and NIP ¼ 3 from 
Section 2.2. That is, we ask ourselves the question “Is the point es-
timate obtained from using multiple points on a published KM plot 
incorporating the human eye error due to visual abstraction more or 
less accurate than the point estimate obtained from published results 
of 25th, 50th and 75th KM estimates if such results were available to 
the statistician?” 

The R statistical software [21] was used to conduct all the 
simulations. 

3. Results 

3.1. Simulation study results related to Section 2.2 

The results of our simulation studies are displayed in Tables 1–5. The 
first three columns are arranged by censoring rate, the true value of the 
shape parameter used in the simulation, and varying samples sizes. The 
fourth column displays the estimated value of β obtained from the 
simulation. In cases where NIP >2, the fifth column contains the values 
of the standard error of estimate of β. When NIP ¼ 2, the standard error 
of estimate of β cannot be calculated. The remainder of the columns are 
arranged by bias, ARB, RMSE, SRMSE, CV (included only when NIP > 2), 
MLE of β, MARB (this is the bias of the MLE of β relative to the true value 
of β) and RARB respectively. We primarily rely on ARB, RMSE and 
SRMSE to assess the accuracy of bβ. We assume a threshold value of 5% as 
the “maximum value of ARB” at which we are willing to use the point 
estimate of β for sample size calculations in a subsequent clinical trial 
(although in real life, a statistician may be willing to relax this threshold 
at a higher value such as 10%). 

Table 1 shows the simulation results obtained at two quantile points 
(25th, and 50th percentile) from the KM curve. The overall bias remains 
small for different values of β. Table 1 shows that for decreasing hazard 
(β ¼ 0.5) with 0% censoring, and with small sample size of 25, the 
estimated shape parameter is 0.613 and the bias is 0.113. Similarly, for 
increasing hazard shape (β ¼ 1.50) with 0% censoring and similar 
sample size gives the estimate 1.838 with a bias value of 0.338. We can 
observe that with no censoring, if the sample size increase from small to 
large (n ¼ 500), bias decreases and the estimated shape parameter 
converges to the true parameter value. A similar pattern is captured 
through the second assessment criteria, RMSE. If we consider the same 
combination as earlier, we see that RMSE ¼ 0.195 for the former, and 
RMSE ¼ 0.585 for the latter. However, the value of SRMSE remains same 
at 0.390 irrespective of the true value of β. Comparison between bβMLE 

Table 3 (continued ) 

Censor 3 data points (25th, 50th,75th) Complete data set 

β  N bβavg  
SE BIAS ARB RMSE SRMSE CV bβMLE  

MARB RARB 

100 1.556 0.119 0.056 0.037 0.187 0.125 0.077 1.527 0.018 0.093 
200 1.542 0.082 0.042 0.028 0.134 0.089 0.053 1.514 0.009 0.067 
500 1.521 0.051 0.021 0.014 0.086 0.057 0.034 1.505 0.003 0.045  

M.A. Phadnis et al.                                                                                                                                                                                                                             



Contemporary Clinical Trials Communications 17 (2020) 100548

8

Table 4 
Simulation result for NIP ¼ 4 (20th, 40th, 60th & 80th percentile) under various censoring proportions.  

Censor 4 data points (20th, 40th, 60th 80th) Complete data set 

β  N bβavg  
SE BIAS ARB RMSE SRMSE CV bβMLE  

MARB RARB 

0% 0.50 25 0.517 0.051 0.017 0.034 0.093 0.186 0.099 0.529 0.057 0.127 
50 0.507 0.037 0.007 0.015 0.066 0.131 0.073 0.514 0.027 0.094 
100 0.503 0.027 0.003 0.007 0.046 0.092 0.053 0.507 0.014 0.068 
200 0.502 0.019 0.002 0.003 0.033 0.065 0.038 0.503 0.007 0.048 
500 0.500 0.012 <0.001 0.001 0.021 0.042 0.024 0.501 0.003 0.030 

0.75 25 0.773 0.076 0.023 0.031 0.140 0.186 0.099 0.793 0.057 0.127 
50 0.760 0.055 0.010 0.014 0.099 0.131 0.073 0.770 0.027 0.094 
100 0.755 0.040 0.005 0.007 0.069 0.092 0.053 0.760 0.014 0.068 
200 0.753 0.029 0.003 0.003 0.049 0.065 0.038 0.755 0.007 0.048 
500 0.751 0.018 <0.001 0.001 0.031 0.042 0.024 0.752 0.003 0.030 

