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High-throughput computing (HTC) uses computer clusters to solve advanced computational 
problems, with the goal of accomplishing high-throughput over relatively long periods of time. 
In genomic selection, for example, a set of markers covering the entire genome is used to train 
a model based on known data, and the resulting model is used to predict the genetic merit 
of selection candidates. Sophisticated models are very computationally demanding and, with 
several traits to be evaluated sequentially, computing time is long, and output is low. In this 
paper, we present scenarios and basic principles of how HTC can be used in genomic selection, 
implemented using various techniques from simple batch processing to pipelining in distributed 
computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very 
useful to devise pipelines. By pipelining, we can reduce total computing time and consequently 
increase throughput. In comparison to the traditional data processing pipeline residing on the 
central processors, performing general-purpose computation on a graphics processing unit 
provide a new-generation approach to massive parallel computing in genomic selection. While 
the concept of HTC may still be new to many researchers in animal breeding, plant breeding, 
and genetics, HTC infrastructures have already been built in many institutions, such as the 
University of Wisconsin–Madison, which can be leveraged for genomic selection, in terms 
of central processing unit capacity, network connectivity, storage availability, and middleware 
connectivity. Exploring existing HTC infrastructures as well as general-purpose computing 
environments will further expand our capability to meet increasing computing demands posed 
by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic 
selection via better statistical models, faster solutions, and more competitive products (e.g., 
from design of marker panels to realized genetic gain). Eventually, HTC may change our view 
of data analysis as well as decision-making in the post-genomic era of selection programs in 
animals and plants, or in the study of complex diseases in humans.
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solutions to a certain problem requires several weeks or months. 
This is especially true in bioinformatics, computational biology, 
and quantitative genetics and breeding. The HTC community 
is also concerned with robustness and reliability of jobs over a 
long-time scale, that is, being able to create a reliable system from 
unreliable components.

Another related concept, yet somewhat different, is high-per-
formance computing (HPC; Dowd and Severance, 2010). HPC 
tasks are characterized as needing large amounts of computing 
power for short periods of time, often measured in terms of float-
ing point operations per second (FLOPS). Typically, HPC systems 
handle tightly coupled parallel jobs and, as such, they must execute 
within a particular site with low-latency interconnects, whereas 
HTC systems can handle independent, sequential jobs that can 
be individually scheduled on many different computing resources 

IntroductIon
Years ago, heavy computational work relied on a large central-
ized mainframe or a supercomputer. These machines, however, 
are very expensive, and availability is limited. On the other hand, 
personal computers (PCs) are becoming faster and cheaper. Thus, 
users can move away from centralized mainframes and purchase 
large numbers of PCs. Workstations, each owned by a user or 
user group, have become very popular in recent years. This is an 
environment of distributed ownership, which can be organized 
to support what is called high-throughput computing (HTC), by 
virtual of making effective use of all available computing resources 
while expanding the resources available to each individual user. 
Conceptually, HTC refers to the use of many computing resources 
over relatively long periods of time to accomplish a computational 
task (Thain et al., 2005). Nowadays, it is common that computing 
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 selection, or genomic selection (Meuwissen et al., 2001), which com-
prises methods that use genotypic data across the whole genome 
to predict a trait with accuracy sufficient to allow selection based 
on that prediction (e.g., Goddard and Hayes, 2007; Habier et al., 
2009; Heffner et al., 2009). Genomic selection differs from classical 
breeding programs in that phenotypes are no longer used to select 
animals but rather to train a prediction model in a genomic selection 
program. Simulation and empirical studies have shown that genomic 
estimated breeding values (GEBV) based solely on individuals’ geno-
types are considerably accurate (Meuwissen et al., 2001; Habier et al., 
2007; Legarra et al., 2008; Lorenzana and Bernardo, 2009; Van Raden 
et al., 2009; Zhong et al., 2009), yet they depend on characteristics of 
the populations under selection (Hayes et al., 2009).

