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Abstract

Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease resulting in

non-healing wounds affecting body areas of high hair follicle and sweat gland density. The

pathogenesis of HS is not well understood but appears to involve dysbiosis-driven aberrant

activation of the innate immune system leading to excessive inflammation. Marked dys-

regulation of antimicrobial peptides and proteins (AMPs) in HS is observed, which may con-

tribute to this sustained inflammation. Here, we analyzed HS skin transcriptomes from

previously published studies and integrated these findings through a comparative analysis

with a published wound healing data set and with immunofluorescence and qPCR analysis

from new HS patient samples. Among the top differently expressed genes between lesional

and non-lesional HS skin were members of the S100 family as well as dermcidin, the latter

known as a sweat gland-associated AMP and one of the most downregulated genes in HS

lesions. Interestingly, many genes associated with sweat gland function, such as secreto-

globins and aquaporin 5, were decreased in HS lesional skin and we discovered that these

genes demonstrated opposite expression profiles in healing skin. Conversely, HS lesional

and wounded skin shared a common gene signature including genes encoding for S100 pro-

teins, defensins, and genes encoding antiviral proteins. Overall, our results suggest that the

pathogenesis of HS may be driven by changes in AMP expression and altered sweat gland

function, and may share a similar pathology with chronic wounds.
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Introduction

Hidradenitis suppurativa is a multifactorial disease characterized by

chronic inflammatory non-healing sinus tracts leading to impaired quality

of life

Hidradenitis suppurativa (HS) is characterized by recurrent painful nodules, abscesses and

sinus tract formation leading to chronic non-healing wounds [1, 2]. Cutaneous nodules form,

which over time may rupture, resulting in painful, deep dermal abscesses. With disease pro-

gression, draining sinus tracts, open wounds, fibrosis, and scarring can be observed, which

together can often accompany significant disfigurement, in addition to pain, malodor, and

drainage. HS is common; it is estimated that 1–4% of the general population is affected and

this percentage varies by geographic region with disproportionately more females, young

adults, and African Americans and biracial patients being affected [3, 4]. Overall, chronic

wounds are a source of acute and chronic infections, chronic pain and have a profound nega-

tive impact on activities of daily living. This negative impact on quality of life has been found

to have an impact similar to that seen in patients with renal and heart failure [5, 6].

Improved knowledge of immune response dysregulation in HS, including innate antimi-

crobial immunity, may unveil mechanisms of disease pathogenesis and may ultimately help

develop therapies that lead to better disease outcome for patients. This understanding could

lead to better healing, decreased risk of infection, and ultimately improved quality of life for

those with HS. In this manuscript, we use a transcriptomics-centered approach to investigate

the pathogenesis of HS, uncovering a wide range of gene expression changes that may cause

disease.

The understanding of the inflammatory and antimicrobial processes in HS has begun but is

incomplete [7–16]. Like chronic non-healing wounds such as chronic venous ulcers and dia-

betic ulcers, HS lesions are often associated with dysregulated immune responses including

altered expression of various cytokines, chemokines and antimicrobial proteins (AMPs) [9,

17]. As effectors of innate immunity, AMPs act as endogenous microbicidals against invading

microbes [18–23]. AMPs directly kill Gram-positive and Gram-negative bacteria, fungi, and

certain viruses [24, 25]. Over- or under-expression of AMPs has been implicated in various

cutaneous diseases, such as psoriasis, atopic dermatitis, and in chronic leg ulcers [26–28].

Although efforts have been made to begin characterizing AMP expression in HS, our under-

standing is very limited.

It is important to note that HS is thought to be primarily due to occlusion and subsequent

inflammation of the hair follicle and not the sweat gland itself [1]. However, in about 50% of

all HS patients, inflammation and/or secondary involvement of the sweat gland unit is

observed, especially after rupture of dilated hair follicles and half of patients with HS report a

change in their sweating behavior before an overt lesion occurs [2, 29, 30]. This raises the pos-

sibility that changes in sweat gland-associated AMPs may be functionally linked to HS. Conse-

quently, a better understanding of the molecular and cellular mechanisms involved in HS

antimicrobial immunity and the impact of the sweat gland and its antimicrobial products on

inflammation and wound healing is needed to ultimately develop optimized therapies for HS.

Dysregulation of host innate antimicrobial immunity and sweat gland pathology could play

a significant role in the inflammatory response in HS. However, this relationship has not yet

been sufficiently characterized. In this manuscript, we employ first a biocomputational

approach to examine the relationship between HS and innate antimicrobial defenses using a

previously published data set (GSE72702) [14]. Additionally, we analyzed the gene expression

signatures of a skin wound RNA-seq data set (GSE97615) [31]. Using differently expressed

genes (DEGs) from both data sets, we show that HS lesional skin and skin wounds share
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distinct DEGs, demonstrating that HS and wounded skin have a common gene signature

underlying possibly a common pathogenesis pathway. We further identified that expression of

multiple AMPs and key sweat gland-associated genes were downregulated in HS lesional skin

compared to non-lesional skin. Conversely, expression of many inflammation-associated

AMPs was increased in HS lesional skin, confirming previous studies examining the roles of

AMPs in HS and further adding to our understanding of this disease [32]. Increased expres-

sion of multiple S100 family members was confirmed by qPCR and immunofluorescence

staining of donor-matched HS lesional and non-lesional samples. We also confirmed by qPCR

and IF the decrease in expression of dermcidin (DCD), a key sweat gland-associated AMP and

one of the most downregulated genes in HS lesions identified by the biocomputational

approach. Further, analysis of microarray GSE72702 and IF on new HS samples verified that

expression of multiple other genes associated with sweat gland function are decreased in HS

lesional skin. Finally, we describe a common gene expression signature in HS lesions and

wounded skin. A number of AMPs have increased expression in both HS lesions and wounded

skin. Conversely, DCD, as well as many sweat gland-associated genes were greatly suppressed

in lesional HS skin but highly upregulated in healing skin.