1 25 1.030 0.101 0.030 0.03 0.186 0.186 0.099 1.057 0.057 0.128 
50 1.014 0.074 0.014 0.014 0.131 0.131 0.073 1.027 0.027 0.094 
100 1.007 0.053 0.007 0.007 0.092 0.092 0.053 1.014 0.014 0.068 
200 1.003 0.038 0.003 0.003 0.065 0.065 0.038 1.007 0.007 0.048 
500 1.001 0.024 0.001 0.001 0.042 0.042 0.024 1.003 0.003 0.030 

1.25 25 1.286 0.126 0.036 0.029 0.233 0.186 0.099 1.321 0.057 0.128 
50 1.267 0.092 0.017 0.013 0.164 0.131 0.073 1.284 0.027 0.094 
100 1.258 0.066 0.008 0.007 0.115 0.092 0.053 1.267 0.014 0.068 
200 1.254 0.048 0.004 0.003 0.081 0.065 0.038 1.259 0.007 0.048 
500 1.251 0.031 0.001 0.001 0.052 0.042 0.024 1.253 0.003 0.03 

1.50 25 1.543 0.152 0.043 0.028 0.280 0.186 0.099 1.586 0.057 0.128 
50 1.520 0.111 0.020 0.013 0.197 0.131 0.073 1.541 0.027 0.094 
100 1.510 0.08 0.010 0.007 0.138 0.092 0.053 1.521 0.014 0.068 
200 1.505 0.058 0.005 0.003 0.098 0.065 0.038 1.510 0.007 0.048 
500 1.501 0.037 0.001 0.001 0.063 0.042 0.024 1.504 0.003 0.030 

20% 0.50 25 0.511 0.058 0.011 0.022 0.099 0.198 0.115 0.532 0.064 0.137 
50 0.506 0.042 0.006 0.012 0.069 0.139 0.083 0.515 0.031 0.095 
100 0.505 0.03 0.005 0.011 0.049 0.098 0.059 0.508 0.016 0.066 
200 0.504 0.021 0.004 0.008 0.034 0.069 0.041 0.504 0.008 0.047 
500 0.501 0.013 0.001 0.003 0.022 0.044 0.026 0.501 0.003 0.031 

0.75 25 0.766 0.087 0.016 0.021 0.148 0.198 0.115 0.798 0.064 0.137 
50 0.759 0.063 0.009 0.012 0.104 0.139 0.083 0.773 0.031 0.095 
100 0.758 0.044 0.008 0.011 0.073 0.098 0.059 0.762 0.016 0.066 
200 0.756 0.031 0.006 0.008 0.052 0.069 0.041 0.756 0.008 0.047 
500 0.752 0.020 0.002 0.003 0.033 0.044 0.026 0.752 0.003 0.031 

1 25 1.020 0.116 0.020 0.020 0.198 0.198 0.115 1.064 0.064 0.137 
50 1.012 0.083 0.012 0.012 0.139 0.139 0.083 1.031 0.031 0.095 
100 1.011 0.059 0.011 0.011 0.098 0.098 0.059 1.016 0.016 0.066 
200 1.008 0.042 0.008 0.008 0.069 0.069 0.041 1.008 0.008 0.047 
500 1.003 0.026 0.003 0.003 0.044 0.044 0.026 1.003 0.003 0.031 

1.25 25 1.275 0.145 0.025 0.020 0.247 0.198 0.115 1.330 0.064 0.137 
50 1.265 0.104 0.015 0.012 0.174 0.139 0.083 1.288 0.031 0.095 
100 1.263 0.074 0.013 0.011 0.122 0.098 0.059 1.27 0.016 0.066 
200 1.26 0.052 0.010 0.008 0.086 0.069 0.041 1.26 0.008 0.047 
500 1.253 0.033 0.003 0.003 0.055 0.044 0.026 1.254 0.003 0.031 

1.50 25 1.529 0.174 0.029 0.020 0.297 0.198 0.115 1.596 0.064 0.137 
50 1.517 0.125 0.017 0.012 0.209 0.139 0.083 1.546 0.031 0.095 
100 1.516 0.089 0.016 0.011 0.147 0.098 0.059 1.524 0.016 0.066 
200 1.512 0.062 0.012 0.008 0.103 0.069 0.041 1.512 0.008 0.047 
500 1.504 0.039 0.004 0.003 0.066 0.044 0.026 1.504 0.003 0.031 