Nevertheless, there are many challenges for applications of 
genomic selection, both methodologically and computationally. 
Genomic selection emerged out of the desire to exploit high-density 
parallel genotyping technologies for prediction of genetic values 
for complex traits (Meuwissen et al., 2001). With a huge number 
of markers fitted in the model, the number of predictor effects (p) 
to be estimated is far more than the number of observations (n). 
This is referred to as the “small n, large p” paradigm or more vividly 
as “the curse of dimensionality.” From the statistical viewpoint, it 
means that there are not enough degrees of freedom to estimate 
all predictor effects simultaneously using least squares methods. 
In addition, a high degree of multicollinearity may exist among 
markers, leading to an over-parameterized model. To cope with 
these difficulties, various sophisticated statistical methods have 
been proposed, such as Bayesian parametric and non-parametric 
regression models with a large number of parameters (reviewed by 
Hamblin et al., 2011). Computing these models is not trivial, and 
some can take weeks or months to finish. Thus, long computing 
time and low throughput has become a bottleneck, which can limit 
application of these methods in genomic selection.

High-throughput computing is a new-generation solution to 
computing for genomic selection. To see what differences it can 
bring to genomic selection, we begin with a simple case in which 
147 Angus cattle were genotyped with the Illumina Bovine SNP50 
BeadChip. After data quality control (QC) and screening, a total 
of 37,892 polymorphic single nucleotide polymorphism (SNP) 
markers are retained for the analysis. The goal is to select a subset 
of markers as a panel to be used in the prediction of genetic merit 
for a quantitative trait, say, marbling score. As an initial illustration, 
we evaluate effects of these markers, one at a time, on estimated 
breeding values (EBV) for marbling score. This is a simple regres-
sion analysis. An R function is defined, namely sma(xi,datf = test-
Data), where xi is an index variable for marker genotypes, and 
testData is a data frame that contains both genotypes and EBV for 
marbling score. This function outputs the estimated effect of the 
marker under question, raw P-value, and adjusted P-value using 
a Bonferroni correction (Abdi, 2007). Pedigree is ignored in this 
illustration for the sake of simplicity. Now, we run single-marker 
analysis sequentially for all 37,892 markers.

> xi = 2:37892

> system.time(out<-lapply(xi,sma))

    user  system elapsed 

214.414   0.000 214.444

across multiple administrative boundaries, and can achieve their 
goals using various grid computing technologies and techniques 
(Berman et al., 2003).

Successful HTC (HPC) applications span many industrial, gov-
ernment, and academic sectors, including bio-science and human 
genome applications (e.g., for drug discovery, disease detection/
prevention), computer-aided engineering (e.g., automotive design 
and testing, transportation, structural, mechanical design), chemical 
engineering (e.g., process and molecular design), economics/finance 
(e.g., risk analysis, portfolio management, automatic trading), 
geo-science and geo-engineering (e.g., oil and gas exploration and 
reservoir modeling), weather forecasting (e.g., near term weather 
prediction and climate/earth modeling), and so on. Reportedly, 
work HPC market exceeds $10 billion and is steadily increasing 
(Eadline, 2009). In bioinformatics, many interesting applications 
have emerged. The following are a few examples. A high-throughput 
distributed phylogenetics platform, MultiPhyl, has been developed, 
which is capable of using the idle computational resources of many 
heterogeneous non-dedicated machines to form a phylogenetics 
supercomputer (Keane et al., 2007). This package allows a user to 
upload hundreds or thousands of amino acid or nucleotide align-
ments simultaneously and perform computationally intensive 
tasks such as model selection, tree searching, and bootstrapping of 
each of the alignments, which may otherwise take weeks or even 
months to finish if using sequential computing. Likewise, molecular 
replacement (MR) is a popular protein crystallographic technique 
that exploits the structural similarity between proteins that share 
some sequence similarity. MR calculations, however, is very time- 
and labor-consuming because of the need to trial permutations 
of search models, space group symmetries, and other parameters. 
Nevertheless, MR calculations are embarrassingly parallel and thus 
ideally suited to distribute computing. This has motivated the devel-
opment of a portable web-based application, MrGrid, to manage 
the distribution of multiple MR runs to the available nodes by way 
of grid computing (Schmidberger et al., 2010). Grid-based HTC 
has also been used to automate analysis of genomes and metabolic 
pathways (Sulakhe et al., 2005; Maltsev et al., 2006).