Overall, our results suggest that the pathogenesis of HS may be driven by changes in AMP

expression, altered sweat gland function, and may also share a similar pathology with wounds.

Materials and methods

Analysis of gene expression data sets

Microarray data set. We used the publicly available microarray dataset from Blok et al.
(GEO accession number: GSE72702) to evaluate changes in gene expression between lesional

versus non-lesional skin in HS patients [14]. This dataset results from mRNA microarray

experiments performed on skin biopsy samples from patients with HS. The samples were split

between lesional skin (n = 17) and healthy non-lesional skin obtained from the upper arm or

leg (n = 13). RNA was hybridized to the GeneChip HT HG-U133+PM Array (Affymetrix,

Santa Clara, CA, U.S.A.). We used the normalized dataset submitted to the Gene Expression

Omnibus [33]. The data had been previously normalized by Robust Multi-array Average

(RMA) using ArrayStudio software version 8.0 (OmicSoft Corp., St Morrisville, NC, U.S.A.).

To identify differentially expressed genes (DEGs) between the lesional and non-lesional sam-

ples we first removed the 4 lesional skin samples for which no matched healthy non-lesional

skin sample had been obtained. Also, prior to analysis we filtered lowly-expressed and invari-

ant microarray probe sets, i.e. those with an expression level< 4 in all but two samples or a

standard deviation < 0.1 across all samples. After filtering, the dataset consisted of 26 (13

paired lesional and non-lesional) samples and 51,567 probe sets.

To identify DEGs between lesional and non-lesional samples, we used the R package nlme
to implement a mixed-effects model including the patient ID as the random effect [34]. P-val-

ues were corrected for multiple testing using the Benjamini-Hochberg method [35]. Signifi-

cantly changing genes were defined as probe sets with an adjusted p-value < 0.05.

To identify genes whose expression varies in similar fashion to the 1553946_PM_at probe

(corresponding to the DCD gene), we calculated the Pearson correlation between the

1553946_PM_at probe and all other probes in the dataset across all samples using the R statisti-

cal programming environment.

RNA-seq data set. We used the publicly available RNA-seq dataset from Iglesias-Barto-

lome et al. (GEO accession number: GSE97615) to identify DEGs between wounded and non-

wounded human skin samples [31]. This dataset contained human axillary skin wounds at

baseline (Day 1, unwounded), two days after full-thickness 3-mm punch biopsy wounding
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(Day 3), and five days after wounding (Day 6). The raw data was reprocessed as initially

described in Iglesias-Bartolome et al. using the Partek Genomics Suite Analysis Toolkit version

6.6 (www.partek.com) to generate read counts per gene. In brief, reads were aligned to the

hg19 version of the human genome using the TopHat v2.1 alignment tool, and expression was

quantified by the Partek E/M algorithm based on known RefSeq transcripts [31]. Genes that

did not have at least 10 reads in any one skin sample were removed from subsequent analysis,

resulting in a data set of 12 samples and 26,473 genes. To identify genes that change across

time we calculated the moderated F-statistic in limma using voom to estimate the mean-vari-

ance relationship [36, 37]. P-values were corrected for multiple testing using the Benjamini-

Hochberg method. Genes were considered differentially expressed if the adjusted p-value

was< 0.05. The DEGs were then compared against those identified as differentially expressed

(adjusted p-value < 0.05) in our analysis of the Blok et al. lesion/non-lesion microarray data of

HS samples.

Heatmaps

Heatmaps were generated using the R package pheatmap [38]. For data visualization, probe

sets were z-score transformed and capped when the absolute scaled values exceeded 2.5. Genes

and samples were clustered using a correlation distance with complete linkage.

Preparation of skin samples

All qPCR analyses and immunofluorescence on HS samples as reported in this manuscript

were performed using samples from skin punch biopsies (4-mm) of clinically affected,

“lesional” skin obtained from patients visiting a dermatologist at Duke University Medical

Center Dermatology Clinic. Clinically unaffected, but adjacent, “non-lesional” biopsies were

also obtained. Written informed consent was obtained from all patients for participation in

the study. This tissue was obtained in accordance with the Duke Health Institutional Review

Board (IRB) protocol 0007979, "Immune Signaling in Psoriasis and other Immune-mediated

Diseases". De-identified normal skin samples were obtained from surgical skin waste, in accor-

dance with the Duke Health IRB protocol 00090566, "Access to de-identified skin samples".

Biopsies for immunohistochemistry were immediately placed in Tissue-Tek O.C.T Compound

(Sakura Finetek USA) and stored at -80˚C. For future RT-qPCR, samples were homogenized

by mincing into small pieces with surgical scissors, lysed in TRIzol Reagent (ThermoFisher,

Waltham, MA) and stored at -80˚C for RNA isolation.

Real-time polymerase chain reaction (qPCR)

RNA extraction was performed using the Direct-zol RNA Purification Kit (Zymo Research,

Tustin, CA). cDNA was synthesized using iScript cDNA Synthesis Kit (Bio-Rad, Hercules,

CA). qPCR was performed for determining gene expression using Fast SYBR Green Master

Mix (ThermoFisher, Waltham, MA) and primers specific for DCD, S100A7, S100A8, and

S100A7A (Integrated DNA Technologies, Skokie, IL) (see Table 1) on a StepOnePlus Real-

Time PCR machine (Applied Biosystems, Foster City, CA). PCR was performed for 40 cycles

with a melting temperature of 95˚C for 3 seconds and an annealing/extension temperature of

60˚C for 30 seconds. qPCR was performed on 6 (3 paired lesional and non-lesional) samples.

All data was normalized to the average gene expression levels of HS non-lesional skin using

the comparative ΔΔ CT method [39].

Statistical analysis. To determine fold change (FC) in gene expression for genes exam-

ined via qPCR, statistical analysis was performed using the Student’s t-test with p-
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value < 0.05. Data are shown as mean +/- standard error of the mean. Analysis was performed

in GraphPad Prism v8.0 (GraphPad Software, La Jolla, CA).