40% 0.50 25 0.532 0.074 0.032 0.063 0.124 0.249 0.142 0.538 0.075 0.166 
50 0.519 0.051 0.019 0.038 0.081 0.162 0.100 0.517 0.034 0.11 
100 0.513 0.036 0.013 0.025 0.056 0.112 0.070 0.509 0.018 0.076 
200 0.511 0.025 0.011 0.021 0.040 0.079 0.049 0.505 0.009 0.055 
500 0.506 0.016 0.006 0.011 0.026 0.051 0.031 0.502 0.003 0.037 

0.75 25 0.797 0.112 0.047 0.063 0.186 0.249 0.142 0.806 0.075 0.166 
50 0.778 0.077 0.028 0.038 0.121 0.162 0.100 0.776 0.034 0.11 
100 0.769 0.054 0.019 0.025 0.084 0.112 0.07 0.764 0.018 0.076 
200 0.766 0.038 0.016 0.021 0.059 0.079 0.049 0.757 0.009 0.055 
500 0.758 0.023 0.008 0.011 0.039 0.051 0.031 0.752 0.003 0.037 

1 25 1.062 0.149 0.062 0.062 0.249 0.249 0.142 1.075 0.075 0.166 
50 1.038 0.103 0.038 0.038 0.162 0.162 0.100 1.034 0.034 0.11 
100 1.025 0.072 0.025 0.025 0.112 0.112 0.070 1.018 0.018 0.076 
200 1.021 0.05 0.021 0.021 0.079 0.079 0.049 1.009 0.009 0.055 
500 1.011 0.031 0.011 0.011 0.051 0.051 0.031 1.003 0.003 0.037 

1.25 25 1.328 0.186 0.078 0.062 0.311 0.249 0.142 1.344 0.075 0.166 
50 1.297 0.129 0.047 0.038 0.202 0.162 0.100 1.293 0.034 0.11 
100 1.282 0.089 0.032 0.025 0.139 0.112 0.070 1.273 0.018 0.076 
200 1.277 0.063 0.027 0.021 0.099 0.079 0.049 1.261 0.009 0.055 
500 1.264 0.039 0.014 0.011 0.064 0.051 0.031 1.254 0.003 0.037 

1.50 25 1.593 0.223 0.093 0.062 0.373 0.249 0.142 1.613 0.075 0.166 
50 1.556 0.154 0.056 0.038 0.243 0.162 0.100 1.552 0.034 0.11 

(continued on next page) 

M.A. Phadnis et al.                                                                                                                                                                                                                             



Contemporary Clinical Trials Communications 17 (2020) 100548

9

and bβ also shows expected results. The MLE relies on the full dataset and 
for small sample sizes, bβMLE is closer to the true value than bβ. For 
example, bβMLE ¼ 0:529 and bβ ¼ 0.613 for the combination of β ¼ 0.5, c 
¼ 0, and n ¼ 25. As expected, for larger samples sizes, bβestimated with 
only two quantiles (NIP ¼ 2) is closer to the bβMLE. We can see that, for a 
sample size of 500, estimated shape parameter using KM estimates is 
bβ ¼ 0:504 and bβMLE ¼ 0:501, suggesting that even with two informa-
tion points, the KM estimate converges in a similar manner as the MLE 
estimate. However, when censoring is introduced, we see higher de-
viations in the results. With no censoring, β ¼ 0.5 and n ¼ 25, we obtain 
bβ ¼ 0:613 (ARB ¼ 0.225, RMSE ¼ 0.195, SRMSE ¼ 0.390). At 20% 
censoring, the estimated bβ ¼ 0:617 (ARB ¼ 0.234, RMSE ¼ 0.209, 
SRMSE ¼ 0.418). We observe that with small sample sizes (n ¼ 25) with 
censoring, the estimate is relatively higher than the one obtained from 
the no censoring dataset. At 40% censoring, it is observed that there is a 
substantial increase in estimate of the Weibull shape parameter (bβ ¼
0:849) with ARB ¼ 0.698, RMSE ¼ 0.442 and SRMSE ¼ 0.884. Using the 
maximum likelihood estimation, the estimated shape parameter bβMLE ¼

0:538 and the corresponding relative bias is ARB ¼ 0.075. We can see 
that for small sample sizes and relatively high censoring rate, maximum 
likelihood estimate is much better performing than the KM estimate 
with NIP ¼ 2. However, for large sample sizes, KM estimate provides 
similar shape parameter as the MLE estimate. In addition to that, at very 
high censoring rate, ARB is also higher than the acceptable threshold 
value of 5%. For example, even if we consider the moderately large 
sample size of 200 with 40% censoring rate, the relative bias is still 
greater than 5% (ARB ¼ 0.060) which suggests that historical studies 
with high censoring rates are poor references to estimate the shape 
parameter. 

