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1. COVID-19 and the contribution by immune effector
cells

1.1 SARS-COV-2
SARS-Cov-2 is a coronavirus with a single-strand, positive-sense

RNA genome with multiple open reading frames that codes for 10 proteins
including the nucleocapsid and the Spike protein, which is important for
infection [1]. SARS-Cov-2 primarily infects type II alveolar epithelial cells
(AECs) because they have a high concentration of ACE2 receptors, which
have a strong interaction with the viral Spike protein, facilitating internali-
zation of the virus [2,3]. COVID-19, the viral respiratory illness that results
from SARS-Cov-2 infection, initially presents with mild symptoms for
several days concurrent with the highest levels of viral shedding [4]. The
inflammatory damage of COVID-19 follows as the natural immune
response to the virus causes the release of high levels of inflammatory medi-
ators, such as tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6), in a
sustained pattern distinct from bacterial sepsis or influenza [5,6]. The rapid
clinical deterioration about 7 days after initial onset of symptoms suggests
that the respiratory failure in COVID-19 results from a unique pattern of
immune dysregulation characterized by macrophage activation syndrome
(MAS) or profound depletion of CD4 lymphocytes, CD19 lymphocytes,
and natural killer (NK) cells. The persistent immune response, despite falling
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viral titers in this inflammatory phase, leads to progressive organ and tissue
injury, suggesting that the immune-mediated damage is more significant
than the viral cytopathic damage [7,8].

2. Immune-mediated pathogenesis

SARS-Cov-2 induces immune dysregulation in a different pattern
than influenza or SARS-CoV. Chemokines (CCL2 [MCP 1], CCL3
[MIP1a], CXCL1, CXCL5, and CXCL10) are significantly upregulated
in COVID-19 and act to recruit macrophages, neutrophils, and effector
T cells [9]. These inflammatory conditions are linked to defective antigen
presentation. Individual viral antigens may be responsible for lymphocyte
apoptosis which further drives monocytes to produce high levels of
TNF-a and IL-6. TNF-a activates endothelial cells to recruit leukocytes,
stimulates neutrophils, and increases the levels NF-kB, AP-1, IL-8, and cas-
pases, which induce apoptosis of target tissues [10]. The ratio of lymphocytes
to neutrophils appears to be an important predictor for outcome of
COVID-19. Finally, advanced cases of COVID-19 respiratory failure are
characterized by features of immune dysregulation or MAS.

Over-production of IL-6 promotes immune dysregulation with inhibi-
tion of HLA-DR expression on CD14 monocytes contributing to the
impaired T cell response. IFN-g produced by CD4þ TH1, NK, and
CD8þ T cells normally increases MHC class I and II to promote killing of
infected cells by T cells, increased macrophage activity and production of
IgG antibodies, but there are very low levels of IFN-g detected in
COVID-19. Immune dysregulation caused by COVID-19 features lower
counts of CD4þ T cells, CD8þ T cells, and NK cells than at the intermediate
immune state. Recently, SARS-CoV2 specific genes have been identified
which counter-regulate appropriate interferon responses in COVID-19.
Infection by SARS-CoV-2 is characterized by fewer CD4þ T cells but
more NK cells and B cells than H1N1 influenza. IL-17 production, indicating
Th17 function, is downregulated in COVID-19 patients with immune
dysregulation. There is also some evidence to suggest that SARS-Cov-2
infects and induces apoptosis of T lymphocytes, such as CD4þ TH1 cells
that activate macrophages, CD4þ TH17 cells that activate neutrophils, and
CD8þ cytotoxic T cells that kill infected cells. NK cells that kill infected
or damaged cells are also reduced in SARS-CoV and SARS-CoV2 infection
possibly resulting from the rapidly propagating virus [11]. In some cases of
COVID-19, elevated levels of IL-1b promote a MAS with a pattern that
may be similar to secondary hemophagocytic lymphohistiocytosis [12,13].
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3. Acute lung injury, increased endothelial
permeability, and loss of organ barrier function

