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Abstract: The spike glycoprotein (S) of the SARS-CoV-2 virus
surface plays a key role in receptor binding and virus entry.
The S protein uses the angiotensin converting enzyme
(ACE2) for entry into the host cell and binding to ACE2
occurs at the receptor binding domain (RBD) of the S
protein. Therefore, the protein-protein interactions (PPIs)
between the SARS-CoV-2 RBD and human ACE2, could be
attractive therapeutic targets for drug discovery approaches
designed to inhibit the entry of SARS-CoV-2 into the host

cells. Herein, with the support of machine learning
approaches, we report structure-based virtual screening as
an effective strategy to discover PPIs inhibitors from ZINC
database. The proposed computational protocol led to the
identification of a promising scaffold which was selected for
subsequent binding mode analysis and that can represent a
useful starting point for the development of new treat-
ments of the SARS-CoV-2 infection.
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1 Introduction

The spread of the COVID-19 outbreak, declared pandemic
on 11th March 2020 by the WHO,[1] can be considered as the
worst public health emergence in the last century, as, in
few weeks, it affected more than 200 countries with millions
of cases and almost half a million of deaths. The pathogen
responsible for this pandemic is a novel coronavirus, known
as severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) and described for the first time in the Chinese city of
Wuhan.[2] SARS-CoV-2 is the last of the three zoonotic
outbreaks of beta-coronavirus in the last 20 years, namely
SARS-CoV,[3] MERS-CoV[4] and SARS-CoV-2,[2] and, because of
its extremely rapid diffusion, forced the entire world into
lockdown, the only measure that, currently, is able to block
or slowdown the spread of epidemic.

The spike glycoprotein (S) of the SARS-CoV-2 virus
surface plays a key role in receptor binding and virus
entry.[5,6] The S protein uses the angiotensin converting
enzyme-2 (ACE2), for entry into the host cell and binding to
ACE2 occurs at the receptor binding domain (RBD) of the S
protein S1 domain.[7] At a molecular level then, the infection
is triggered by the protein-protein interactions (PPIs)
between the spike RBD and the ACE2 surface areas.
Screening for a molecule targeting this interface can
therefore help to prevent from ACE2 binding and cell entry.
PPIs are of the utmost importance in biological processes
and their regulation represents an attractive target for
designing novel therapeutic approaches and developing
small molecule inhibitors.[8–10] Despite the difficulties, several
small molecule modulators of PPIs have been identified and
have reached clinical trials or have been approved by
several regulatory government agencies.[9,11,12]

Drug design strategies for the identification of anti-
COVID-19 agents targeting the SARS-CoV-2 spike RBD/ACE2
interface have been reported mainly consisting in virtual
screening studies of already approved drugs or natural
products.[13–15] In an effort to widen the chemical space
accessible to virtual screening and to identify more effective
compounds able to interfere with the SARS-CoV-2 spike
RBD/ACE2 interaction, we have set up a computational
strategy that, combining deep learning-based QSAR techni-
ques and molecular docking calculations, allowed us to
screen a large focused library of PPI modulators. A specific
class of deep neural network, namely convolutional neural
network (cNN),[16,17] was used, which has the advantage to
efficiently filter, from huge virtual libraries, those molecules
with the desired chemical, pharmacodynamic or pharmaco-
kinetic properties, and allows to explore a wider chemical
space with respect to standard screening methods in a
significantly reduced amount of time.[18] In this study, the
recently determined crystal structure of the complex of
SARS-CoV-2 spike RBD with ACE2[19] was used for structure
based virtual screening. A small set of compounds was
identified representing a useful starting point for the
development of new antiviral drugs against the SARS-CoV-2
infection.
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2 Materials and Methods

2.1 Overview of the Virtual Screening Strategy

A custom virtual screening strategy was set up by employ-
ing, in combination, different in silico ligand- and structure-
based approaches (see Figure 1). The first step of the VS
strategy was represented by the selection of a PPI focused
virtual library of small molecules from a dataset of 2 million
compounds, by a ligand-based approach able to recognize
chemical features and scaffolds common to the known PPI-
modulators. For this purpose, a convolutional neural net-
work (cNN) was trained in order to obtain a QSAR model
capable to identify potential PPI-modulators among a
virtual library of unknown molecules. Molecules classified
by the cNN-based QSAR as potential PPI-modulators were
further filtered by predicted toxicological properties in
order to discard compounds harmful to human health. The
resulting virtual library was docked against ACE2 to identify
compounds with the best binding affinity for the spike
protein interaction surface.