Table 2 shows simulation results obtained at two different quantile 
points (25th and 75th percentile). Results are comparable to Table 1 
with one noteworthy distinction: bβ  is closer to true shape parameter. At 
0% censoring, β ¼ 0.50, n ¼ 25, Table 1 shows that the KM point esti-
mate is bβ ¼ 0.613 (ARB ¼ 0.225, RMSE ¼ 0.195, SRMSE ¼ 0.390) 
whereas Table 2 with the same simulation, estimated shape parameter is 
bβ  ¼ 0:562 (ARB ¼ 0.124, RMSE ¼ 0.121, SRMSE ¼ 0.241). This sug-
gests that when partial information is limited to just two data points, it is 
better to obtain information from quantiles that are spread out wider so 
as to capture a wider range of the survival curve. bβMLEresults in Table 2 
are identical to Table 1 since this estimation method utilizes the full 
dataset. We also performed simulation studies obtained at three equal 
quantile points, 25th, 50th, and 75th displayed in Table 3. With the 
addition of one information point (NIP ¼ 3), the deviation between bβand 
β is reduced. In Table 2, the combination β ¼ 0.50, c ¼ 0, and n ¼ 25, 50, 
100 gives bβ ¼ 0.562, 0.516, 0.508 respectively. With one more infor-
mation point from Table 3, for n ¼ 25, 50, 100 we get bβ ¼ 0.550, 0.511, 
0.505 respectively. This is also a significant reduction in bias, RMSE, 
ARB and CV, and slight reduction in SRMSE. The reduction is negligible 
for larger sample sizes. For n ¼ 500, with similar criteria mentioned 
above, Table 2 gives the estimate as bβ ¼ 0:502 and Table 3 gives the 
estimate as bβ ¼ 0:501. Thus, for larger sample size, accuracy of Weibull 
shape parameter is quite similar with two or three quantile points and 
with the maximum likelihood estimates. The trends mentioned above 
are also observed in the case of 20% and 40% censoring when comparing 

Table 3 to Table 2. Similarly, Table 4 shows the simulation results ob-
tained at four equally spaced quantile points (20th, 40th, 60th, and 
80th. The addition of a second information point (NIP ¼ 4 in this case) 
further reduces the deviation between bβand β. The combination β ¼
0.50, c ¼ 0.2, and n ¼ 25 provides bβ ¼ 0.511 (Table 4) compared to bβ ¼
0.538 (Table 3). As expected, the results in Table 4 show lower values for 
RMSE, SRMSE and CV. We also observe that RARB has decreased 
significantly as the sample size increases, suggesting that, with the in-
clusion of additional data points, bβKM provide a similar estimate as bβMLE. 
Table 5 displays the simulation results obtained at five equal quantile 
points, 17th, 34th, 50th, 67th, and 84th. While we obtain a closer esti-
mate of β, the marginal benefit from an additional information point has 
reduced. For β ¼ 0.50, c ¼ 0, and n ¼ 25, Table 4 provides bβ ¼ 0.517 and 
Table 5 provides bβ ¼ 0.515. Through a simulation study, we observe that 
the ARB and CV does not depend on the shape parameter hence remain 
constant for various values of β used in the simulation study. 

The above-mentioned results demonstrate how ARB changes for 
different combinations of sample size, NIP and censoring proportion. 
From a practical standpoint, however, we wish to assess if the historical 
study has a large enough sample size, so as to give us confidence to use it 
to estimate β and use this estimate in a subsequent sample size calcu-
lation. We would also like to know the minimum value of NIP that we 
should use to estimate β for a fixed value of the sample size of the his-
torical study. Fig. 1 displays a plot of ARB versus sample size n for NIP ¼
2 (25th, 75th percentiles) for four combinations of censoring proportion 
and acceptable threshold levels. The jittery (unsmooth) shape of the 
curve is due to the fact that owing to the randomness inherent to the 
simulation process, occasionally it is possible that for a fixed value of 
NIP, a sample size of nþ1 may result in a higher ARB compared to a 
sample size of n. Even so, in general, ARB goes down as n increases and 
Fig. 1 clearly displays this characteristic. If we choose an acceptable 
threshold of 5% for the ARB, Fig. 1 shows that the minimum value of n at 
which ARB remains at or below 5% is around 74 (for 0% censoring), 104 
(for 20% censoring) and 238 (for 40% censoring). When the acceptable 
threshold for ARB is increased to 10%, the minimum value of n at which 
ARB remains at or below 10% is around 51. That is, when a statistician is 
tasked with using a point estimate of β and if he/she has been provided 
with the IQR of a historical study with 20% censoring by his/her col-
laborators, then it is required that this historical study have a sample at 
least as large as 51 for the statistician to accept the point estimate as 
“reasonably accurate” using an ARB of 10% as the threshold value. 

