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Abstract
Nanoparticle-facilitated drug delivery forms the core of medicine nowadays with the drug being delivered right at the target, 
reducing side effects and enhancing therapeutic value. Nanoparticles derived from natural compounds are further a point 
of focus being biocompatible and safe by and large. In this study, we have performed HF/6-31G calculations coupled with 
intermolecular interaction calculations and nanoscale molecular dynamics simulations to investigate self-assemblage in 
curcumin induced by trigonelline. Similar to recently reported self-assemblage in curcumin induced by sugar, trigonelline, 
a natural antidiabetic derived from fenugreek, can also induce auto-catalyzed self-assemblage in curcumin to form nanopar-
ticles. It has been shown that these nanoparticles may be utilized for the delivery of drugs with severe side effects especially 
for diabetic patients with triple benefit of being antidiabetic, biocompatible and safe. As an example, carriage of antidiabetic 
drug pioglitazone and anticancer drug taxol have been depicted utilizing nanoparticles of curcumin and trigonelline. Twenty 
five taxol molecules could be comfortably carried in a 50 nm nanoparticle with an average overall root mean square deviation 
of 2.89 Å with reference to initial positions. For the first time, this study shows the possibility of developing antidiabetic 
nanoparticles with plethora of opportunities for diabetic patients. The study is expected to motivate experimental verification 
and has a long lasting impact in medicinal chemistry.
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Introduction

Nanoparticles have revolutionised modern medicine mak-
ing targeted delivery a reality. Some interesting work in 
this direction have recently been reported by Karimipour’s 
group, including the effect of nanoparticle diameter on drug 
delivery (Jafarzadeh et al. 2020). Magnetic nanoparticles are 
also used for drug delivery and as contrast agent for mag-
netic resonance imaging (Yadollahpour and Rashidi 2015). 
Not only in medicine but nanoparticles have also expanded 

the arena of engineering materials. Nanoparticles have been 
used to modulate thermal conductivity of fluids for use in 
devices. To attain best usage of nanomaterials in medical 
devices, biosensors etc., researchers investigate the behav-
iour of atomic structures in nanoparticles and flow behav-
iour, heat transfer properties of nanoparticles in atomic chan-
nels (Jiang et al. 2020; Abdelmalek et al. 2020; Farzinpour 
et al. 2020; Liu et al. 2019a, 2020). Accurate nanoscale sim-
ulations of the stability of the fluid inside nanochannels have 
also been reported (Alipour et al. 2019). Thermal conductiv-
ity and other physical properties of nanocoolant made from 
silver nanoparticles produced through green technology and 
coconut oil have been studied (Sarafraz et al. 2016). Similar 
experiments have been conducted with CuO nanosuspen-
sion in liquid Indium (Sarafraz and Arjomandi 2018). The 
convective boiling properties of CuO nanoparticles in  H2O/
ethylene glycol have been studied at different concentrations 
of nanoparticles (Sarafraz et al. (2014)). The antibacterial 
property of ZnO nanoparticles has been used to develop 
antibacterial polyethylene which has enormous applica-
tions especially in current context of COVID-19 (Galli et al. 
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2020). Similarly, Ag and Zn nanoparticles have been utilized 
to develop bactericidal toothbrushes, the efficiency of which 
has been measured by Johnson et al. (Johnson et al. 2020) 
using physical and chemical means.

The above clearly demonstrates the usage and importance 
of nanoparticles in different walks of life including medicine 
and modern nanodevices. To curb the toxic aspect related 
to synthesis and use of metallic nanoparticles efforts are 
being made worldwide to synthesize them in an eco-friendly 
environment and preferably from natural, biocompatible and 
safe material. To cite a few in this direction, we draw atten-
tion towards plant-mediated synthesis of Ag nanoparticles 
(Rajeshkumar and Bharath 2017) and biosynthesis of nano-
particles from fungi and yeast (Moghaddam et al. 2015). 
This study explores the use of plant product turmeric to form 
natural, eco-friendly, biocompatible and antidiabetic nano-
particles for drug delivery especially for diabetic patients.