This paper presents an introductory reading about HTC in the 
context of genome-enabled selection (Meuwissen et al., 2001). In 
genomic selection, computing throughput is of primary concern, 
and computing time is a limiting factor. From a practical viewpoint, 
we do not make a specific distinction between HTC and HPC, and 
we use them interchangeably. The outline of the paper is as follows: 
first, we illustrate examples of the differences that HTC can bring to 
genomic selection. Next, we describe some basic components and 
mechanisms for parallel computing and pipelining. Finally, discus-
sions are given on some related issues such as parallel programming 
and existing HTC environments and infrastructures, and how these 
techniques and infrastructures can be explored to further expand 
our capability in the computing and decision-making involved in 
genomic selection.

Why htc In genomIc selectIon?
The availability of genome-wide dense marker maps for many spe-
cies of plants and animals provides opportunities for incorporating 
genomic information into practical breeding programs (reviewed 
by Hamblin et al., 2011). This is known as whole genome-enabled 
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program, each implementing 10,000 iterations (with a burn-in of 
1,000 iterations). All jobs were submitted and run on a HTC cluster 
at UW–Madison. It took less than 3 h for all 10 parallel jobs to finish 
(Figure 1). Nevertheless, the posterior distributions of unknown 
parameters were similar, regardless of whether they were obtained 
from a single long chain or pooled samples from multiple short 
chains (data not presented). The difference would be more striking 
if several traits are to be evaluated. Assume that we have 10 traits, 
each analyzed by simulating 100,000 iterations. If we run these jobs 
sequentially, given the same computing specifications, the comput-
ing would take up to 10 days. However, in an HTC environment, we 
may parallelize 100 jobs easily with posterior samples for each trait 
collected from a set of 10 jobs. Then, the computing time would 
still be approximately 3 h.

From the above comparison, it is clear that parallel computing 
brings higher throughput, as compared with sequential comput-
ing, and total computing time for achieving the same amount of 
throughput is dramatically reduced.

Parallel comPutIng – Where We can get started
Parallel comPutIng and measurements of sPeed-uP In 
comPutIng
Parallel computing uses multiple processing elements simulta-
neously to solve a problem. In general, parallel computing can 
be achieved at different levels: bit-level, instruction level, data 
parallelism, and task parallelism. The first category (bit-level) 
is related to the development of the computer hardware. The 
 second category (instruction level) refers to parallelism achieved 
by computer programs. Data parallelism is parallelism inherent in 

The sequential computing took 214 s (3.57 min) on one of 
our workstations. Can we improve the computing? The answer is 
“yes,” because these computing jobs are “embarrassingly” parallel 
(i.e., each marker can be evaluated independently), and because 
we have multiple-core processor workstations that allow so called 
“multi-tasking.” Next, we run these single-marker analyses in a 
parallel setup.

> intall.packages(“multicore”,dependencies=T)

> library(multicore)

> system.time(out<-mclapply(xi,SMA))

    user  system elapsed 

172.225 172.892  61.503

In the above example, the R “multicore” package1 was used, 
which supported running parallel computations on machines 
with multiple-cores or central processing units (CPUs). With this 
package, jobs can share the entire initial workspace, and appropri-
ate methods are provided for collection of results. Therefore, by 
changing the way that jobs are run, computing is approximately 
3.67 times faster (reduced to from 214 to 61 s) on a quad-core com-
puter. Nevertheless, we can still do better, because we have several 
Linux workstations that can be connected as a cluster on the work-
ing site (e.g., UW Dairy Science Department), and we even have 
a number of parallel computing back-ends on the UW–Madison 
campus. When we submitted these jobs to run on a small cluster 
of computers with 32 processors, it ran 25 to 30 times faster. Thus, 
a computing job of this size could be completed in less than 8 s, as 
compared to the original computing time of 214 s.