Since Fig. 1 is constructed for a fixed value of NIP, we would also like 
to evaluate the minimum sample size (assessed through studying Fig. 1) 
as a function of NIP for a fixed ARB threshold value. Fig. 2 displays such 
a plot (when true β ¼ 1.25) for various combinations of censoring pro-
portion (0%, 20%, 40%) and ARB threshold levels (5% and 10%). From 
this plot, we see that for a fixed value of censoring proportion and ARB 
threshold, the minimum sample size required by us to call bβ an accurate 
estimate of β decreases as NIP increases. Likewise, higher censoring 
proportion adversely effects the minimum sample size required for us to 
call bβ an accurate estimate of β for any given value of NIP. 

3.2. Real-life application 

Phadnis [9] discusses a real-life example pertaining to designing a 
single-arm phase II clinical trial for treating patients suffering from 

Table 4 (continued ) 

Censor 4 data points (20th, 40th, 60th 80th) Complete data set 

β  N bβavg  
SE BIAS ARB RMSE SRMSE CV bβMLE  

MARB RARB 

100 1.538 0.107 0.038 0.025 0.167 0.112 0.070 1.527 0.018 0.076 
200 1.532 0.076 0.032 0.021 0.119 0.079 0.049 1.514 0.009 0.055 
500 1.517 0.047 0.017 0.011 0.077 0.051 0.031 1.505 0.003 0.037  
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Table 5 
Simulation result for NIP ¼ 5 (17th, 34th, 50th, 67th & 84th percentile) under various censoring proportions.  

Censor 5 data points (17th, 34th, 50st, 67th and 84th) Complete data set 

β  N bβavg  
SE BIAS ARB RMSE SRMSE CV bβMLE  

MARB RARB 

0% 0.50 25 0.515 0.049 0.015 0.030 0.088 0.177 0.095 0.529 0.057 0.114 
50 0.504 0.033 0.004 0.008 0.062 0.124 0.066 0.514 0.027 0.084 
100 0.502 0.023 0.002 0.004 0.043 0.086 0.046 0.507 0.014 0.058 
200 0.501 0.017 0.001 0.002 0.030 0.060 0.034 0.503 0.007 0.041 
500 0.500 0.011 <0.001 0.001 0.019 0.039 0.021 0.501 0.003 0.026 

0.75 25 0.772 0.074 0.022 0.030 0.133 0.177 0.095 0.793 0.057 0.114 
50 0.756 0.050 0.006 0.008 0.093 0.124 0.066 0.770 0.027 0.084 
100 0.753 0.035 0.003 0.004 0.064 0.086 0.046 0.760 0.014 0.058 
200 0.752 0.025 0.002 0.002 0.045 0.060 0.034 0.755 0.007 0.041 
500 0.751 0.016 0.001 0.001 0.029 0.039 0.021 0.752 0.003 0.026 

1 25 1.030 0.098 0.030 0.030 0.177 0.177 0.095 1.057 0.057 0.114 
50 1.008 0.066 0.008 0.008 0.124 0.124 0.066 1.027 0.027 0.084 
100 1.004 0.046 0.004 0.004 0.086 0.086 0.046 1.014 0.014 0.058 
200 1.002 0.034 0.002 0.002 0.060 0.060 0.034 1.007 0.007 0.041 
500 1.001 0.021 0.001 0.001 0.039 0.039 0.021 1.003 0.003 0.026 

1.25 25 1.288 0.123 0.038 0.030 0.221 0.177 0.096 1.321 0.057 0.113 
50 1.260 0.083 0.010 0.008 0.155 0.124 0.066 1.284 0.027 0.084 
100 1.255 0.058 0.005 0.004 0.107 0.086 0.046 1.267 0.014 0.058 
200 1.253 0.042 0.003 0.002 0.076 0.060 0.034 1.259 0.007 0.041 
500 1.251 0.027 0.001 0.001 0.049 0.039 0.021 1.253 0.003 0.026 