Immunofluorescence

Samples in Tissue-Tek O.C.T Compound (Sakura Finetek, Torrance, CA) were sectioned and

fixed in 4% paraformaldehyde. Staining was performed using an established immunohis-

tochemistry protocol [40]. Samples were permeabilized in 0.1% Triton X (Millipore-Sigma,

St. Louis, MO) for 10 minutes. Samples were incubated with monoclonal mouse anti-human

S100A7 antibody (Clone 47C1068, 1:200 dilution, ThermoFisher, Waltham, MA), monoclonal

mouse anti-human S100A8 antibody (Clone CF-145, 1:500 dilution, ThermoFisher, Waltham,

MA), monoclonal mouse anti-human DCD antibody (Clone G-81, 1:50 dilution, Santa Cruz

Biotechnology, Dallas, TX), monoclonal mouse anti-human K77 antibody (Clone AE1/AE3,

1:250 dilution, Abcam, San Francisco, CA), or unlabeled IgG control (Southern Biotech, Bir-

mingham, AL) overnight at 4˚C. Samples were then washed with 0.01% Triton-X and incu-

bated with Cy3-congugated anti-IgG secondary antibody (Invitrogen, Waltham, MA) for 45

minutes. Secondary antibody was used as control for all DCD and K77 co-stained samples.

Nuclear counterstaining was performed with DAPI. Images were acquired using the IX73

inverted microscope (Olympus, Center Valley, PA). Staining of all directly-compared speci-

mens was performed using the same antibody concentrations and exposure times were kept

consistent throughout samples.

Results

Genes related to humoral immunity, AMPs, and response to bacterium are

upregulated in HS lesions

Analysis of microarray data published in Blok et al. comparing HS lesional skin to HS non-

lesional skin identified a total of 6,352 DEGs (adjusted p-value < 0.05) (S1 Table). There were

804 unique significant DEGs with a FC > 2 [14]. Of the unique DEGs with a FC > 2, 524

genes were upregulated in the lesional skin relative to the non-lesional skin and an additional

280 genes were downregulated (Fig 1). Gene Ontology Enrichment Analysis (GOrilla) of

microarray data revealed a number of Gene Ontology (GO) terms that were enriched [41].

Enriched GO terms included “chemokine production” (GO 0032602), “antimicrobial humoral

response mediated by antimicrobial peptide” (GO 0051844), “complement activation” (GO

006956) and “keratinization” (GO 0031424) among others (Fig 2 & Table 2). Top upregulated

genes, as previously reported, included AMPs, immunoglobulins, and some keratin types

Table 1. Primer sequences and melting temperatures.

Primer Sequence Tm (˚C)

hGAPDH fwd CAAGAGCACAAGAGGAAGAGAG 55

hGAPDH rev CTACATGGCAACTGTGAGGAG 55.3

hDCD fwd AAAGCCAAGGAAGCAGAGAT 54.3

hDCD rev CTCCTTTACCCACGCTTTCT 54.7

hS100A7 fwd CCTGCTGACGATGATGAA 52

hS100A7 rev TGGCTCTGCTTGTGGTAG 54.6

hS100A8 fwd AGTGTCCTCAGTATATCAG 47.5

hS100A8 rev CTCTTTGTGGCTTTCTTC 48.3

hS100A7A fwd GCTGACGATGATGAAGGAGAAC 55.5

hS100A7A rev CAGTGGCGAGGTAATGTATGC 55.9

https://doi.org/10.1371/journal.pone.0216249.t001
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(Table 3) [14, 42]. Top downregulated genes included the AMP DCD, genes involved in kerati-

nocytes development and proliferation, and a different subset of keratins (Table 4).

A number of antibacterial and antiviral proteins are upregulated in HS

lesions

The most significantly upregulated gene found in lesional HS skin was S100A7A (also known

as S100A15, Koebnerisin) (Table 3). S100A7A is a member of the S100 family of AMPs, which

display antimicrobial activity against gram-negative bacteria, such as E. coli [44]. Interestingly,

S100A7A is highly increased in psoriatic skin and shares near-complete homology with

S100A7 (Psoriasin), which has a well-established role in the pathogenesis of psoriasis and is

Fig 1. AMPs are increased in lesional HS, but DCD and other sweat-gland associated proteins are decreased. (A)

Volcano plot showing increased or decreased genes in HS. Graph shows log FC in gene expression of HS lesional skin

over HS non-lesional skin samples plotted against negative log p-value of the difference in gene expression. Genes

represented in red are upregulated by>2-fold in HS lesional skin (p-adj< 0.05). Genes represented in blue are

downregulated by>2-fold in HS lesional skin (p-adj< 0.05). Genes represented in orange were unchanged (FC< 2,

p-adj< 0.05) in HS lesional vs. HS non-lesional skin. Non-adjusted p-values were used for generation of the volcano

plot to minimize points with tied y-values but significance level was set using the corresponding non-adjusted p-

values. (B) Top 50 most differentially expressed probe sets between the HS lesional skin and the HS non-lesional skin.

Highlighting shows DEGs. Genes highlighted in blue are downregulated genes of interest; genes highlighted in red are

upregulated genes of interest. WhileDCD is downregulated in HS lesional skin, many other AMPs and interferon-

associated molecules are enriched in lesional HS. The top 50 most differentially expressed probes were defined as genes

with an adjusted p-value< 0.05 with the largest magnitude FC. Genes were z-score transformed and then the genes

and samples were clustered using a correlation distance with complete linkage.

https://doi.org/10.1371/journal.pone.0216249.g001

Fig 2. Enriched GO terms. REVIGO treemap representing the most significantly enriched GO terms associated with DEGs [43]. Larger boxes indicate a smaller p-

value and greater disease relevance. Colors indicate GO families in which HS DEGs fall.

https://doi.org/10.1371/journal.pone.0216249.g002
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Table 2. Enriched GO terms.