Turmeric is used as a common dietary spice in Asian 
countries known for its variety of medicinal benefits. It 
contains 2.5–6% curcumin, which is a natural polyphenol 
responsible for its medicinal benefits such as anti-inflamma-
tory, anticancer and can be well tolerated by patients (Teng 
et al. 2019; Liu et al. 2019). There have been several efforts 
to utilize the benefits of curcumin, but its low solubility and 
fast excretion have prohibited its use in medicine (Sharma 
et al. 2007). However, efforts have been made to enhance its 
solubility and bio-accessibility (Sharma et al. 2019b; Lin 
et al. 2019). Recently, curcumin has been the focus of medic-
inal studies due to its self-assemblage property resulting in 
the formation of nanoparticles useful in enhancing targeted 
drug delivery (Wong et al. 2019). Curcumin is a hydropho-
bic polyphenol which can exist in keto as well as enol form. 
The enol form is dominant in solution. Self-assemblage is 
normally observed by surfactant-like amphiphilic molecules. 
Amphiphilic cyclic or non-cyclic peptides show self-assem-
blage properties (Ghadiri et al. 1994; Khazanovich et al. 
1994; Ghadri et al. 1995; Ghadiri 1995).

This study aims to find out at the molecular level the 
type of interactions that drive the self-assembly in curcumin. 
Further, to investigate if the self-assembly can be induced by 
a natural antidiabetic compound. If feasible, then such nano-
particles or delivery vehicles would be of immense utility 
for diabetic patients suffering from fatal diseases like cancer. 
Trigonella foenum-graecum, commonly known as fenugreek 
is used as a condiment. Fenugreek seeds are also known 
for their antidiabetic property (Mooventhan and Nivethitha 
2017). Trigonelline is one of the main constituents of fenu-
greek (Ouzir et al. 2016). Similar to recent research findings 
(Wong et al. 2019), we have first studied self-assemblage in 
curcumin induced by a sugar mannose. After understanding 
the governing intermolecular forces in the above case, we 
have explored the possibility of curcumin self-assemblage 
in presence of trigonelline as inducing agent. The choice of 

trigonelline as an inducing agent is based on the fact that 
it is the main chemical constituent of a natural antidiabetic 
(Gong et al. 2016). It is a zwitterionic alkaloid, formed by 
the methylation of the nitrogen atom of niacin (vitamin B3) 
(Ouzir et al. 2016). This study is expected to help develop 
biocompatible, safe nanoparticles for efficient delivery of 
cytotoxic drugs especially for diabetic patients with triple 
benefits of biocompatibility, safety and antidiabetic nature. 
In line with this, the delivery of an antidiabetic drug piogl-
itazone and delivery of an anticancer drug taxol have also 
been studied.

Methods

In this work, geometry optimizations at the Hartree–Fock 
6-31G level (Ditchfield et al. 1971; Schlegal 1982) along 
with intermolecular interaction energies, with and without 
basis set superposition error (BSSE) correction (Boys Ber-
nardi counterpoise correction) (Boys and Bernardi 1970), 
have been performed to investigate self-assemblage of 
curcumin molecules in the presence of an inducing agent. 
Molecular dynamics simulation studies (Haile 2001) have 
also been performed on self-aggregated forms to understand 
their stability with time. At first, curcumin, trigonelline and 
alpha-d-mannose were optimized using Berny’s optimiza-
tion algorithm of the Gaussian software package (Frisch 
et al. 2016).