The massive release of inflammatory mediators termed cytokine storm
can cause an acute lung injury (ALI) characterized by disruption of junctions
between cells, damage to AECs, damage to pulmonary capillary endothelial
cells, and loss of alveolar fluid clearance mechanism [14,15]. Inflammatory
mediators (cytokines and chemokines) released by type II AECs increase
vasodilation, leukocyte adhesion, and capillary permeability [16,17]. Proteo-
lytic enzymes and reactive oxygen species released by neutrophils and
macrophages within the alveoli damage alveolar cells and the extracellular
matrix [18,19]. Disruption of the junctions between the cells in the
alveolar-capillary barrier promotes recruitment of nonspecific immune cells
(e.g., neutrophils, macrophages) and allows exudative leak from the
pulmonary capillaries [20]. In this context, the detrimental role of the
kallikrein-bradykinin system is likely responsible for extensive fluid loss and
inflammation for endothelial barriers. Neutrophils, macrophages, and other
immune cells thus evade from the circulation, accumulate in the lungs, and
increase their release of inflammatory mediators creating a positive feedback
loop.

Viral inhibition of ACE2-mediated inactivation of des-Arg bradykinin
and proinflammatory cytokine-mediated upregulation of bradykinin recep-
tor type 1 (B1) on endothelial cells may cause pulmonary angioedema
consistent with the radiographic findings of COVID-19 [21], which is in
part because of increased expression of bradykinin receptor 2 (B2). The
diffuse alveolar damage and angioedema could progress to acute respiratory
distress syndrome with accumulation of proteinaceous fluid in alveoli that
interferes with arterial oxygenation. This proteinous fluid consists of
gelatinous hyaluronic acid and explains the opaque signs of COVID-19
lung images (Fig. 3.1). Diffuse thrombosis in the pulmonary vasculature
and ventilator pressure support may also increase pulmonary artery pressure
causing pulmonary hypertension, which could have secondary cardiovascu-
lar effects.

4. Endogenous repair systems

Endogenous repair systems that regulate the immune response and
stimulate tissue regeneration exist to promote recovery from ALI but may
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be overwhelmed by the cytokine storm of COVID-19. The natural regula-
tory mechanisms of the immune system include production of antiinflam-
matory cytokines such as IL-10, TGF-b3, and IL-1ra, as well as immune
cells with more regulatory phenotypes such as M2 macrophages and
regulatory T cells [22]. Antiinflammatory cytokines (IL-10) promote
phenotypes by polarizing M1 macrophages, which release high levels of
inflammatory mediators, into tissue regenerative M2 macrophages, which
release much lower levels of inflammatory mediators and also improve
phagocytosis of cell debris, and danger ligands [23e25]. Antiinflammatory
cytokines (TGF-b3) promote polarization of T lymphocytes from TH1,
which produce high levels of inflammatory mediators to Treg cells, which
regulate the cytotoxic activity of cytotoxic T lymphocytes (CTLs) and
NK cells [26]. Regenerative cytokines including Ang-1, KGF, HGF,
VEGF, EGF, Tsp1, S1P promote repair of the junctions between cells in
the alveolar-capillary barrier, repair of the damaged alveoli and bronchioles
by type II AECs and bronchoalveolar stem cells, and repair of pulmonary
capillaries by epithelial cells [27e30].

Figure 3.1 Mechanisms of action of mesenchymal stem cell-derived exosomes in acute
respiratory distress syndrome [70].
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5. The role of mesenchymal stem cells

In newborns and young children, mesenchymal stem cells (MSCs) are
found in almost every organ and tissue. In adults, these large amounts of
MSCs have been shown to be restricted to fat tissues including the bone
marrow (BM). In addition to their potential to function as progenitors,
MSCs have demonstrated the capacity to modulate the immune response
and promote tissue regenerat ion. MSCs exert their paracrine effects through
the release of soluble mediators including anti-inflammatory and regenera-
tive cytokines and extracellular vesicles containing transcriptionally active
RNA species, such as miRNA, lncRNA, and effector species. These soluble
mediators and RNA species could potentially arrest the inflammatory
response, repair the damage to the alveoli and pulmonary capillaries, and
allow the immune system to clear the virus [20,30e36]. A Chinese study
at Shanghai University on COVID-19 treatment using a master cell bank
created from stromal progenitor cells harvested from lipoaspirate successfully
treated seven patients who recovered, while three patients treated with
placebo progressed to severe viral pneumonia or death [37]. An Israeli study
of COVID-19 treatment using a clonal cell line of expanded, placental,
MSCs treated six critically ill COVID-19 patients under a compassionate
use program and demonstrated improvement in respiratory parameters
and a 100% survival rate [38]. In the Israel study, four patients had other
organ failures (cardiovascular, renal failure) and the placental MSCs therapy
promoted recovery of the other organ failures as well as improvement in
unrelated pre-existing conditions. Nearly 1000 clinical trials investigating
administration of MSCs derived from sources such as BM, adipose tissue,
cord blood, and others have also demonstrated a well-established safety
profile of MSCs [39].