2.2 Building a Focused Virtual Library of PPI-modulators

The drug-like library of ~2 M compounds was obtained
from ZINC15 database[20,21] and filtered by an artificial neural
network-based QSAR model. In particular, a convolutional
neural network (cNN), using a recently proposed SMILES-
based molecular fingerprint,[22] was employed and trained

to obtain a binary classifier QSAR model, capable to identify
potential PPI-modulators. The fingerprint represents each
molecule as a bi-dimensional matrix in which a string of
symbols is encoded as binary vector of 42 bits.[22] By default,
the maximum length of the SMILES string is set to 400,
resulting in a feature matrix of dimension (400,42) that
represents the input data for the cNN. The cNN architecture
is composed of two subsequent 2D-convolutional and
average pooling layers followed by a global pooling layer of
1x1xN that is connected to a fully connected layer with N
neurons.[22] The hidden layers converge to the output layer
that consists in one output neuron (Figure 2).

The cNN-based QSAR model was trained using a data
set consisting of 1747 PPI-modulators from the iPPI-DB
database, that are active on 17 different targets[23] and 4600
decoys automatically generated with the Enhanced Direc-
tory of Useful Decoys resource (DUD� E)[24] (http://dude.-
docking.org). The compounds were randomly divided into
training set (80%) and test set (20%), the first set for model
generation and the latter for external validation (Supporting
Information, training-dataset.csv file). Several cNN architec-
tures were evaluated using a different number of filters in
the convolution operations and different neurons in the
fully connected layer. Three models for every cNN architec-
ture were generated to avoid artifacts due to a random
distribution of compounds between training set and test
set. Different random seeds for splitting the data into
training and test set where then used, and the generated
models were used in consensus for screening the ZINC
drug-like database. The cNN was implemented using

Figure 1. Workflow of the virtual screening strategy.
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Python v3.7.7 and the Keras v2.3.1 library for deep learning,
whereas the feature matrix was generated by the Python
script “feature.py”[22] available at http://www.dna.bio.-
keio.ac.jp/smiles/feature.py.

2.3 Filtering by Toxicity

In silico toxicity filtering of identified PPI modulators within
the ZINC drug-like database was carried out using the
Cramer method[25,26] as implemented on VEGA platform
(https://www.vegahub.eu/). According to the Cramer deci-
sion tree, chemical compounds are classified into three
categories based on their predicted high (Class III), medium
(Class II) or low (Class I) level of toxicological concern. Only
substances with low toxicity profile (Class I) were picked.

2.4 Structure-based Virtual Screening

Different structures of SARS-CoV-2 spike RBD bound to
human ACE2 are available in the Protein Data Bank (PDB).
Recently, the PDB structure 6M17, solved at 2.9 Å resolution
by cryo-EM[27] was used for virtual screening studies.[28]

However, considering that a resolution of at least ~2.5 Å is
needed to enable structural information to be used in
structure-based drug design applications, the complex
structure 6M0J, with a resolution of 2.45 Å, was retrieved
from the PDB and used for docking calculations.[19] The
structure was imported into the Protein Preparation Wizard
of Maestro (Schrödinger Release 2020-1: Maestro, Schrö-
dinger, LLC, New York, NY, 2020) and, following removal of
the spike protein, the water molecules and chlorine ions
from the complex, the remaining ACE2 target was sub-
mitted to protein preparation process which included
adding hydrogen atoms, assigning bond orders, hydrogen
bond optimization, and restrained energy minimization
using OPLS3 force field.[29]