1.50 25 1.545 0.147 0.045 0.030 0.265 0.177 0.096 1.586 0.057 0.113 
50 1.512 0.099 0.012 0.008 0.186 0.124 0.066 1.541 0.027 0.084 
100 1.506 0.070 0.006 0.004 0.128 0.086 0.046 1.521 0.014 0.058 
200 1.503 0.050 0.003 0.002 0.091 0.060 0.034 1.510 0.007 0.041 
500 1.501 0.032 0.001 0.001 0.058 0.039 0.021 1.504 0.003 0.026 

20% 0.50 25 0.525 0.055 0.025 0.050 0.095 0.191 0.107 0.532 0.064 0.119 
50 0.510 0.038 0.010 0.021 0.065 0.130 0.074 0.515 0.031 0.081 
100 0.503 0.026 0.003 0.006 0.046 0.092 0.052 0.508 0.016 0.058 
200 0.503 0.018 0.003 0.006 0.032 0.064 0.037 0.504 0.008 0.041 
500 0.501 0.012 0.001 0.002 0.02 0.041 0.023 0.501 0.003 0.027 

0.75 25 0.787 0.083 0.037 0.050 0.143 0.191 0.107 0.798 0.064 0.119 
50 0.766 0.057 0.016 0.021 0.098 0.130 0.074 0.773 0.031 0.081 
100 0.755 0.039 0.005 0.006 0.069 0.092 0.052 0.762 0.016 0.058 
200 0.754 0.028 0.004 0.006 0.048 0.064 0.037 0.756 0.008 0.041 
500 0.751 0.018 0.001 0.002 0.031 0.041 0.023 0.752 0.003 0.027 

1 25 1.050 0.111 0.050 0.050 0.191 0.191 0.107 1.064 0.064 0.119 
50 1.021 0.076 0.021 0.021 0.130 0.130 0.074 1.031 0.031 0.081 
100 1.006 0.052 0.006 0.006 0.092 0.092 0.052 1.016 0.016 0.058 
200 1.006 0.037 0.006 0.006 0.064 0.064 0.037 1.008 0.008 0.041 
500 1.002 0.023 0.002 0.002 0.041 0.041 0.023 1.003 0.003 0.027 

1.25 25 1.312 0.139 0.062 0.05 0.238 0.191 0.107 1.33 0.064 0.119 
50 1.276 0.094 0.026 0.021 0.163 0.130 0.074 1.288 0.031 0.081 
100 1.258 0.065 0.008 0.006 0.114 0.092 0.052 1.27 0.016 0.058 
200 1.257 0.046 0.007 0.006 0.08 0.064 0.037 1.26 0.008 0.041 
500 1.252 0.029 0.002 0.002 0.051 0.041 0.023 1.254 0.003 0.027 

1.50 25 1.575 0.166 0.075 0.05 0.286 0.191 0.107 1.596 0.064 0.119 
50 1.531 0.113 0.031 0.021 0.196 0.130 0.074 1.546 0.031 0.081 
100 1.509 0.079 0.009 0.006 0.137 0.092 0.052 1.524 0.016 0.058 
200 1.508 0.055 0.008 0.006 0.096 0.064 0.037 1.512 0.008 0.041 
500 1.503 0.035 0.003 0.002 0.061 0.041 0.023 1.504 0.003 0.027 

40% 0.50 25 0.532 0.066 0.032 0.065 0.112 0.224 0.125 0.538 0.075 0.148 
50 0.514 0.045 0.014 0.028 0.074 0.148 0.089 0.517 0.034 0.094 
100 0.509 0.032 0.009 0.018 0.052 0.104 0.063 0.509 0.018 0.065 
200 0.508 0.023 0.008 0.015 0.037 0.074 0.045 0.505 0.009 0.046 
500 0.504 0.014 0.004 0.009 0.024 0.048 0.028 0.502 0.003 0.032 

0.75 25 0.799 0.099 0.049 0.065 0.168 0.224 0.125 0.806 0.075 0.148 
50 0.771 0.068 0.021 0.028 0.111 0.148 0.089 0.776 0.034 0.094 
100 0.764 0.048 0.014 0.018 0.078 0.104 0.063 0.764 0.018 0.065 
200 0.762 0.034 0.012 0.015 0.055 0.074 0.045 0.757 0.009 0.046 
500 0.757 0.021 0.007 0.009 0.036 0.048 0.028 0.752 0.003 0.032 