6. Extracellular vesicles: Exosomes and small
microvesicles

MSCs exert the vast majority of their paracrine effects through the
release of EVs, vesicles of roughly 50e1000 nm in diameter that are secreted
by all cell types [40]. Small EVs (sEVs, 30e200 nm diameter, (Fig. 3.2),
harvested using different protocols from cell culture supernatants of MSCs
grown under diverse culture conditions, have been reported to be therapeu-
tically active in various preclinical models [41]. EVs further may be respon-
sible for the tissue regenerative effects observed with atopically transplanted
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MSCs in various animal models. The origin of MSC-sEVs, a population of
exosomes and small microvesicles produced by MSCs, suggests a similar
safety profile to their parent cells that could expedite the development of
clinical applications.

MSCs-EVs are internalized by target cells through endocytosis, and
delivery of RNA species influences the behavior of these cells. Noncoding
RNA such as miRNA, abundant in MSC-sEVs, target specific processes and
pathways within target cells. The RNA content of MSC-sEVs confers their
biological properties, which include being anti-inflammatory (e.g., miR1,
miR100, miR181c), immunomodulatory (e.g., miR146a), proangiogenic
(e.g., let-7, miR29), prosynthetic (e.g., miR92-3p, miR140-5p), antiapop-
totic (e.g., miR21, miR199a), antifibrotic (e.g., miR21, miR23a,
miR125b), and tumor suppressive (e.g., miR15a, miR145) (Fig. 3.2). It is
important to note that the biological effects of MSC-sEVs are not the result
of any single factor, but rather the combined activity of the abundant RNA
moleculesaffecting multiple cellular pathways in the context of target cell
behavior prior to internalization.

7. Tissue reconstitutive mechanisms by mesenchymal
stem cell-small extracellular vesicles in COVID-19

Internalization of MSC-sEVs by cells exhibiting pathologic behavior
may influence cellular pathways to regulate the hyperinflammatory response

Figure 3.2 Expression of miRNA in purified mesenchymal stem cell-derived exosomes
(small extracellular vesicles).
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to SARS-CoV-2 and promote regeneration of damaged pulmonary and
other tissues. MSC-sEVs may positively regulate expression of proteins
such as TGF-b3, IL-10, IL-4, TNFR, IL-1ra, and HGF that could modulate
the excessive immune response that contributes to tissue damage in
COVID-19 [42e53]. MSC-sEVs could also promote alveolar tissue regen-
eration through Enhanced expression of angiopoietin-1 after endocytosis of
MSC-sEVs could also promote alveolar tissue regeneration and decrease
alveolar-capillary barrier permeability in ALI [28,29]. MSC-sEV induced
expression of KGF (FGF-7) may also contribute to repair of AECs and
increased alveolar fluid clearance [27]. EGF and HGF expression induced
by MSC-sEVs has been demonstrated to be mitogenic for type II AECs
and promoted alveolar regeneration [54]. One small cohort study in humans
demonstrated direct evidence of a therapeutic benefit of MSC-sEVs in the
treatment of COVID-19 with significant improvements in absolute neutro-
phil count, lymphopenia and acute phase reactants including C-reactive
protein, ferritin, and D-dimer. Another phase I study of exosomes bearing
CD24 also demonstrated complete recovery in all 30 patients with moderate
to severe COVID-19, and recovery within three to five days in 29 of these
patients.()