GO Term Description Relevant genes Enrichment FDR p-value

GO

0032602

Chemokine production S100A8, S100A9 194.54 1.84�10−3

GO

0002377

Immunoglobulin production IGLV1-44, IGKC, IL7R 40.65 4.64�10−9

GO

0019731

Antibacterial humoral response IGHM, IGKV3-20, LTF 40.35 7.83�10−3

GO

0050832

Defense response to fungus S100A12, S100A8, LTF, DCD, S100A9 28.73 1.67�10−4

GO

0019730

Antimicrobial humoral response S100A12, PI3, LYZ, S100A8, S100A7, DCD, S100A9,

DEFB4A

27.81 6.81�10−18

GO

0051844

Antimicrobial humoral immune response mediated by

antimicrobial peptide

S100A12, DEFB4A, S100A7, S100A9 27.45 9.56�10−9

GO

0050829

Defense response to Gram-negative bacterium DEFB4A, LYZ, S100A7 27.15 3.38�10−4

GO

0006956

Complement activation TRBC1, IGHM, C7 18.47 8.76�10−10

GO

0031424

Keratinization KRT19, KRT6B, KRT16, KRT77 6 3.03�10−3

GO

0006898

Receptor-mediated endocytosis ITGA4, SCARA5, IGKC 5.83 2.38�10−4

Selected enriched GO terms from among top 100 GO terms with highest enrichment value, where enrichment is defined at (b/n)/(B/N) where N = number of genes

total, B = number of genes associated with a given GO term, n = number of genes closer to the top of a ranked list of genes and b = the number of genes in the ranked

list that are associated with a given GO term [41]. False discovery rate (FDR) p-values were calculated according to the minimum hypergeometric model corrected for

multiple testing using the Benjamini and Hochberg method [35, 41].

https://doi.org/10.1371/journal.pone.0216249.t002

Table 3. Significant upregulated genes in hidradenitis suppurativa.

Gene Protein FC Function Reference

S100A7A

(S100A15)

Koebnerisin 29.02 Member of S100 family of AMPs and the epidermal differentiation complex (EDC). Induced by

E. coli via TLR4. Markedly increased in psoriatic skin.

[44, 45]

DEFB4A Beta-defensin 2 13.48 Antimicrobial activity against Gram-negative and Gram-positive bacteria. Has previously been

shown to be upregulated in HS.

[32, 46]

S100A9 Calprotecin L1H subunit 11.22 Members of S100 family of AMPs. Stress induced; increased following epidermal injury.

Members of the EDC.

[47, 48]

S100A8 Calprotecin L1L subunit 7.69

PI3 Peptidase inhibitor 3 5.89 AMP against Gram-positive and Gram-negative bacteria and fungi. [49]

SPRR2B Small proline rich protein 2B 5.57 Members of the SPRR family of genes in the EDC. Involved in cornified envelope formation. [50, 51]

SPRR2C Small proline rich protein 2C 4.75

KRT16 Keratin 16 5.21 Stress-induced keratin present in wounds. [52]

S100A7 Psoriasin 4.89 Member of S100 family of AMPs and the EDC. Strongly upregulated in psoriasis. [53]

S100A12 Calgranulin C 4.18 Member of S100 family of AMPs and the EDC. [51]

OAS2 Oligoadenylate synthetase 2 3.67 Antiviral protein that degrades viral RNA through formation of 2’-5’ linked oligomers. [54, 55]

OASL Oligoadenylate synthetase-

like protein

3.40 Antiviral protein that binds viral RNA but lacks classical 2’-5’OAS activity.

KRT6A Keratin 6A 2.89 Stress-induced keratin present in wounds. [52]

LCE3D Late cornified envelope

protein 3D

3.11 Member of the LCE family of genes in the EDC. Expressed late in differentiation in upper

granular layers of epidermis. Increased in psoriasis.

[56, 57]

Select upregulated genes in HS lesional skin relative to HS non-lesional skin from among the 200 top upregulated genes. The top 200 upregulated genes are defined as

the top 200 unique, significant DEGs (p-adj < 0.05) with the highest positive FC in expression.

https://doi.org/10.1371/journal.pone.0216249.t003
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also increased in atopic dermatitis [45, 53]. S100A7, which has been shown to be increased in

HS lesions in one study, also showed significantly increased expression in our transcriptomic

analysis (Table 3) [74]. S100A8 and S100A9, which combine to form Calprotectin, were also

among the most increased genes in HS lesional skin [47]. These S100 proteins, which are simi-

larly overexpressed in psoriasis, are also expressed in human wounds, ulcers, and by wound-

infiltrating inflammatory cells [48, 75].

Expression patterns of S100 proteins were confirmed via qPCR and immunofluorescence

on paired samples of HS lesional and non-lesional skin. Consistent with DEG analysis of

microarray data, we found that expression of S100A7, S100A8, and S100A7A was significantly

increased in HS lesional skin samples (Fig 3).

As previously demonstrated, our analysis of DEGs showed that DEFB4, which encodes for

human beta-defensin 2 (h-BD2), was strongly upregulated in HS lesional skin (Table 3) [32]. h-

BD2 exhibits antimicrobial action against gram-negative bacteria, but not against gram-positive

bacteria, such as S. aureus [46, 76]. Human beta-defensin 3 (hBD-3), which has broad-spectrum

antimicrobial activity against gram-negative and gram-positive bacteria, such as S. aureus, was

not significantly increased in HS lesions, which is consistent with prior reported data [77].

Antibacterial proteins are not the only group of AMPs that are increased in HS lesions.

Interferon stimulated genes (ISGs), such as oligoadenylate synthetase 2 (OAS2) also had

increased expression in HS lesions (Table 3). OAS2, a member of the OAS family of antiviral

proteins targets viral RNA primarily through an RNase-L dependent mechanism [54]. OAS

family members display potent antiviral activity against both RNA and DNA viruses [24].