1 25 1.065 0.132 0.065 0.065 0.224 0.224 0.125 1.075 0.075 0.148 
50 1.028 0.091 0.028 0.028 0.148 0.148 0.089 1.034 0.034 0.094 
100 1.018 0.064 0.018 0.018 0.104 0.104 0.063 1.018 0.018 0.065 
200 1.015 0.045 0.015 0.015 0.074 0.074 0.045 1.009 0.009 0.046 
500 1.009 0.029 0.009 0.009 0.048 0.048 0.028 1.003 0.003 0.032 

1.25 25 1.331 0.164 0.081 0.065 0.279 0.224 0.125 1.344 0.075 0.148 
50 1.284 0.113 0.034 0.028 0.185 0.148 0.089 1.293 0.034 0.094 
100 1.273 0.08 0.023 0.018 0.129 0.104 0.063 1.273 0.018 0.065 
200 1.269 0.057 0.019 0.015 0.092 0.074 0.045 1.261 0.009 0.046 
500 1.261 0.036 0.011 0.009 0.059 0.048 0.028 1.254 0.003 0.032 

1.50 25 1.597 0.197 0.097 0.065 0.335 0.224 0.125 1.613 0.075 0.148 
50 1.541 0.136 0.041 0.028 0.221 0.148 0.089 1.552 0.034 0.094 

(continued on next page) 
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chemotherapy refractory advanced metastatic biliary chol-
angiocarcinoma. For this study with PFS as the end-point of clinical 
interest, a point estimate of β ¼ 1.25 was used in the sample size cal-
culations. Based on the design parameters (a hypothesized improvement 
in median PFS from 2.5 months to 3.75 months, accrual time of 24 
months, follow-up time was 36 months, 20% loss to-follow-up, type I 
error of 0.05, one-sided test, power ¼ 80%), the required number of 
events was calculated as 24. Accounting for the accrual and follow-up 
time and drop outs, the required sample size was calculated as 30. The 
point estimate of 1.25 was estimated from a KM curve of a prior study of 
sample size n ¼ 56 conducted by Rogers at al [22]. and this KM curve has 
been reproduced here as Fig. 3 (see blue curve representing a standard 
control arm). The median PFS was reported by Rogers at al [22]. as 2.5 

months, but the 25th and 75th percentiles were visually abstracted from 
the KM curve as 2 months and 4.75 months by Phadnis [9]. 

We used the DigitizeIt [20] software to assess the sensitivity of these 
calculations pertaining to obtaining a point estimate of β for NIP ¼ 2, 3, 
4, 5, 9, 24, and 459. For NIP ¼ 2, various possibilities were considered 
such as: {i} 25th and 50th percentile {ii} 50th and 75th percentile{iii} 
25th and 75th percentile {iv} 33rd and 67th percentile {v} 10th and 
90th percentile. For NIP ¼ 3, 4, 5, 9 and 24, the percentiles were equally 
spaced. So for example, NIP ¼ 9 meant that all deciles were considered. 
The last value of NIP ¼ 459 was auto-generated by the DigitizeIt soft-
ware when we selected the whole (blue) curve. Then equation (3) was 
used to obtain the point estimate of β. Fig. 4 displays a plot of this point 
estimate versus NIP. From this figure we see that when NIP ¼ 2, the five 
different percentile combinations mentioned above yield a point esti-
mate of 1.098, 1.823, 1.289, 1.205 and 1.123 respectively. The lowest of 
these values (1.098) results from 25th and 50th percentiles on the KM 
curve and the highest of these values (1.823) result from 50th and 75th 
percentiles on the KM curve. This suggests that when NIP ¼ 2 is chosen, 
we may be better off choosing widely (and equally) spaced percentiles 
that are capture do not ignore the two extreme ends of the KM curve. The 
average of the 5 values for NIP ¼ 2 is found to be 1.308. When using NIP 
¼ 3, the point estimate obtained from using the software was 1.248 
which is nearly identical to 1.25 used by visual abstraction. For all other 
values of NIP, the point estimate obtained from equation (3) is similar in 
magnitude. The overall mean of these estimates for different values of 
NIP is found to be 1.280. Overall, we see that the historical study of 
sample size n ¼ 56 was adequate to obtain a reasonably accurate esti-
mate of β whether by visual abstraction or by the use of software. 
However, there could be other examples where software could be 
preferred to visual abstraction (especially when the published KM 
curves are of small size or of sub-optimal quality). 