Transfer of MSC-sEVmiRNA has also demonstrated beneficial effects on
pathologic cellular processes that are believed to contribute to the
pathogenesis of COVID-19. miR-455-3p inhibited the activation and cyto-
kine production of macrophages challenged with lipopolysaccharide (LPS)
both in vivo and in vitro and reduced levels of IL-6, G-CSF, IL-17,
IL-10, IP-10 (CXCL10), MCP-1 (CCL2) [55]. miR-146a-5p targeted the
expression of IRAK-1 and TRAF-6, significantly suppressed LPS-
mediated TNF-a, IL-6, and IL-1b induction in alveolar macrophages, and
increased IL-10, M2 macrophage polarization, and phagocytosis [56e60].
miR-223 targeted the transcription factor Pknox1 decreasing IL-1b,
TNF-a, IL-6, and NF-kB, suppressed the proinflammatory activation of
macrophages and promoted the alternative antiinflammatory M2 phenotype
[61,62]. miR-511-3p targeted Rho-associated coiled-coil containing protein
kinase 2 (Rock2), which is a serine threonine kinase that phosphorylates
IRF4, and thus promoted the expression of M2-related genes [63]Fig. 3.2,
MiR-100, an mTOR inhibitor, positively regulated autophagy, attenuated
bleomycin-induced cellular apoptosis in type II AECs and reduces the levels
of proinflammatory cytokines IL-6, IL-8, and TNF-a [64]. miR-30b-3p and
miRNA-21-5p reduced apoptosis of AECs ALI induced by LPS
and ischemia-reperfusion injury, respectively [65,66]. miR-615-5p is an
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antiangiogenic microRNA targeting IGF2 (insulin-like growth factor 2) and
RASSF2 (Ras-associating domain family member 2) that interfered with
eNOS (endothelial nitric oxide synthase) signaling which contributes to
endothelial leakage [67]. Furthermore, nine miRNA molecules identified
by bioinformatic analysis to be complementary to the SARS-Cov-2 viral
genome could be candidates to interfere with viral RNA transcription or
protein translation essential for viral replication [68,69]. An example of
miRNAs identified from EVs of placental derived mesenchymal stem cells
is shown Fig. 3.3.

Modulation of the hyperinflammatory immune response through reduc-
tion of inflammatory mediators, increased expression ofanti-inflammatory
mediators, decreased influx of inflammatory cells (neutrophils, M1 macro-
phages), increased polarization into M2 macrophages providing high
capacity to eliminate tissue debris (Fig. 3.3), and differentiation of a regula-
tory T cell phenotype could arrest the progression of the lung damage in
COVID-19. Consequently, intercellular junctions between alveolar cells

Figure 3.3 Electron microscopic image of cryo-fixed, highly purified exosome prepara-
tion from mesenchymal stem cells.
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and pulmonary capillary endothelial cells could be regenerated along with
AEC repair. Degradation of hyaluronic acid accumulating in ARDS lungs
and improved mucociliary activity are likely to improve clearance of alveolar
fluid and debris. Also, if the nine human miRNA molecules found to be
complementary to the SARS-Cov-2 RNA genome can demonstrate any
direct or indirect activity to inhibit viral replication, as in the cases of other
RNA viruses such as influenza and hepatitis C, MSC-sEVs could interfere
with viral replication [71e78].

Investigation of MSC-sEVs in preclinical models of ALI and ARDS have
demonstrated significant reduction in inflammatory mediators, inflammatory
cell influx, AEC apoptosis, bacterial load, and viral replication, as well as
significant improvement in anti-inflammatory mediators, alveolar-capillary
barrier permeability, monocyte phagocytosis and alveolar-arterial oxygen
gradient [25,28,29,79e81]. Preclinical studies of MSC exosomes as therapy
for influenza virus-induced ALI (similar to COVID-19 pulmonary disease)
in a clinically relevant swine model demonstrated inhibition of virus-
induced apoptosis in AECs, inhibition of influenza virus replication through
miRNA transfer, decreased virus shedding, decreased virus replication in the
lungs, and decreased production of proinflammatory cytokines [82].

Early clinical studies demonstrating 100% clinical recovery rate from
COVID-19 with systemic administration of adipose-derived stromal pro-
genitor cells and placental MSCs, whose mechanism of action is transfer
of EVs, also suggest potential efficacy of MSC-sEVs produced by these types
of cells. One small cohort study in humans demonstrated direct evidence of a
therapeutic benefit of MSC-sEVs in the treatment of COVID-19 with
significant improvements in absolute neutrophil count, lymphopenia and
acute phase reactants including C-reactive protein, ferritin, and D-dimer.
Another phase I study of exosomes bearing CD24 also demonstrated
complete recovery in all 30 patients with moderate to severe COVID-19,
and recovery within three to five days in 29 of these patients. (https://
www.jpost.com/health-science/tel-aviv-hospital-cures-29-of-30-covid-19-
patients-in-days-it-says-658024)