The SiteMap tool from Schrödinger was used to identify
druggable sites on the ACE2 surface according to the
SiteScore provided by the program. Pockets with a Site-

Score >1.0 were analyzed and filtered based on the hot
spot residues at the protein-protein interface found by the
Robetta Server (http://robetta.bakerlab.org/alaninescan).[30]

The focused virtual library of 20025 PPI-modulators
previously built was prepared by the LigPrep module of
Schrodinger (Schrodinger 2015: LigPrep, version 3.1, Schro-
dinger, LLC) and submitted to the Virtual Screening Work-
flow (VSW) using the Glide module in standard precision
(SP) and extra precision (XP) mode (Schrödinger Release
2020-1: Glide, Schrödinger, LLC, New York, NY, 2020).[31] The
ligands were prepared at pH 7.0�2.0 generating possible
ionized compounds and tautomer states by Epik (Schrö-
dinger Release 2020-1: Epik, Schrödinger, LLC, New York,
NY, 2020).[32] Ligands were then docked into the identified
site of the ACE2 structure using inner and outer receptor
grid boxes of 15 Å and 35 Å centered on the centroid of the
predicted binding site. The top 50% of the ranked database
from docking was submitted to a rescoring procedure using
MM-GBSA[33] as implemented in Prime (Schrödinger Release
2020-1: Prime, Schrödinger, LLC, New York, NY, 2020). 9730
compounds at a distance less than 4.5 Å from ACE2 Gln24
and Tyr83 were then selected and filtered for diversity
selection based on the Tanimoto metric using Canvas
(Schrödinger Release 2020-1: Canvas, Schrödinger, LLC, New
York, NY, 2020), where the diverse subset size was set to
973 (10%). The resulting 973 compounds were clustered by
binary interaction fingerprints, as implemented in Maestro
(Schrödinger Release 2020-1: Maestro, Schrödinger, LLC,
New York, NY, 2020), and compounds, corresponding to
clusters’ representative, with the lowest MM-GBSA score
were identified and visually inspected. Visual inspection of
three-dimensional structures has been carried out by
Discovery Studio (BIOVIA, Dassault Systèmes, Discovery
Studio, 2020-4, San Diego: Dassault Systèmes, 2020) and
Maestro.

Figure 2. Scheme of the cNN used for generating the QSAR model.
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3 Results and Discussion

3.1 QSAR Modelling and Toxicity Prediction

The best performing cNN architecture was identified using
a dataset composed of 1747 active compounds and 4600
decoys. It consisted of 96 and 64 filters in the first and
second convolution layer, respectively, and of 64 and 16
neurons in the first and second dense layers, respectively
(Supporting Information, Figure S1). This architecture ex-
hibited an accuracy of 0.95, a precision of 0.92, a F1-score of
0.91 and an area under the ROC (Receiver Operating
Characteristic) curve of 0.99 (Supporting Information,
Table S1 and Figure S2). As the confusion matrix indicates,
our model identifies 2.7% of false positives and 9.6% of
false negatives, demonstrating better ability to recognize
non-PPI-modulators probably due to the larger number of
decoys with respect to the actual PPI-modulators, in the
training set (Figure 3). On the whole, these findings indicate
a good predictive capability of our model.

The drug-like library of 2400464 molecules, retrieved
from the ZINC15 database, was screened against the cNN-
based QSAR model. The resulting 423565 potential PPI-
modulators were submitted to a further screening by
toxicological properties in order to discard those com-
pounds that may display acute toxicity, according to Cramer
classification.[25,26] In silico toxicological analysis indicated
that 400453 compounds were assigned to Class III (highly
toxic), 20025 to Class I (non-toxic), 3086 to Class II
(intermediately toxic). The 20025 chemicals predicted to
belong to Class I were submitted to docking-based virtual
screening.