Table 4. Significant downregulated genes in hidradenitis suppurativa.

Gene Protein Name FC Function Reference

PIP Prolactin-inducible protein 0.03 Expressed by sweat glands and also associated with breast cancer. [58]

DCD Dermcidin 0.03 AMP with activity against E. coli, S. aureus, and C. albicans. Optimal pH and salt conditions

are those found in sweat.

[59]

SCGB2A2 Mammaglobin-A 0.04 Produced in sweat glands. Members of the secretoglobin family are anti-inflammatory. Also

likely involved in cell signaling, immune response, and chemotaxis.

[60]

SCGB1D2 Lipophilin-B 0.08

SCGB2A1 Mammaglobin-B 0.27

WIF1 Wnt inhibitory factor 1 0.07 Tumor suppressor gene. Inhibits Wnt protein signaling. Involved in sweat gland development. [61]

LGR5 Leucine rich repeat containing G

protein-coupled receptor 5

0.13 Wnt target. Marker of hair follicle stem cells. [62]

ERBB4 Erb-B2 Receptor Tyrosine Kinase 4 0.20 Epidermal growth factor associated receptor that may play a role in keratinocyte proliferation. [63]

KRT77 Keratin 77 0.22 Keratin expressed only in eccrine sweat glands. [64, 65]

KRT19 Keratin 19 0.27 Keratin of simple epithelial cells. [64]

KRT79 Keratin 79 0.30 Poorly characterized keratin found in skin. [66]

KRT73 Keratin 73 0.34 Hair follicle-specific keratins. [64]

KRT74 Keratin 74 0.38

KRT31 Keratin 31 0.35 Keratin of the hair fiber. [64]

IL37 Interleukin-37 0.29 Suppressor of innate inflammatory responses. Inhibits dendritic cell activation. [67]

AQP5 Aquaporin-5 0.31 Water cannel involved in generation of secretions. [68]

NR1D1 Rev-ErbA-Alpha 0.34 Negative regulator of BMAL1/CLOCK. Involved in regulation of hair follicle cycling. [69]

PER1 Periodic circadian regulator 1 0.39 Negative regulator of BMAL1/CLOCK. [70]

FOXA1 Forkhead box A1 0.39 Transcription factor involved in regulation of sweat secretion. [71]

FOXQ1 Forkhead box Q1 0.43 Transcription factor with role in hair follicle differentiation. [72]

IL17D Interleukin 17D 0.44 Pro-inflammatory cytokine overexpressed in psoriasis. [73]

Select downregulated genes in HS from among the 200 top downregulated genes. The top 200 downregulated genes are defined as the top 200 unique, significant DEGs

(p-adj < 0.05) with the most negative FC in expression.

https://doi.org/10.1371/journal.pone.0216249.t004
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S100 proteins and other members of the epidermal differentiation complex

are upregulated in HS

Notably, S100 proteins are members of the epidermal differentiation complex (EDC), a cluster

of genes located on human chromosome 1q21 that codes for proteins involved in keratinocyte

terminal differentiation and cornified envelope formation [51]. S100A7, which was increased

in HS lesions, increases in expression throughout the process of keratinocyte differentiation

[78]. S100A8/9 are also upregulated in hyperproliferative epidermis, and levels of S100A8

increase as keratinocytes become more differentiated [51, 75, 78]. Other S100 proteins, such as

S100A3, S100A6, and S100A13, which are decreased in differentiated keratinocytes, did not

show changes in expression in HS lesions.

Additional members of the EDC had increased expression in HS lesional skin. Small pro-
line-rich proteins (SPRR) 2B and 2C were increased in HS lesions (Table 3). SPRRs participate

in cross-bridge formation during development of the cornified envelope of keratinocytes [50].

Late cornified envelope (LCE) proteins are also expressed late in differentiation in the upper

Fig 3. S100 proteins are strongly upregulated in HS lesional skin. qPCR for (A) S100A7 (log2FC = 3.51, ��p< 0.01), (B) S100A8 (log2FC = 3.41, �p< 0.05) and (C)

S100A7A (log2FC = 6.47, ���� p< 0.0001) in lesional and non-lesional HS skin. FC is expressed as average of skin samples from 3 patients. Measurements were collected

in triplicate or duplicate, as allowed by RNA yield from samples. Data is shown as mean expression value compared to non-lesional skin +/- the standard error of the

mean. Non-lesional and lesional samples were compared using paired t-test. (D) IF staining for S100A7 at 20X. Scale bar is 50μm. (E) IF staining for S100A8 at 20X.

Scale bar is 50μm. Immunofluorescence intensity is highest in HS lesional skin, compared to non-lesional and normal skin.

https://doi.org/10.1371/journal.pone.0216249.g003
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granular layers of the epidermis [56]. LCE3D is increased in HS lesions; members of the LCE3

group are known to be increased in psoriasis [57].

Patterns of keratin expression are altered in HS lesional skin

Keratins 6A and 16 are increased in HS lesional skin (Table 3). These keratins, constitutively

expressed in the outer root sheath of hair follicles, are increased in multiple inflammatory skin

conditions and are makers of a hyperproliferative epidermis [79, 80]. Wounding induces

expression of keratins 6 and 16 in the inter-follicular epidermis even before re-epithelialization

begins, and keratin 16 may play a role in reorganization of other keratin filaments during heal-

ing [52, 81]. However, mice overexpressing keratin 16 have delayed wound healing [82]. Nota-

bly, keratins 6A and 16 are also expressed in secretory and luminal cells of eccrine sweat

glands (Fig 4) [83]. Increased expression of these keratins in HS lesions is not due to the num-

ber of eccrine sweat glands in the adnexal and inguinal regions, where HS is often found; kera-
tin 77, which is exclusively expressed in eccrine sweat glands, is here shown to be decreased in

HS lesions (Table 4) [65]. Other keratins are also decreased in HS lesions, including keratin 73
and keratin 74, which are specific to the hair follicle [64].