4. Conclusion 

In this paper we have presented simulation study results for assessing 
the accuracy of Weibull shape parameter when it is estimated from 

Table 5 (continued ) 

Censor 5 data points (17th, 34th, 50st, 67th and 84th) Complete data set 

β  N bβavg  
SE BIAS ARB RMSE SRMSE CV bβMLE  

MARB RARB 

100 1.527 0.096 0.027 0.018 0.155 0.104 0.063 1.527 0.018 0.065 
200 1.523 0.068 0.023 0.015 0.111 0.074 0.045 1.514 0.009 0.046 
500 1.513 0.043 0.013 0.009 0.071 0.048 0.028 1.505 0.003 0.032  

Fig. 1. ARB vs Sample size for different censoring rates.  

Fig. 2. Sample size vs NIP for different censoring rates and ARB 
threshold levels. 

Fig. 3. Kaplan Meier plot of PFS from historical study data (standard-of- 
care control). 
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historical data made available through published results of the median 
survival time and IQR, or, by using the entire KM curve. These results 
will enable a statistician to make informed decisions in designing clin-
ical trials that assume a Weibull distribution for the survival times. 
When such an assumption is viable, statisticians will find our simulation 
results quite useful in that they will be able to decide whether the his-
torical study data has a large enough sample size to warrant estimating 
the Weibull shape parameter with reasonable accuracy. Our results 
suggest that for historical studies with n ¼ 50 or more, an estimate of the 
shape parameter obtained by using NIP ¼ 3 is reasonably accurate with 
an ARB <5% for up to 20% censoring. In our experience, this is a typical 
occurrence in designing phase II single arm trials in cancer where 
biomedical researchers investigating a new treatment often base their 
research hypothesis after looking at the study results of a standard 
control in a previously conducted historical trial. Occasionally, the 
historical trials may have a combination of low sample size (say 25–45) 
and/or greater than 20% censoring (say 30%–40% is common in cancer) 
and in such cases the statistician may have to use a software to extract 
information from all points on the KM curve. Where such a software is 
not available, it may be advisable to do visual abstraction for as many 
points as possible. If sample sizes are small with even higher censoring 
rates, the acceptable threshold for ARB may increased from 5% to 10% 
or a more conservative estimate of the Weibull shape parameter may be 
used than the one obtained from the KM curve. Further, plots such as 
Figs. 1 and 2 (specific to the research hypothesis under consideration) 
may prove to be very handy when deciding on the choice of a point 
estimate for the shape parameter. 

Our simulation study also provides two important guidelines. Firstly, 
many studies are conducted assuming exponentially distributed survival 
times for the simple reason that it is easy to conduct the sample size 
calculations. Since the exponential distribution is a special case of the 
Weibull (with β ¼ 1), our results can be used as a warning that the 
assumption of exponentially distributed times may be inappropriate 
when KM curves from a suitable historical study indicate otherwise 
(when a reasonably accurate estimate of β 6¼ 1 is obtained with less than 
5% ARB). This is important because assuming β ¼ 1 when historical 
study suggests otherwise may underestimate or overestimate the sample 
size for the current trial. Second, our simulation results discourage the 
practice of just reporting the median survival time in biomedical jour-
nals. In cases where the KM curve is not published, our results encourage 
the research community to report at least the IQR along with the median 
survival time so that this information (NIP ¼ 3) can be used for designing 
future trials. We recommend that in the absence of a high-quality KM 
plot, information about the 10th and 90th percentile of the survival time 

should be reported in addition to the median and the IQR. We also warn 
against using our method when the assumption of Weibull distribution is 
inappropriate. In this regard, we suggest using a Weibull plot or a 
goodness-of-fit test to the data abstracted from the KM curve before 
proceeding to estimate β for subsequent use in sample size calculations. 
For example, if the DigitizeIt [20] software is used to abstract data from 
the KM curve, then we can obtain a large sample dataset and can use the 
chi-square goodness-of-fit test recommended by Ross [23] to assess the 
Weibull fit. As this test is applicable to both continuous and discrete 
right censored data, the discrete choices of coordinate points {t, S(t)} 
selected by using the DigitizeIt software should work reasonably well. 
Alternatively, when such customized software is not available, Mann’s 
test (see Mann et al. [24]) specific to the Weibull can be used to assess 
the Weibull fit when the abstracted data set is of moderate size. Another 
option to assess the Weibull fit is by obtaining a log-survival plot of 
Cox-Snell residuals using the technique mentioned in Allison [25]. 

Overall, we feel that our work will provide an additional insight to 
statisticians planning a clinical trial design using the assumption of 
Weibull distributed survival times. 
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