Self‑aggregation studies using quantum mechanical 
calculations

The different complexes of curcumin and inducing agent 
were geometry optimized from 1:1 to 1:5 stoichiometric 
ratios as shown in Fig. 1. The geometry of the complexes 
was optimized without any restraint that is, the fragments 
could reorganize to adopt the most favourable conforma-
tions. The 1:5 optimized complex was taken as the repeat 
unit to slowly build up self-aggregated nanoparticles of 
larger dimensions as shown in Fig. 2. Single point energy 
calculations have been carried out on these large nano-
particles. The interaction energies have been computed as 
follows:

(1)ΔE(a) =Ecomplex AxBy−
(

x.Efragment A + y.Efragment B

)

,

(2)
ΔE(b) = Ecomplex AB−

(

∑

x.Efragment A +
∑

y.Efragment B

)

,

(3)
ΔE(c) = Ecomplex AB −

(

∑

x.Efragment A +
∑

y.Efragment B

)

,
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Fig. 1  Optimized complexes of curcumin and mannose with their respective interaction energies (The H-bonds are shown by dashed line in Å)

Fig. 2  Large curcumin-mannose complexes showing feasibility of curcumin self-assemblage induced by mannose molecules
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where, ∆E(a) is the interaction energy uncorrected for 
BSSE and it is with respect to energy of isolated fragments, 
∆E(b) is the interaction energy uncorrected for BSSE and it 
is with respect to energy of reorganized isolated fragments in 
the complex and ∆E(c) is the interaction energy with BSSE 
correction, that is, counterpoise correction. Equations 1–3 
are developed according to ref. (Teng et al. 2019).

Molecular dynamics simulation studies

To explore the dynamical behaviour and stability over time 
of self-aggregated nanoparticles, molecular dynamics sim-
ulation studies have been performed using the nanoscale 
molecular dynamics (NAMD) package (Phillips et  al. 
2005). The CHARMM 36 force field (Klauda et al. 2010; 
Best et al. 2012) has been used. Force field parameters for 
curcumin, α-d-mannose and trigonelline were generated 
using CHARMM General force field website at https ://www.
param chem.org (Vanommeslaeghe et al. 2010), while force 
field parameters for pioglitazone and taxol were generated 
using the SwissParam website at https ://www.swiss param .ch 
(Zoete et al. 2011). The energy minimization was performed 
for 1 ns. Then the system was subjected to annealing simu-
lation where the temperature was raised from 60 to 300 K 
for 2.88 ns. The system was then subjected to equilibration 
simulation for 10 ns followed by 100 ns MD production 
simulation at 300 K. A NPT ensemble was used. Pressure 
was maintained at 1 atm using the Nose–Hoover barostat 
(Martyna et al. 1994). Long-range interactions were treated 
using the particle-mesh EWald method (Darden et al. 1993). 
For all simulations, a 16.0 Å cutoff distance for the Cou-
lomb and van der Waals (vdW) interactions was set and a 
15.0 Å cutoff was set for the force-based switching function. 
The equations of motion were integrated using the r-RESPA 
multiple time step scheme (Tuckerman et al. 1992) to update 
short-range interactions for every step and long-range elec-
trostatic interactions for every two steps. The time step of 
integration was chosen to be 2 fs for all simulations except 
for the MD production run for which 1 fs was chosen.

The above methodology has been applied to explore self-
aggregation of curcumin induced by natural antidiabetic 
agents with the aim of developing a natural and safe drug 
delivery system for diabetics to deliver therapeutic agents 
for fatal diseases like cancer.

Results and discussion

As mentioned in the methods section, the three molecules, 
the enol dominant form of curcumin, zwitterionic trigonel-
line and α-d-mannose were first optimized at the HF/6-31G 
level. Next, different stoichiometric complexes of curcumin 
and mannose were optimized, results of which are shown 