DCD, a sweat-gland associated AMP, is decreased in HS lesions

In drastic contrast to the large number of AMPs that were strongly upregulated in HS skin, we

identified that DCD is one of the most significantly downregulated genes in HS lesions

(Table 4). DCD is an AMP secreted by sweat glands to provide antimicrobial function against

bacteria and a broad spectrum of microbes including fungi and viruses [84]. While most AMPs

carry a strong positive charge, and prefer to bind to bacterial membranes, DCD has an overall

negative charge, so it relies on positively-charged zinc ions, which are abundant in sweat, to

assist with its specific interaction with bacterial lipids [59]. In human healthy skin, DCD is

known to be expressed in the dark mucous cells of the secretory coil of eccrine sweat glands and

is found in the Golgi complex and the secretory granules typical for a secreted protein [59].

DCD is a relatively newly discovered AMP, so its role in skin protection and/or disease is

not yet fully understood. DCD is proteolytically processed into multiple peptides, including

DCD-1L, which exhibits antimicrobial activity [85]. Y-P30, another peptide product of DCD,

is considered a “survival-promoting peptide” for neurons [84]. The antimicrobial activity of

DCD is broad and includes both gram-positive and gram-negative bacteria, fungi, and even

viruses [84]. DCD is constitutively secreted, which suggests that it may play a role in maintain-

ing a favorable skin microbiome under homeostatic conditions. This is in contrast to other

AMPs, such as LL-37, which are induced by bacteria and wounding [26].

Given the strong downregulation of DCD in HS lesions, in contrast to the increase of most

other AMPs, we sought to further elucidate the role of DCD in HS. Analysis via qPCR con-

firmed the significant decrease of nearly 12-fold in DCD in HS lesional samples (Fig 5A). Fur-

thermore, we used immunofluorescence to examine expression of DCD in matched HS non-

lesional and lesional skin from a single patient. Fluorescence intensity for DCD was stronger

in non-lesional skin, compared to lesional skin (Fig 5B). In addition to the decreased fluores-

cence intensity of DCD exhibited by HS lesional skin, we also observed that fewer eccrine

sweat glands (as marked by K77) were found in HS lesional skin than normal skin or HS non-

lesional skin (Fig 5C).

Correlation analysis was run to determine genes positively and negatively correlated with the

DCD probe set (Table 5) in the Blok et al. dataset (S2 Table) [14]. Top correlated genes withDCD
included members of the secretoglobin family (r = 0.97, 0.99; adj p-value = 3.25x10-18, 2.34x10-11),

WIF1 (r = 0.87, adj p-value = 9.90x10-6), and AQP5 (r = 0.79, adj p-value = 1.84x10-4), which
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Fig 4. Schematic representation eccrine sweat gland and duct cells. Diagram of gene expression of A) eccrine sweat gland and B) duct. Genes in blue are

decreased in HS lesional skin. Genes in red are increased in HS lesional skin.

https://doi.org/10.1371/journal.pone.0216249.g004
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were some of the most downregulated genes overall in HS. On the other hand,DCDwas nega-

tively regulated with multiple molecules from the interferon and antiviral protein pathway, such

as STAT1 (r = -0.88, adj p-value = 7.78x10-6), IRF1 (r = -0.84, adj p-value = 6.93x10-5), TLR8 (r =

-0.79, adj p-value = 1.15x10-4), and IFNAR2 (r = -0.74, adj p-value = 8.41x10-4). IFNAR2 signals

through a STAT-dependent mechanism to turn on production of ISGs, which have antiviral

activity [86]. Findings from the correlation analysis were mirrored by expression analysis in the

microarray data set, where both the interferon receptors 1 and 2 (IFNAR1 and 2) andOAS2, a

downstream ISG, were upregulated in lesional HS skin relative to non-lesional skin.

Proteins associated with sweat gland function are decreased in HS lesions

A number of genes related to sweat gland function had differential expression in HS lesions.

Expression of genes coding for S100 proteins, which are present in multiple sweat glands cell

types, was increased (Table 3) [93]. In contrast, expression of a number of other sweat-gland

associated proteins was decreased. Secretoglobins B2A2, B1D2, and B2A1 were among the

Fig 5. DCD is strikingly decreased in HS lesions. (A) qPCR for DCD (log2FC = -3.57, �p< 0.05). FC is expressed as average of skin samples from 3 patients.

Measurements were collected in triplicate or duplicate, as allowed by RNA yield from samples. Data is shown as mean FC over non-lesional skin +/- the standard

error of the mean. Non-lesional and lesional samples were compared using a paired t-test. (B) Immunofluorescence for DCD (red) at 40X in normal skin, HS non-

lesional skin, and HS lesional skin. Co-staining was performed with K77 (green), which is a marker of eccrine sweat glands. Scale bar is 100μm. (C)

Immunofluorescence for DCD (red) and K77 (green) at 4X showing decreased number of eccrine sweat glands in HS lesional skin. Scale bar is 500μm.

https://doi.org/10.1371/journal.pone.0216249.g005
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genes with the largest decrease in expression in HS lesions (Table 4 and Fig 4). Secretoglobins,

for example, may play a role in sweat secretion [60].Wnt inhibitory factor 1 (WIF1), an inhibi-

tor of Wnt signaling, was decreased in HS lesional skin. Dynamic and tightly regulated expres-

sion of Wnt, Shh, and Eda has been previously linked to sweat gland development and

function [94]. Aquaporin 5 (AQP5), which contributes to sweating by increasing permeability

of sweat glands, was also decreased in HS lesions [68, 95]. Finally, we found that forkhead
box A1 (FOXA1), a transcription factor that is required for sweat secretion in mice, is

decreased in HS lesions [71]. In sum, we found that multiple genes involved in development,

regulation, and homeostasis of sweat glands show decreased expression in HS lesions.