In real applications of genomic selection, single-marker analysis 
is not preferred, because it considers only one maker at a time in the 
model, and because of the over-parameterization problem instead, 
we may wish to evaluate the effects of all the markers simultane-
ously using some parametric Bayesian methods, non-parametric 
methods, or neural network approaches. In addition, we may wish 
to compare predictive accuracy using different statistical methods 
and choose the one that best fits the need. Running these sophisti-
cated models with genomic data, however, is computationally very 
intensive. Now, consider the analysis of the testData data set using 
the BLR package (de los Campos et al., 2009). The marker effects 
in the model included those of all the 37,892 polymorphic SNPs 
jointly on marbling score. The Markov chain Monte Carlo sam-
pling, which consisted of 100,000 iterations, took 23.1 h with only 
147 animals! In reality, the computing time may be longer, because 
we may have data from more animals and we may collect posterior 
samples from longer chains. We can speed-up this computation by 
running parallel MCMC (Ren and Orkoulas, 2007). Alternatively, 
multiple chains can be run, instead of a single long chain, and the 
posterior inference can be made using pooled samples from these 
chains. Running multiple chains with dispersed initial values also 
allows assessment of convergence (Gelman and Rubin, 1992). But 
keep in mind that a certain period of burn-in iterations (i.e., dis-
carding an initial portion of a Markov chain sample) are needed 
in order to minimize the effect of initial values on the posterior 
inference. By way of parallel computing, we run 10 jobs of the BLR 

1http://cran.r-project.org/

FiGure 1 | running multiple chains for Bayesian LASSO in a parallel 
setting: (A) list of processes showing 10 running jobs; (B) computing 
time for the 10 jobs (numbers on the x-axis indexes jobs and the 
numbers on the y-axis represents computing time in hours).
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denoted by trait_1, trait_2, …, trait_k. A sequential execution 
of the k jobs is to run an executable batch file containing the k 
jobs in any order, such as:

modBayesB  trait_1

modBayesB  trait_2

……
modBayesB  trait_k  

In multiple-core computers, the above jobs can be run in parallel. 
In a Linux workstation, for example, save the follow commands 
into a text file, e.g., mytest.bat.

nohup  modBayesB  trait_1 > out1 &

nohup  modBayesB  trait_2 > out2 &

……

nohup  modBayesB  trait_k > outn &

Then, change the property of this text file to be executable. 
Executing this file will lead to the n jobs running virtually in parallel 
in the background of the workstation. Parallel computing within 
a multi-core workstation is simple, but very limited in term of 
scalable jobs and computing throughput.

comPuter clusters and batch queuIng systems
Computer clusters have been increasingly used in the past two 
decades for high-throughput/performance computing. A cluster is 
a collection of interconnected parallel or distributed machines that 
may be viewed and used as a single, unified computing resource. 
Clusters can consists of homogeneous or heterogeneous collection 
of serial and parallel architecture computers, or even sub-clusters. 
For example, a cluster may consist of twenty 16-core Linux worksta-
tions, which altogether will provide 320 CPU cores for computing. 
The main specifications of each machine can be as follows: Dell 
R410 servers/workstations; 2x Intel Xeon X5660, 6-core CPUs (12 
cores total); 24G Memory; 2 × 3.5′ 500 GB SATA disk; Built in IPMI. 
These computers will be linked to hubs which, in turn, feed into a 
single switch using fast Ethernet, e.g., 100 Mbit s−1. Computer clus-
ters usually improve performance and availability and are typically 
much more cost–effective, as compared with single computers of 
comparable speed or availability (Bader and Pennington, 2001).

To provide management functions and abstractions that allow 
clusters to work as a single resource, a number of specialized 
resource management software products have been developed. 
These include batch queuing systems for tightly interconnected 
clusters, such as DQS, GNQS, PBS, EASY, LSF, and LoadLeverler, 
and extended batch systems for loosely interconnected clusters, 
such as Condor, PRM, CCS, and Codine (Buyya, 1999). Simply 
put, such a system is a first-come first-serve queueing system, 
in which any user can submit a job to be run, and can kill and 
remove their own jobs. For example, Condor is a distributed batch 
system developed at the University of Wisconsin–Madison from 
1988 to execute long-running jobs on available workstation and 
PCs, designed for HTC (Thain et al., 2005). Condor has been used 
to manage workload on a dedicated cluster of computers, and/
or to farm out work to idle desktop computers, also called cycle 
scavenging. Running on multiple operation systems (OS), such as 
Linux, Unix, Mac OS X, FreeBSD, and contemporary Windows 
OS, Condor can seamlessly integrate both dedicated resources 
(rack-mounted clusters) and non-dedicated desktop machines 

program loops, which focuses on distribution of the data across 
different computer nodes to be processed in parallel. Task paral-
lelism is the characteristic of a parallel program in that entirely 
different calculations can be performed on either the same or 
different sets of data. Task parallelism contrasts with data paral-
lelism, where the same calculation is performed on the same or 
different sets of data. Thus, task parallelism does not usually scale 
with the size of a problem.