in Fig. 1. The oxygens of curcumin, being a polyphenolic 
compound, act as electrostatically interacting points and also 
as H-bond donors or acceptors. Five mannose molecules 
can easily interact in an auto-catalyzed fashion with a cur-
cumin molecule. Although the complexes are geometry opti-
mized, the point of interaction may be governed by initial 
placement of the molecules. However, the relative change in 
interaction energies, in other words, the autocatalyzed nature 
would remain the same. The interaction energies with and 
without BSSE correction are also collected in Table 1. This 
led to the understanding that mannose molecules interact 
attractively with curcumin molecules and therefore larger 
complexes of curcumin–mannose in 6:30 and 15:75 ratios, 
where the 1:5 complex was taken as the repeat unit were 
studied. These complexes are shown in Fig. 2. Single point 
calculations were performed on these complexes. The cal-
culated interaction energies are given in Table 1. At this 
point, it is understood that the growth of the complex may 
not be symmetrical and these structures have been chosen for 
convenience. However, these results are in agreement with 
recent experimental observation that sugar can induce self-
assemblage of curcumin (Wong et al. 2019). Treating this 
as the control case it is inferred that curcumin being largely 

Table 1  Self-aggregation feasibility of curcumin induced by mannose

*ΔE(a) is the interaction energy uncorrected for BSSE and it is with 
respect to energy of isolated fragments, ΔE(b) is the interaction 
energy uncorrected for BSSE and it is with respect to energy of reor-
ganized isolated fragments in the complex and ΔE(c) is the interaction 
energy with BSSE correction

Interaction energy* (in kJ/mol)

Ratio of 
curcumin:mannose

∆E(a) ∆E(b) ∆E(c)

1:1 − 45.2 − 53.9 − 40.7
1:2 − 79.0 − 89.8 − 68.7
1:3 − 139.4 − 171.4 − 134.7
1:4 − 227.7 − 282.8 − 213.7
1:5 − 304.8 − 385.1 − 289.2
2:10 − 604.3 − 766.6 − 569.1
3:15 − 905.5 − 1147.7 − 848.5
4:20 − 1205.8 − 1528.7 − 1127.8
5:25 − 1506.2 − 1910.1 − 1407.6
6:30 − 1802.4 − 2286.4 − 1676.6
7:35 − 2110.5 − 2675.3 − 1966.0
8:40 − 2332.9 − 2978.8 − 2164.6
9:45 − 2470.2
10:50 − 2704.9
11:55 − 2926.9
12:60 − 3063.9
13:65 − 3299.0
14:70 − 3521.1
15:75 − 3584.6

https://www.paramchem.org
https://www.paramchem.org
https://www.swissparam.ch
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hydrophobic, a polar sugar molecule which is of appropriate 
size can engage curcumin’s points of interactions to form 
successively larger non-covalent complexes or nanoparticles 
in an auto-catalyzed fashion.

In line with the aim of this research, we have also 
explored the complexation and self-assemblage of curcumin 
induced by polar zwitterionic trigonelline which is also of 
comparable size to mannose and a natural antidiabetic, 
safe herbal agent. Similar to curcumin–mannose different 
stoichiometric complexes of curcumin and trigonelline 
were optimized at the HF/6-31G level results of which are 
depicted in Fig. 3. Similar to mannose, the trigonelline mol-
ecules also interact attractively with curcumin, successively 
forming larger complexes. A steady increase in interaction 
energy can be seen with increasing number of trigonelline 
molecules from 1:1 to 1:5 ratio (from − 100.7 to − 556.4 kJ/
mol). In addition to H-bonds with the phenolic groups of 
the curcumin, they also interact with each other electrostati-
cally resulting in more attractive interactions (Table 2). It is, 
therefore, inferred that trigonelline molecules also interact 
attractively with curcumin in an auto-catalyzed fashion and 
may induce its self-aggregation. Larger complexes of cur-
cumin–trigonelline in 6:30 and 15:75 ratios were investi-
gated (Fig. 4). Again the curcumin–trigonelline 1:5 complex 

was taken as the repeat unit purely for convenience and sin-
gle point calculation were performed on the large complexes. 
Interaction energies collected in Table 2 are comparable to 
curcumin:mannose complexes and indicate good feasibility 
of trigonelline to act as an inducing agent for the formation 
of large self-aggregated nanoparticles of curcumin and may, 
therefore, act as drug delivery vehicles. Again it is empha-
sized that in reality, aggregation may not be symmetrical.