Interestingly, genes involved in hair follicle differentiation and proliferation were also

decreased in HS lesions (Table 4). For example, the leucine-rich repeat containing G protein-
coupled receptor 5 (LGR5) was decreased in lesional skin. LGR5 is a Wnt target gene that is a

marker of proliferating stem cells in the hair follicle [62]. Additionally, forkhead box Q1
(FOXQ1), a regulatory target with a role in hair follicle differentiation, was also decreased [72].

Expression of hair follicle-associated genes, in addition to sweat gland-associated genes, is

altered in HS.

HS lesions share a transcriptomic signature with wounds

Notably, the most severe HS lesions (Hurley stage III) are characterized by chronic non-heal-

ing sinuses, which form a wound-like environment [96]. Previous understanding of wound

closure was that new skin cells originate from hair follicles and from intact skin at the edge of

the wound [97]. More recent studies demonstrated that cells also arise from beneath the

wound, and suggested that human eccrine sweat glands also store an important reservoir of

adult stem cells that can quickly be recruited to aid wound healing [98]. Based on our findings

Table 5. Selected genes most positively- or negatively-correlated with DCD.

Gene Protein Name Correlation with

DCD

Function Reference

DCD Dermcidin 1 AMP with activity against E. coli, S. aureus, and C. albicans. Optimal pH and salt

conditions are those found in sweat.

[59]

SCGB2A2 Secretoglobin 2A2 0.99 Produced in sweat glands. Members of the secretoglobin family are anti-inflammatory.

Also likely involved in cell signaling, immune response, and chemotaxis.

[60]

SCGB1D2 Secretoglobin 1D2 0.97

WIF1 Wnt inhibitory factor 1 0.87 Tumor suppressor gene. Inhibits Wnt protein signaling. Involved in sweat gland

development.

[61]

AQP5 Aquaporin 5 0.79 Water cannel involved in generation of secretions. [68]

STAT1 Signal transducer and activator

of transcription 1

-0.88 Transcription factor involved in upregulation of genes following type I, II, or III

interferon signaling.

[87]

SAR1B GTP- binding protein SAR1b -0.84 Sar1-ADP ribosylation factor family of small GTPases, which govern the intracellular

trafficking of protein in coat proteins (COP)-coated vesicles. Plays a role in clathrin-

mediated endocytosis signaling.

[88]

IRF1 Interferon regulatory factor 1 -0.83 Regulates expression of target genes by binding to an interferon stimulated response

element in their promoters. May contribute to multiple autoimmune diseases.

[89]

TLR8 Toll-like receptor 8 -0.81 Recognizes single stranded viral RNA. Activation of TLR8 can initiate development of

psoriatic lesions.

[90]

RAB31 Ras-related protein Rab-31 -0.79 Member of the RAS oncogene family. Small GTP-binding protein. Has a role in

targeting of vesicles and granules.

[91]

IFNAR2 Interferon receptor -0.74 Receptor for type I IFN. Activation of the receptor stimulates Janus protein kinase

(JAK), which in turn phosphorylate STAT1/2. May even have intrinsic antiviral activity.

[92]

Sweat gland proteins were among the genes most positively correlated with DCD in HS skin samples (all statistically significant with an adjusted p-value < 0.05).

Signaling molecules of the interferon and antiviral protein pathways were negatively correlated with DCD.

https://doi.org/10.1371/journal.pone.0216249.t005
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that genes related to sweat gland development and re-epithelialization were downregulated in

HS lesional skin, we compared the transcriptomes of HS skin with wounded skin.

Re-analysis of wounded skin vs. non-wounded skin from Iglesias-Bartolome et al. revealed

4,599 DEGs (adjusted p-value < 0.05) (S3 Table) [31]. 1,826 of these genes were also differen-

tially expressed in HS lesional skin compared to non-lesional skin (Fig 6). A number of the

shared DEGs were increased in both HS lesional skin relative to non-lesional skin and in

wounded skin relative to non-wounded skin. These include S100 family members (S100A7,

S100A8, S100A9, and S100A7A), DEFB4A, the ISGs OASL and OAS2, and KRT16. The shared

increased expression of antibacterial and antiviral proteins by HS lesions and wounded skin

suggests that they are carrying out similar antimicrobial programs. Stress-induced keratins 6
and 16 were upregulated in both HS lesions and wounds [52]. Other shared DEGs were

decreased in both HS lesional skin and wounded skin, includingWIF1. Finally, a small num-

ber of genes showed opposite expression in HS lesions and wounded skin. Among these genes

were DCD, AQP5, and SCGB2A2. Whereas these genes were upregulated in wounded skin,

they were downregulated in HS skin, suggesting that they play a role in the pathology of HS,

but are beneficial for wound healing.

Discussion

The striking increase in expression of many AMPs in HS lesions brings forth two hypotheses

for pathogenesis of HS. Firstly, increased AMP expression could be the result of a general

Fig 6. Shared and dissimilar pathways in HS and healing skin wounds. Venn diagram illustrating shared and dissimilar gene

expression in HS lesions and wounded skin. AMP expression is increased in both HS lesional and wounded skin. DCD and

other sweat-gland associated proteins show opposite expression; they are decreased in HS lesions but are increased in wounded

skin.

https://doi.org/10.1371/journal.pone.0216249.g006
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overactivation of the innate immune system in response to bacteria or other stimuli. Secondly,

the increased AMP expression could be a reaction to an altered cutaneous microbiome of HS

lesions. Whether changes in AMP expression are inherent to the disease or secondary to the

altered microbiome of HS, dysregulation of AMPs may contribute to the initiating pathogene-

sis of HS or contribute to disease progression and aggravation. HS lesions are characterized by

upregulation of defensins, a group of AMPs that target gram-negative bacteria, but not gram-

positive bacteria, and this could provide a rationale for the increased prevalence of gram-posi-

tive microbes, particularly S. aureus, in HS lesions [99]. Although more research is needed to

address these questions, our work shows that there is significant dysregulation of AMP expres-

sion in HS lesions.