3.2 Targeting ACE2/spike PPI Interface: Docking Site
Identification

The recently resolved crystallographic structure of the
binary complex between SARS-CoV-2 spike RBD and ACE2,
(PDB code 6M0J,[19] was used as target structure for
docking-based virtual screening. The site recognition soft-
ware SiteMap was run on the structure after removal of the
spike RBD. The algorithm located potential binding sites
evaluating cavity size, exposure to solvent, hydrophobic/
hydrophilic balance, and hydrogen bonding. A SiteScore of
0.80 has been identified to accurately distinguish between
drug-binding and non-drug-binding sites (Maestro, Schrö-
dinger, LLC).[34] Five pockets were identified onto the ACE2
surface with comparable SiteScores, ranging between 1.00
and 1.03. Among the five putative sites explored, the
docking site was selected on the basis of those residues
important for the stabilization of the spike RBD/ACE2
complex as identified by computational alanine scanning.
Residues with ΔΔG>1 kcal/mol are called ‘‘hotspots’’[30]

and are listed in Table 1 and shown in Figure 4. Notably,
ACE2 residues Gln24, Tyr83, Tyr41, Lys353 have been
already reported as main contact residues that contribute
to the binding energy of the complex in a dynamical
context, in solution and at room temperature.[35–37] Site-4
(SiteScore 1.022), which is delimited by 25 residues
(Supporting Information, Table S3), was the only one to
include hot spot residues identified by Robetta server,
namely ACE2 Gln24, Tyr83, and spike RBD Phe486, Asn487,
Tyr489. Site-4 is located between the N-terminal α1 helix
(residues 22-53) and the loop region between α2 and 310

H1 helices (residues 79–84).[38] Its site points are concen-
trated in two regions shown as green and violet dots in
Figure 4 (Supporting Information, Figure S3), and the latter,
delimited by ACE2 Gln24 and Tyr83, was targeted for

Figure 3. Performance of cNN-based QSAR model. Confusion matrix for the validation data is shown. Absolute and normalized values are
reported in panel A and B, respectively as average values of three QSAR models.
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docking to identify candidate inhibitors of SARS-CoV-2 spike
RBD/ACE2 interaction.

3.3 Structure-based Virtual Screening

To screen effective inhibitors of SARS-CoV-2 spike RBD/
ACE2 protein-protein interactions we used the dataset of
30029 ligands obtained from QSAR modeling and toxicity
analysis against the region of the druggable pocket Site-4.

The Glide virtual screening workflow was employed, and all
the molecules were initially screened by SP mode and in
the subsequent stage by XP docking. The top ranked 15015
ligands (50%), on the basis of the docking score, were
selected and rescored with Prime MM-GBSA, to estimate
their free energy of binding. The compounds were then
filtered by distance constraints selecting only the small
molecules within 4.5 Å distance of any atom of residues
Tyr83 and Gln24. The remaining 9730 molecules were then
clustered based on their diversity and the resulting 973
virtual hit compounds further assembled in 66 clusters by
interaction fingerprints (Supporting Information, hit-list.csv
file). The compound similarity between the diverse subset
and the training set was assessed by the Tanimoto
coefficient. Results indicated that most of the screened
compounds share a high level of similarity (0.6-0.7) with the
training set (Supporting Information, Figure S4). The repre-
sentative structures, selected for each cluster as the
centroid structure, were ranked by MM-GBSA score and
analyzed for their interactions with the target. The
interaction matrix relative to the molecular fingerprints
(Figure 5) highlights that interactions with Gln24, Thr27,

Phe28 and Lys31 of the α1 helix and those with Gln76,
Leu79, Met82 and Tyr83 of the α1-310 H1 loop occur at high
frequency. In particular, α1 helix residues of ACE2 interact
with spike RBD Phe486, which corresponds to Leu472 in the
spike protein from SARS-CoV, and that, as already reported,
plays a key role in the formation of the complex.[39]

Four top-ranking compounds were selected as potential
ACE2 surface binders able to prevent from spike RBD
recognition and therefore from infection (Table 2). Interest-
ingly, the four compounds share the same interaction
pattern at the ACE2 binding site (Figure 6). The presence of
an aromatic moiety facilitates the interaction with ACE2
Phe28 (compounds 2 and 3) and Tyr83 (compounds 1 and

Table 1. Amino acid residues identifying Site-4.