To further investigate the feasibility of curcumin–trig-
onelline nanoparticle as a drug delivery vehicle, we have 
taken the 15:75 ratio complex as the repeat unit (from here 
on referred as ‘one layer’). Layers were now increased one 
by one to form larger nanoparticles good enough for the 
carriage of drug molecules. Interaction energy calculations 
have not been carried out beyond a single layer due to com-
putational limitations. However, the stability of these nano-
particles has been explored through molecular dynamics 
simulation studies. Figure 5 depicts a nanoparticle formed 
by stacking of five layers of 15:75 complex of curcumin 
and trigonelline. The stability of this nanoparticle over time 
was studied by NAMD simulations the results of which are 
shown in Fig. 6. A low RMSD in the position of all heavy 
atoms with respect to initial frame indicates good stabil-
ity of self-aggregated nanostructure of curcumin over time. 

1:5

∆E(b) :      -628.9 kJ/mol
∆E(c) :      -556.4 kJ/mol

1.79

1.90

2.46

2.36
2.54

2.31

2.06

2.12
2.02

2.18

2.45

2.01

Ra�o of curcumin:trigonelline 1:1

∆E(b) :    -111.7 kJ/mol
∆E(c) :    -100.7 kJ/mol

1.61

1:2

∆E(b) :    -168.8 kJ/mol
∆E(c) :    -148.7 kJ/mol

2.13

1.61

1:3

∆E(b)  :   -291.3 kJ/mol
∆E(c) :   - 254.1  kJ/mol

2.26

1.60

2.13

2.05

2.65

1:4

∆E(b) :     -479.2 kJ/mol
∆E(c) :     -416.3 kJ/mol

2.74

1.95

1.75

2.17

2.28

2.74

2.13

Fig. 3  Optimized complexes of curcumin and trigonellinewith their respective interaction energies (The H-bonds are shown by dashed line in Å)
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The segregated RMSDs of all curcumin molecules and all 
trigonelline molecules, which are also low, are shown on the 
same plot indicating usual movement of atoms at 300 K and 
no instability. To further validate the integrity and stability 
of the nanoparticles over time, snapshots of the system are 
shown at 20 ns intervals.

After understanding the stability of the nanoparticle, 
we have explored the utility of this nanoparticle in drug 
delivery. Figure 7 depicts the results for the carriage of 
antidiabetic drug pioglitazone. The first and last frame of 
NAMD simulation indicates good carriage and no premature 
expulsion of the drug. The low RMSD in the position of 
all heavy atoms indicates usual movement at 300 K. Segre-
gated RMSDs also indicate good stability of curcumin and 
trigonelline molecules. The pioglitazone molecules are small 
and can freely move around in the pore of the nanoparticle 

formed by self-aggregation of curcumin and trigonelline 
molecules. This movement is indicated by fluctuations in 
positions of pioglitazone atoms keeping the overall RMSD 
low (Fig. 7).

We have also investigated carriage of an anticancer drug 
taxol results for which are shown in Fig. 8. Taxol seems to 
be quite stable inside the nanoparticle with very low fluc-
tuations in its position. Overall RMSD in position of all 
heavy atoms indicates usual movement at room tempera-
ture and no premature expulsion of the drug. Taxol being 
a larger molecule, its movement inside the pores of the 
nanoparticle is very restricted as evident from the RMSD 
of about 1 Å. These results encouraged us to pursue a 
self-aggregated nanoparticle of about 50 nm dimension 
carrying 25 taxol molecules. Simulation results for this 
system are shown in Fig. 9 and also available as video in 
Supplement 1. Figure 9 further validates smooth carriage 
of 25 taxol molecules without any premature expulsion. 
An average (over 100 ns) overall RMSD of 2.89 Å was 
observed. Segregated average RMSD’s are 3.17 Å for cur-
cumin molecules, 2.63 Å for taxol molecules and 2.74 Å 
for trigonelline molecules.