A second theme that emerged from re-analysis of microarray data from Blok et al. is that

many of the genes that were upregulated in HS are members of the EDC [14]. Interestingly,

genes of the EDC were the focus of a recent study comparing the genes expression profiles of

mice raised in the presence of commensal microbiota (specific pathogen free, SPF) with mice

raised in a germ-free environment [100]. Meisel and colleagues found that S100A7 and many

LCE proteins were increased in SPF mice. Based on the increased expression of these EDC

genes, which are makers of terminal differentiation, it was hypothesized that SPF mice have

decreased regenerative capacity compared to GF mice. Specifically, our findings suggest that

there may be a greater number of terminally differentiated keratinocytes in HS lesions. There-

fore, HS lesional skin may have less regenerative capacity than normal skin. Therefore,

although significant research will be required for definitive conclusions to be drawn about the

role of the EDC in HS, our analysis indicates that epidermal differentiation and regeneration

pathways could be involved in the pathology of HS.

There is strong evidence emerging that human sweat glands contribute significantly to epi-

dermal homeostasis and wound repair. It is well known that stem cells in the hair follicle bulge

contribute to re-epithelialization [97]. More recently, it has been shown that eccrine sweat

gland cells are able to reconstitute a stratified interfollicular epidermis with all features charac-

teristic of a normal stratified squamous epithelium both in vitro and in rat models [101]. These

findings have been replicated in humans using immunohistochemical staining of healing skin

wounds [98]. In fact, there are distinct, multi-potent, stem progenitor cell populations residing

within sweat glands [102]. In elderly skin, re-epithelialization by sweat gland cells is impaired

and may account for poor wound healing in this population [103]. Severe HS lesions resemble

chronic, non-healing wounds and are characterized by sinus tracts, scarring, abscesses, and

bacterial superinfection [96]. Given that sweat glands and sweat gland function are integrally

important for wound healing, it is possible that impaired sweat gland function and decreased

sweat gland number contribute to the pathological non-healing wound-like environment of

HS. Our analysis determined that multiple genes associated with sweat-gland function, such as

WIF1, AQP5, FOXA1, and DCD were decreased in HS lesions. Wnt signaling is required for

development of sweat glands, suggesting that sweat gland development may be impaired in HS

[61]. WIF1 is also decreased in psoriatic skin [73]. AQP5 is a transmembrane protein that

increases water permeability of cells, and therefore contributes to sweat formation [68, 95].

Knockout of AQP5 function impairs sweat secretion in mouse models, raising the possibility

that the decreased expression of AQP5 in the eccrine glands of HS lesional skin impairs sweat

generation [95]. Impaired sweat gland function via downregulation of these key sweat gland-

associated genes could contribute to HS.

Impaired sweat secretion could be one reason for the reduced levels of DCD in HS lesions.

However, a second possibility for decreased DCD level in HS lesional skin is a decreased over-

all number of eccrine sweat glands in HS lesions. We showed via immunofluorescence that

fewer eccrine sweat glands are present in HS lesional skin than normal skin or HS non-lesional
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skin. Moreover, staining intensity of DCD in HS lesions within the HS lesional skin samples

was also reduced compared to those found in donor-matched healthy non-lesional skin or

healthy normal skin. This raises the possibility that the decreased gene expression levels of

DCD seen in transcriptomic and qPCR data may be due to a combination of decreased DCD

production by eccrine glands and a fewer number of total eccrine glands in HS lesional skin.

Loss of normal skin architecture can be seen in HS, which may contribute to the decreased

number of eccrine sweat glands observed in HS lesional skin samples [30].

Furthermore, we found that expression of many sweat gland-associated genes was different

in HS and acute healing wounds. Wound samples in the RNA-seq data set from Iglesias-Barto-

lome et al. were acquired from the axillary region of subjects, therefore the density of eccrine

glands in the wound samples is representative of wounded healthy skin from areas where HS

often occurs [31]. It is important to note that the wound data that was used for overlap analysis

with HS samples is from wounds that ultimately went on to heal, indicating that genes that were

increased in this data set could be important for healing. Genes such as AQP5, FOXA1, and

DCD were increased in acute wounds, but were decreased in HS. The finding that sweat gland-

associated genes were decreased in HS lesional skin, which resembles a chronic non-healing

wound, points to these genes as potential pathogenic explanations for the HS phenotype.

Conclusion

Hidradenitis suppurativa is a chronic and frequently debilitating cutaneous disorder that sig-

nificantly impacts the quality of life of patients. Compared to other cutaneous disorders, such

as psoriasis and atopic dermatitis, it is relatively poorly characterized. HS is significantly differ-

ent from these classic inflammatory skin diseases through the clinical presentation of non-

healing skin lesions and the formation of ducts and cysts that become highly inflamed. Our

transcriptomic analysis of HS lesions suggests a significant role for innate antimicrobial immu-

nity and altered sweat gland function in HS disease pathology and furthermore revealed a pre-

viously unknown set of DEG that overlap with healing wounds.

Recent studies have begun to illuminate the role of sweat gland cells, specifically sweat

gland progenitors, in wound healing and re-epithelialization. Sweat glands contain multipo-

tent progenitor cells that can migrate to epidermal layers of the skin and contribute to repair;

in addition, eccrine ductal cells participate in re-epithelialization [98, 102]. Sweat glands may

also contribute to cutaneous immunity beyond their role in wound repair through production

of inflammatory cytokines and DCD, a sweat-gland associated AMP [59, 104]. Therefore, it is

possible that sweat glands produce multiple host factors, including antimicrobial DCD that

promote epithelial regeneration and that this pathway is dysregulated in HS prohibiting heal-

ing of severe HS lesions.

We also uncovered substantial transcriptional overlap between HS lesions and wounded

skin, suggesting that HS may represent a wound-like environment. Our analysis could pave

the way for development of new therapies for HS. For example, supplementation and activa-

tion of natural AMPs, such as DCD, may be promising therapeutic options for the treatment

of HS.
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