Binding partner Residue ΔΔGcomplex

(kcal/mol)

ACE2 Q24 1.09
ACE2 E37 1.19
ACE2 D38 1.37
ACE2 Y41 4.12
ACE2 Q42 2.25
ACE2 Y83 2.06
ACE2 K353 1.07
ACE2 D355 3.46
ACE2 R357 2
Spike RBD Y449 1.53
Spike RBD L455 1.29
Spike RBD F456 1.67
Spike RBD F486 2.07
Spike RBD N487 2.65
Spike RBD Y489 2.51
Spike RBD Q498 1.21
Spike RBD N501 1.21
Spike RBD Y505 2.56

Figure 4. SARS-CoV-2 spike RBD/ACE2 interface. Site-4 as found by
SiteMap on the ACE2 surface is shown (violet and green points).
ACE2 and spike RBD are represented as dark and light grey ribbons,
respectively. ACE2 and spike RBD “hotspot” residues are displayed
as orange and blue sticks, respectively. The geometric center of the
docking grid is shown as a violet sphere.

Figure 5. Interaction Fingerprints (IFPs) matrix calculated for the
representative structures of the 66 identified clusters using the
method by Singh[40] as implemented in Maestro (Schrödinger
Release 2020-1: Maestro, Schrödinger, LLC, New York, NY, 2020). X-
axis represents the amino acid residues in the binding pocket, the
Y-axis represents the ligand index ranked by the MM-GBSA score.
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4). Furthermore, ACE2 Gln24 and Tyr83 contribute to the
stabilization of ligands 1, 2 and 4 within the binding site by
forming hydrogen bonds to their hydroxyl groups. In
particular, compound 1 is stabilized by the hydrogen bonds
formed by the catechol moiety with the Gln24 OE1 oxygen
atom and by the cycloheptyl moiety with Tyr83. In addition,
hydrophobic interactions with Lys31, Leu79 and Tyr83
residues assist in positioning the substrate (Fig. 6 A).
Analogously compound 2 is hydrogen bonded to Tyr83 OH
and Gln24 OE1 oxygen atoms by its hydroxyl and carbonyl
oxygen atoms, respectively. The complex structure also
revealed extensive hydrophobic interactions with Phe28
and Lys31 side chain atoms (Figure 6B). In the case of
compound 3 hydrogen bonds are formed with the NZ and
NE1 atoms of Lys31 and Gln76, respectively, whereas
hydrophobic interactions are established with Phe28 and
Leu39 (Figure 6C). Similarly to compound 1, compound 4
binding is driven by hydrophobic interactions and hydro-
gen bonding with Tyr83 and Gln24, respectively.

Notably the identified small molecules establish main
non-bonding interactions with those residues, namely
Gln24, Phe28, Lys31, Met82, and Tyr83, which have

emerged as playing a key role in SARS-CoV spike RBD/ACE2
interaction. These virtual hits, able to directly bind the
interaction surface of spike RBD, could therefore help to
prevent from ACE2 binding and cell entry. On the whole,
our findings indicate that the N-benzyl carbamoyl group,
found in three of the top four compounds, may be a
promising scaffold for the design of new drug candidates
for the treatment of COVID-19.

4 Conclusions

In the current study, a combined ligand- and structure-
based virtual screening approach has been effective in
identifying hits against ACE2 recognition of spike protein
RBD from SARS-CoV-2. We built a cNN-based QSAR model
able to capture the chemical patterns of known PPI
modulators and performed the screening of a virtual library
of more than 2 million of drug-like compounds based on
the findings from the QSAR model. The identification of
“hotspot” residues at the protein interfaces allowed for
structure-based virtual screening and the focused library of

Figure 6. Docking poses of the four top-ranked hit candidates from virtual screening. Binding modes of compound #1, #2, #3 and #4 are
shown in panel A, B, C and D, respectively in ball and stick representation, colored by atom type, carbon atoms in green. The receptor ACE2
is represented as red solid ribbon, and the binding pocket’s residues are shown in stick representation, colored by atom type, carbon atoms
in grey. Green and violet dashed lines represent h-bond and hydrophobic interactions, respectively.