The study thus highlights the possibility of utilizing self-
aggregated form of curcumin and trigonelline for delivery 
of drugs especially for diabetic patients.

Conclusions

In this work, we have shown self-assemblage of curcumin 
induced by zwitterionic trigonelline molecules forming nan-
oparticles which can possibly be utilized for carriage and 
delivery of toxic drugs with severe side effects. Nanoscale 
molecular dynamics simulation studies have been utilized 
to show carriage of antidiabetic drug pioglitazone and anti-
cancer drug taxol. 100 ns simulation of a nanoparticle with a 
50 nm diameter carrying 25 taxol molecules shows stability 
with a low average RMSD value of 2.89 Å for the entire sys-
tem. There was no tendency of breakage of the nanoparticle 
or expulsion of the drug. Since trigonelline itself possesses 
antidiabetic properties such nanoparticles would be particu-
larly beneficial for diabetic patients. Trigonelline being polar 
is expected to overcome solubility issues with curcumin. 
This study reports an antidiabetic nanoparticle for the first 
time and is expected to lead to long term medicinal benefits 
on experimental verification.

Table 2  Self-aggregation feasibility of curcumin induced by trigonel-
line

*ΔE(a) is the interaction energy uncorrected for BSSE and it is with 
respect to energy of isolated fragments, ΔE(b) is the interaction 
energy uncorrected for BSSE and it is with respect to energy of reor-
ganized isolated fragments in the complex and ΔE(c) is the interaction 
energy with BSSE correction

Interaction energy* (in kJ/mol)

Ratio of 
curcumin:trigonelline

∆E(a) ∆E(b) ∆E(c)

1:1 − 76.4 − 111.7 − 100.7
1:2 − 124.5 − 168.8 − 148.7
1:3 − 244.6 − 291.3 − 254.1
1:4 − 418.0 − 479.2 − 416.3
1:5 − 565.5 − 628.9 − 556.4
2:10 − 1092.4 − 1219.7 − 1066.3
3:15 − 1624.6 − 1816.3 − 1581.9
4:20 − 2158.6 − 2413.8 − 2098.4
5:25 − 2696.4 − 3015.5 − 2619.1
6:30 − 3201.0 − 3583.5 − 3097.8
7:35 − 3722.0 − 4168.6 − 3608.1
8:40 − 4320.9 − 4831.6 − 4193.1
9:45 − 4949.3
10:50 − 5504.2
11:55 − 6109.1
12:60 − 6739.0
13:65 − 7296.2
14:70 − 7905.7
15:75 − 8571.9
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Fig. 4  Large curcumin-trigonelline complexes showing feasibility of curcumin self-assemblage induced by trigonelline molecules

Fig. 5  Stacking of five layers (each layer is comprised of a complex of curcumin:trigonelline ratio of 15:75) rendering a small approximately 
9 nm × 9.5 nm nanoparticle for the carriage of drug
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Fig. 6  Root mean square deviation (in Å) in position of all heavy atoms (shown in red) with respect to initial frame, for curcumin molecules 
(shown in black) and for trigonelline molecules (shown in green) in the nanoparticle
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Fig. 7  Root mean square deviation (in Å) in position of all heavy atoms (shown in red) with respect to initial frame, for curcumin molecules 
(shown in black), for trigonelline molecules (shown in green) and for pioglitazone molecules (shown in cyan) in the nanoparticle
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Fig. 8  Root mean square deviation (in Å) in position of all heavy atoms (shown in black) with respect to initial frame, for curcumin molecules 
(shown in red), for trigonellinemolecules (shown in blue) and for taxol molecule (shown in green) in the nanoparticle
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