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Introduction
Left ventricular (LV) mass is a well-established predictor of major ad-
verse cardiovascular events.1 Cardiovascular magnetic resonance 
(CMR) is the gold standard for LV mass measurement; however, its 
use is limited by availability and may be contraindicated in patients 
with metallic foreign bodies. Cardiac computed tomography angiog-
raphy (CCTA) is a readily available and validated modality for accurate 
measurement of LV mass, which has been shown to have prognostic 
value, reliably predicting major adverse cardiac events and all-cause 
death.2 However, conventional methods for CCTA-derived LV 
mass are time-consuming, limiting clinical translation. Deep learning 
(DL), a recent advancement of artificial intelligence (AI), enables com-
puters to independently learn and process annotated imaging with 
minimal operator input. In this study, we aim to develop, validate, 
and test a fully automated DL-based system capable of quantifying 
LV mass on CCTA.

Methods
A DL system using a convolutional neural network-based U-Net architec-
ture was developed and trained using 86 multi-vendor CCTA LV image 
data sets. The system was then validated on 13 LV image data sets, improv-
ing its performance by tuning. The model is a 2D U-Net architecture, input 
images were rescaled to the size of 384 × 384, and the output is a binary 
mask of the same size. The model segments the LV on individual CT slices, 
and the 2D masks are then stacked together to form a final 3D mask. 
Conventional segmentation was analysed using commercially available soft-
ware Medviso Segment CT v3.0 (Medviso, AB, Lund Sweden) by two inde-
pendent and blinded expert readers to determine the LV mass. The average 
of the two expert readers was calculated to create a final result that was 
deemed the ground truth. Both the expert readers and the DL system 
were blinded to the patient’s details. A final testing data set was analysed 

independently by both the DL system and conventional manual analysis 
to derive LV mass.

Results
A total of 82 randomly selected multi-vendor data sets were used for 
testing the performance of the DL system. The mean age of the cohort 
was 58 ± 11 years, 75% were male, and the mean LV mass of the cohort 
was 126.8 ± 39.4 g. Excellent correlation was seen for the DL system as 
compared with conventional techniques in detecting LV mass (r = 0.96, 
P < 0.0001) (Figure 1A). Bland–Altman analysis reported a bias of −6.2 g 
(95% limits of agreement −28.4, 16.1) for the DL method (Figure 1B). 
Intra-class correlation coefficient was 0.98. The Sorensen–Dice coeffi-
cient for image segmentation was 0.92. The average DL system analysis 
time was 21.3 ± 6.49 s. An example of our DL system segmentation is 
seen in Figure 2.

Discussion
In this study, we sought to develop, validate, and test a fully automated DL 
system capable of quantifying LV mass on CCTA. Our model showed ex-
cellent correlation compared with expert readers with minimal bias.

The use of AI-based assessment of LV mass has been employed 
with success in CMR and has shown good correlation with clinical out-
comes and improved inter and intra-observer variability as compared 
with conventional techniques.3 A previous study by Rockenbach et al. 
pointed out that AI systems utilizing CCTA image data set have limited 
ability to generalize across multiple sites, particularly when the data 
are acquired using different scanners.4 This means that a model devel-
oped and tested at one site may not perform well when applied to data 
from a different site. To address this issue, they used transfer learning to 
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train an AI model on time series images and detect LV mass on CCTA 
data sets from two different sites.4 Our DL system, on the other hand, 
was developed using multi-vendor scanners from different sites and 
trained on single-phase data. This approach eliminates the need to re- 
train the model for individual sites. Importantly, our DL system 
achieved similar accuracy and correlation with ground truth as the AI 
model trained with transfer learning.4 Conventional semi-automatic 
techniques of LV mass assessment on CCTA can typically take 2– 
3 min, our system can complete this in 21.3 s, rapidly providing accurate 
results to enhance the reporting process and improve clinical transla-
tion.5 The limitations of our study include the modest sample size 
and lack of clinical outcomes. Although our testing sample size was 
only 82 data sets, each of these data sets is comprised of multiple of 
2D slices, considerably expanding the actual number of individual 
samples.

A fully automated quantification of LV mass on CCTA is feasible 
using a DL-based system.
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Figure 1 (A) Linear regression plot of LV mass detected by the DL system. Line of equality (y = x) represented by dashed line. (B) Bland–Altman plot 
of the ground truth as compared with the DL system for LV mass detection, with 95% limits of agreement.
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Figure 2 Cardiac CT four-chamber views of the LV with the ground truth (blue outline) and DL model (red outline) segmentation contours over-
layed. The left image (A) demonstrates an example of good correlation of the DL model with ground truth, whereas the right image (B) demonstrates an 
example of poor correlation.
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Data availability
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corresponding author.
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