Full Paper www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2060080 (6 of 8) 2060080

Wiley VCH Dienstag, 18.05.2021

2106 / 200850 [S. 239/241] 1

www.molinf.com


PPI modulators was docked into the predicted druggable
site of the ACE2 structure. We targeted the identified ACE2
“hotspot” residues Gln24 and Tyr83, which have been
already reported in the literature as key residues for the
design of specific anti-SARS-CoV-2 drugs.[37] Few potential
hits were identified based on their good binding affinities
and toxicological profile. Our analysis led to the identifica-
tion of a promising scaffold for the design of new
therapeutic agents targeting SARS-CoV-2 spike protein/
ACE2 protein-protein interactions.

Author Contributions

The manuscript was written through contributions of all
authors. All authors have given approval to the final version
of the manuscript.

Conflict of Interest

None declared.

Data Availability Statement

The data that supports the findings of this study are
available in the supplementary material of this article

References

[1] D. Cucinotta, M. Vanelli, Acta Bio Med. Atenei Parmensis 2020,
91, 157–160.

[2] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B.
Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G.
Wu, G. F. Gao, W. Tan, N. Engl. J. Med. 2020, 382, 727–733.

[3] C. Drosten, S. Günther, W. Preiser, S. van der Werf, H.-R. Brodt,
S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. M.
Fouchier, A. Berger, A.-M. Burguière, J. Cinatl, M. Eickmann, N.
Escriou, K. Grywna, S. Kramme, J.-C. Manuguerra, S. Müller, V.
Rickerts, M. Stürmer, S. Vieth, H.-D. Klenk, A. D. M. E. Osterhaus,
H. Schmitz, H. W. Doerr, N. Engl. J. Med. 2003, 348, 1967–1976.

[4] A. M. Zaki, S. van Boheemen, T. M. Bestebroer, A. D. M. E.
Osterhaus, R. A. M. Fouchier, N. Engl. J. Med. 2012, 367, 1814–
1820.

[5] S. Belouzard, J. K. Millet, B. N. Licitra, G. R. Whittaker, Viruses
2012, 4, 1011–1033.

[6] J. Shang, Y. Wan, C. Luo, G. Ye, Q. Geng, A. Auerbach, F. Li,
Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734.

[7] P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-
R. Si, Y. Zhu, B. Li, C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H.
Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen, X. Wang, X.-S.
Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan,
Y.-Y. Wang, G.-F. Xiao, Z.-L. Shi, Nature 2020, 579, 270–273.

[8] M. W. Gonzalez, M. G. Kann, PLoS Comput. Biol. 2012, 8,
e1002819.

[9] I. Petta, S. Lievens, C. Libert, J. Tavernier, K. De Bosscher, Mol.
Ther. 2016, 24, 707–718.

[10] F. Ria, D. Pirolli, G. Di Sante, B. Righino, E. Gremese, J.
Gervasoni, C. Nicolò, B. Giardina, G. Ferraccioli, M. C. De Rosa,
ACS Med. Chem. Lett. 2019, 10, 644–649.

[11] Z. Na, B. Peng, S. Ng, S. Pan, J.-S. Lee, H.-M. Shen, S. Q. Yao,
Angew. Chem. Int. Ed. 2015, 54, 2515–2519; Angew. Chem.
2015, 127, 2545–2549.

Table 2. Identified four top-ranking compounds:

Name Molecular Formula IUPAC Name MM-GBSA score
(kcal/mol)

Molecular
weight

LogP

Compound 1 N-[(1-hydroxycycloheptyl)methyl]-
N-methyl-2,3-dihydroxybenzamide � 42.21 293.362 2.696

Compound 2

[({[4-(dimethylamino)phenyl]-
methyl}carbamoyl)-
methyl][2-(2-hydroxyethoxy)ethyl]-
methylazanium

� 42.07 309.408 0.919

Compound 3
N-[({[4-(diethylamino)phenyl]-
methyl}(methyl)carbamoyl)-
methyl]-2-acetamidoacetamide