Computationally, many large problems can be divided into 
smaller jobs, which can then be solved concurrently. This is 
known as parallel computing, which has potential to dramati-
cally speed-up an algorithm. Arguably, any large computational 
problem may consists of several parallelized parts and several 
non-parallelizable (sequential) parts. Then, how much can paral-
lelization speed-up the computation? The Amdahl law states that 
the overall speed-up in computing available from parallelization 
is limited by a small portion of the program which cannon be 
parallelized (Amdahl, 1967), and the relationship is described 
by the equation:

S p= −( )−
1

1

where S is the speed-up of the program (as a factor of its original 
sequential runtime), and P is the fraction that is parallelizable. 
For example, if the sequential part of a program is 10% of the 
runtime, we have S = −( ) =−

1 0 9 10
1

. , indicating that we can get 
no more than a 10× speed-up, regardless of how many processors 
are added. This number puts an upper limit on the usefulness of 
adding more parallel execution units. In an extreme case, if a task 
cannot be partitioned in parallel, the application of more effort 
has no effect on the schedule because S = 1. Similarly, Gustafson’s 
(1988) law states that:

S P P P( ) = − −( )α 1

where P is the number of processors, S is the speed-up, and α is 
the non-parallelizable part of the process. The difference is that the 
speed-up (S) in the Gustafson’s law is a function of the number 
of processors (P), but the Amdahl’s law assumes a fixed problem 
size and the size of the sequential section is independent of the 
number of processors.

sImPle batch ProcessIng for Parallel comPutIng
Batch processing is a simple way to automate the execution of 
a series of programs (“jobs”) on a computer without manual 
intervention. This is in contrast to “online” or interactive pro-
grams, which prompt the user for such input. A program takes 
a set of data files as input, processes the data, and produces a 
set of output data files. This operating environment is termed 
“batch processing,” because the input data are collected into 
batches on files and are processed in batches by the program. As 
an illustrative example, let modBayesB be a program implement-
ing a BayesB analysis, in which an arbitrary portion of markers 
is assumed to have no effect at all, and effects of the remaining 
markers are associated with different variances (Meuwissen et al., 
2001). This program accepts a trait name as the input argument 
at run time, with all other parameters provided by a parameter 
file. Furthermore, assume that there are k traits to be analyzed, 
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Arguments    = weanin

Log          = step.$(process).log

Output        = step.$(process).out

Error        = step.$(process).error

should_transfer_files   = YES

when_to_transfer_output = ON_EXIT

transfer_input_files = parameters_Bayes.R, phenotypes_0610.csv, 

genotypes_0610a.csv

QueueArguments    = poswea

Queue

Arguments    = sc18

Queue

Arguments    = musc

Queue

Arguments    = docil

Queue

Arguments    = rep

Queue

Arguments    = rea

Queue

Arguments    =  bkfat

Queue

Arguments    =  rump

Queue

Arguments    =  heifer

Queue

Arguments    =  stay

Queue

In the above, weanin, poswea, sc18, …, stay are trait names. 
Furthermore, “Universe = vanilla” means a plain job (there are 
some special universes in Condor, such as the “standard” uni-
verse), “Executable = ” specifies the name of program to be run, 
“Arguments = ” provides the arguments to be used by the program, 
“Log = ” specifies the name of a file where Condor will record 
information about the job’s execution, “Output = ” specifies where 
Condor should put the standard output from the job, in the analysis, 
“Error = ” specifies where Condor should put the standard error 
from your job, “should_transfer_files = ” tells Condor whether or 
not it should transfer files, “when_to_transfer_output = ” gives 
technical details about when files are to be transported back to the 
computer from which were submitted, and “transfer_input_files = ” 
specifies a list of files to be transferred at run time.

Now, we submit these jobs in the Merial Condor using the 
condor_submit command. The status of these processes can be 
monitored by the condor_q command.

[wuxiaoli@condor1 ∼]$ condor_submit  runBayesCpi

[wuxiaoli@condor1 ∼]$ condor_q

……(Here, information about the submitter should be displayed.)