8. Source of exosomes

Numerous peer-reviewed preclinical and clinical studies have demon-
strated promising therapeutic bioactivity of MSC exosomes for more
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hundreds of different clinical indications including COVID-19 and acute
lung injury [83e86]. The vast majority of these studies have focused on
bone marrow-derived MSC (BM-MSC) exosomes, perhaps because they
were the first type to be isolated. The remainder of these studies have eval-
uated adipose tissue- (AT-MSC), umbilical cord- (UC-MSC) and placenta-
derived (P-MSC) exosomes to a lesser extent [90]. Comparative studies of
these types of MSC exosomes have demonstrated that their cargo and
bioactivity differ significantly [91]. It is important to note that the type
and state of the producer cells significantly influences the bioactivity of
the exosomes they release. Placental MSCs have demonstrated greater
immunomodulatory effects and regenerative capacity than bone marrow,
adipose and umbilical cord derived MSCs [92,93]. Also, whereas placental
MSCs are isolated from perinatal donor tissue usually discarded as medical
waste, bone marrow- and adipose-derived MSCs are most commonly
isolated from adult donor tissue. Perhaps as a result of changes associated
with aging or environmental exposure, BM-MSC and AT-MSC exosomes
have demonstrated some tumorigenic and pro-metastatic effects in preclin-
ical studies [94, 95, 96, 97]. As suggested by preclinical studies in which
RNAse treatment of MSC exosomes abrogates their bioactivity, this
malignant behavior may correlate with the miRNA cargo of these types
of MSC exosomes. The miRNA content of BM-MSC exosomes differs
significantly from that of P-MSC exosomes [98]. In the case of BM-MSC
exosomes, the most abundant microRNA species is miR-1246, which has
demonstrated significant oncogenic and metastatic effects. This microRNA
species is not present in biologically significant quantities in P-MSC
exosomes. Instead, the abundant miRNAs identified in PMSC exosomes
participate in important tissue reconstitution, anti-inflammatory pathways
and tumor suppression [98]. MSC exosomes hold tremendous potential
for the reconstitution of natural tissue barriers, such as the alveolar-
capillary barrier that is disrupted in COVID-19, as well as those barriers
disrupted in many other clinical conditions. Knowing that the producer
cell type and environment strongly influence the character and bioactivity
of the exosomes secreted, the development of exosome-based therapeutics
for conditions such as COVID-19 and acute lung injury will require optimal
producer cell selection, standardized biomanufacturing protocols and
rigorous quality management standards. Orthogonal exosome characteriza-
tion methods including mass spectrometry proteomics and lipidomics, RNA
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sequencing, nano-flow cytometry and electron microscopy will help to
confirm optimal purity and consistency of these products and enable the
development and eventual clinical use upon regulatory approval of this
next generation of biopharmaceuticals.

The miRNAs of certain mesenchymal stem cell-derived exosomes
participate in important tissue reconstitution and anti-inflammatory pathways
(Fig. 3.3).

9. Mesenchymal stem cell-small extracellular vesicles
as investigational new drug

Isolated MSC-sEVs derived from cultures of P-MSCs of fetal origin
can be primed with an optimal combination of IL-6, IFN-g, IL-1b, and
Poly (I:C) or overexpressing specific miRNA could be an excellent drug
candidate for clinical trials such as for COVID-19. The investigational study
participant population could be inclusive of for patients suffering from post
COVID-19 disease, because MSC exosomes may be able to arrest the pro-
gression of fibrosis in pulmonary disease, and may influence the detrimental
progression of autoimmunity [99].

10. Exosome enrichment

The process of exosome enrichment for in-vitro, ex-vivo (whole
blood assays), and the application in-vivo requires highly purified and
well-defined material. Among different biochemical and molecular
methods, electron microscopy performed under most stringent conditions
of biological structure preservation is highly valid (Fig. 3.4).

In vivo, exosomes may attenuate inflammation and eventually reconsti-
tute endothelial barrier function in acute respiratory distress syndromes, pri-
marily by reconstituting the balance of pro- (M1) and antiinflammatory
macrophages (M2) as schematically demonstrated (Fig. 3.3), In this illustra-
tion the preferential release of exosomes targeted by MSC-derived exo-
somes may constitute a highly relevant amplification mechanism occuring
at the site of damage and inflammation. This local amplification mechanism
would be followed by resolution of thrombotic elements in small vessels of
other organs as well.
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Figure 3.4 COVID-19 lung damage and acute respiratory distress syndromes.
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