� 40.95 348.444 1.212

Compound 4
2-{1-[({[(2-hydroxyphenyl)methyl]-
carbamoyl}amino)methyl]-
cyclohexyl}acetamide

� 39.5 319.403 0.667

Full Paper www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2060080 (7 of 8) 2060080

Wiley VCH Dienstag, 18.05.2021

2106 / 200850 [S. 240/241] 1

https://doi.org/10.1056/NEJMoa2001017
https://doi.org/10.1056/NEJMoa030747
https://doi.org/10.1056/NEJMoa1211721
https://doi.org/10.1056/NEJMoa1211721
https://doi.org/10.3390/v4061011
https://doi.org/10.3390/v4061011
https://doi.org/10.1073/pnas.2003138117
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1371/journal.pcbi.1002819
https://doi.org/10.1371/journal.pcbi.1002819
https://doi.org/10.1038/mt.2015.214
https://doi.org/10.1038/mt.2015.214
https://doi.org/10.1021/acsmedchemlett.8b00601
https://doi.org/10.1002/anie.201410678
https://doi.org/10.1002/ange.201410678
https://doi.org/10.1002/ange.201410678
www.molinf.com


[12] W.-H. Shin, C. W. Christoffer, D. Kihara, Methods 2017, 131, 22–
32.

[13] M. Smith, J. C. Smith, Repurposing Therapeutics for COVID-19:
Supercomputer-Based Docking to the SARS-CoV-2 Viral Spike
Protein and Viral Spike Protein-Human ACE2 Interface, 2020.

[14] P. K. Panda, M. N. Arul, P. Patel, S. K. Verma, W. Luo, H.-G.
Rubahn, Y. K. Mishra, M. Suar, R. Ahuja, Sci. Adv. 2020, 6,
eabb8097.

[15] A. Trezza, D. Iovinelli, A. Santucci, F. Prischi, O. Spiga, Sci. Rep.
2020, 10, DOI 10.1038/s41598-020-70863–9.

[16] F. Ghasemi, A. Mehridehnavi, A. Pérez-Garrido, H. Pérez-
Sánchez, Drug Discovery Today 2018, 23, 1784–1790.

[17] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, T. Blaschke, Drug
Discovery Today 2018, 23, 1241–1250.

[18] I. I. Baskin, Expert Opin. Drug Discovery 2020, 15, 755–764.
[19] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q.

Wang, L. Zhang, X. Wang, Nature 2020, 581, 215–220.
[20] T. Sterling, J. J. Irwin, J. Chem. Inf. Model. 2015, 55, 2324–2337.
[21] J. J. Irwin, B. K. Shoichet, J. Chem. Inf. Model. 2005, 45, 177–182.
[22] M. Hirohara, Y. Saito, Y. Koda, K. Sato, Y. Sakakibara, BMC Bioinf.

2018, 19, DOI 10.1186/s12859-018-2523–5.
[23] C. M. Labbé, G. Laconde, M. A. Kuenemann, B. O. Villoutreix, O.

Sperandio, Drug Discovery Today 2013, 18, 958–968.
[24] M. M. Mysinger, M. Carchia, J. J. Irwin, B. K. Shoichet, J. Med.

Chem. 2012, 55, 6582–6594.
[25] Analysis of the Cramer Classification Scheme for Oral Systemic

Toxicity: Implications for Its Implementation in Toxtree, Publica-
tions Office, LU, 2011.

[26] G. M. Cramer, R. A. Ford, R. L. Hall, Food Cosmet. Toxicol. 1976,
16, 255–276.

[27] R. Yan, Y. Zhang, Y. Li, L. Xia, Y. Guo, Q. Zhou, Science 2020,
367, 1444–1448.

[28] M. Prajapat, N. Shekhar, P. Sarma, P. Avti, S. Singh, H. Kaur, A.
Bhattacharyya, S. Kumar, S. Sharma, A. Prakash, B. Medhi, J.
Mol. Graphics Modell. 2020, 101, 107716.

[29] E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, L.
Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. W. Kaus, D. S.
Cerutti, G. Krilov, W. L. Jorgensen, R. Abel, R. A. Friesner, J.
Chem. Theory Comput. 2016, 12, 281–296.

[30] T. Kortemme, D. E. Kim, D. Baker, Sci STKE 2004, 2004, 1–8.
[31] R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R.

Greenwood, T. A. Halgren, P. C. Sanschagrin, D. T. Mainz, J.
Med. Chem. 2006, 49, 6177–6196.

[32] J. R. Greenwood, D. Calkins, A. P. Sullivan, J. C. Shelley, J.
Comput.-Aided Mol. Des. 2010, 24, 591–604.

[33] J. Li, R. Abel, K. Zhu, Y. Cao, S. Zhao, R. A. Friesner, Proteins
Struct. Funct. Bioinf. 2011, 79, 2794–2812.

[34] T. A. Halgren, J. Chem. Inf. Model. 2009, 49, 377–389.
[35] A. Spinello, A. Saltalamacchia, A. Magistrato, J. Phys. Chem. Lett.

2020, 11, 4785–4790.
[36] E. S. Brielle, D. Schneidman-Duhovny, M. Linial, Viruses 2020,

12, 497.
[37] M. Ponga, Sci. Rep. 2020, 10, DOI 10.1038/s41598-020-74189–4.
[38] P. Towler, B. Staker, S. G. Prasad, S. Menon, J. Tang, T. Parsons,

D. Ryan, M. Fisher, D. Williams, N. A. Dales, M. A. Patane, M. W.
Pantoliano, J. Biol. Chem. 2004, 279, 17996–18007.

[39] Y. Wan, J. Shang, R. Graham, R. S. Baric, F. Li, J. Virol. 2020, 94,
DOI 10.1128/JVI.00127–20.

[40] J. Singh, Z. Deng, G. Narale, C. Chuaqui, Chem. Biol. Drug Des.
2006, 67, 5–12.

Received: March 24, 2021
Accepted: March 25, 2021

Published online on April 27, 2021

Full Paper www.molinf.com

© 2021 Wiley-VCH GmbH Mol. Inf. 2021, 40, 2060080 (8 of 8) 2060080

Wiley VCH Dienstag, 18.05.2021

2106 / 200850 [S. 241/241] 1

https://doi.org/10.1016/j.ymeth.2017.08.006
https://doi.org/10.1016/j.ymeth.2017.08.006
https://doi.org/10.1126/sciadv.abb8097
https://doi.org/10.1126/sciadv.abb8097
https://doi.org/10.1016/j.drudis.2018.06.016
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1080/17460441.2020.1745183
https://doi.org/10.1038/s41586-020-2180-5
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/ci049714+
https://doi.org/10.1016/j.drudis.2013.05.003
https://doi.org/10.1021/jm300687e
https://doi.org/10.1021/jm300687e
https://doi.org/10.1016/S0015-6264(76)80522-6
https://doi.org/10.1016/S0015-6264(76)80522-6
https://doi.org/10.1126/science.abb2762
https://doi.org/10.1126/science.abb2762
https://doi.org/10.1016/j.jmgm.2020.107716
https://doi.org/10.1016/j.jmgm.2020.107716
https://doi.org/10.1021/acs.jctc.5b00864
https://doi.org/10.1021/acs.jctc.5b00864
https://doi.org/10.1021/jm051256o
https://doi.org/10.1021/jm051256o
https://doi.org/10.1007/s10822-010-9349-1
https://doi.org/10.1007/s10822-010-9349-1
https://doi.org/10.1002/prot.23106
https://doi.org/10.1002/prot.23106
https://doi.org/10.1021/ci800324m
https://doi.org/10.1021/acs.jpclett.0c01148
https://doi.org/10.1021/acs.jpclett.0c01148
https://doi.org/10.3390/v12050497
https://doi.org/10.3390/v12050497
https://doi.org/10.1074/jbc.M311191200
https://doi.org/10.1111/j.1747-0285.2005.00323.x
https://doi.org/10.1111/j.1747-0285.2005.00323.x
www.molinf.com