 ID       OWNER       SUBMITTED   RUN_TIME ST PRI SIZE CMD               

 104.0   wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_BayesCpi_condor e

 104.1   wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_ BayesCpi _condor e

 104.2   wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_ BayesCpi _condor e

 104.3   wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_ BayesCpi _condor e

(cycle scavenging) into one computing environment. For exam-
ple, the NASA Advanced Supercomputing (NAS) facility Condor 
pool consists of approximately 350 (Silicon Graphics Inc., SGI) and 
Sun workstations used for software development, visualization, 
email, document preparation, and so on. As a scheduler software, 
Condor was used to distribute jobs for the first draft assembly of 
the Human Genome.

Parallel comPutIng In condor htc envIronment
We show how Condor can be used to distribute parallel computing 
jobs. Assume that we have an R program that implements BayesCpi 
analysis in which the parameter π describes the portion of markers 
(genes) with no effect on the quantitative trait and the effects of 
the remaining markers share the same variance. The program takes 
parameter values from a parameter file, and it also accepts up to 
two parameters at run time, one for the trait name and the other 
for the pi (π) value, whose values overwrite those provided from the 
parameter file. The second parameter π is optional. When it is miss-
ing, the parameter π is treated as an unknown quantity and inferred 
from its posterior distribution. If a value is provided, then the pi 
parameter is fixed to this value in the analysis. Notice that BayesCpi 
analysis typically refers to the former case when π is unknown and 
inferred. Now, define a shell script, namely run_BayesCpi_condor, 
with the following content:

#use a single parameter file

statMod=“wgse_BayesCpi_beta.R”

#at least one arg is needed

if [ $# == 0 ] 

then

  echo “You must specify trait name!”

  exit

fi

# specify trait name

trtNam=$1

if [ $# == 2 ]

then

  piVal=$2

fi

cd $destDir

if [ $# == 1 ]

then

  Rscript $statMod -t $trtNam

else

  Rscript $statMod -t $trtNam -n $piVal

fi

We wish to run BayesCpi analysis for the 11 traits in paral-
lel. A Condor batch script can be defined as follows and saved as 
“runBayesCpi”:
Universe     = vanilla

Executable   = run_BayesCpi_condor
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In Condor, Directed Acyclic Graphic Manager (DAGMan) is a 
program that allows one to specify the dependencies between your 
Condor jobs and automatically manages them for you. Assume that 
you have three jobs: job A for data input, QC, and editing, job B 
for feature selection (e.g., stepwise regression), and program C for 
post-selection inference and cross-validation. The order to execute 
these jobs is as follows: Do not run job B until job A has completed 
successfully, and do not run job C until job B has completed suc-
cessfully (Figure 3).

So, a DAG is the data structure used by DAGMan to represent 
these dependencies: each job is a node in the DAG, and each node 
can have any number of “parents” or “children” nodes, as long as 
there are no loops.

Next, assume that we have four jobs: A for data input, QC, and 
data editing, B and C for feature selection each using two different 
criteria, and job D for comparing the two panels obtained from 
jobs B and C by cross-validation. A DAG can be defined, say in a file 
called demo.dag, which lists each of its nodes and their dependen-
cies (Figure 4).

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

To start the DAG job, simply run condor_submit_dag with the 
.dag file

      $ condor_submit_dag demo.dag

Then, condor_submit_dag submits a Scheduler Universe job 
with DAGMan as the executable. DAGMan acts as a scheduler, 
managing the submission of your jobs to Condor based on the DAG 
dependencies. While running a DAG, DAGMan holds and submits 
jobs to the Condor queue at the appropriate times, as defined in 
the .dag file. Once the DAG is complete, the DAGMan job itself is 
finished and exits. In case of a job failure, DAGMan continues until 
it can no longer make progress and then creates a “rescue” file with 
the current state of the DAG. The rescue file can be used later to 
restore the prior state of the DAG once the failed job is ready to be 
re-run. When that job completes, DAGMan will continue the DAG 
as if the failure never happened.

aPPlIcatIon to genomIc selectIon of lIvestock
Next, we illustrate how pipelining can be used for genetic evalua-
tion of candidate gene effects on quantitative traits. In reality, while 
data from candidate genes studies have been accumulated in large 

 104.4   wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_ BayesCpi I_condor e

 104.5   wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_ BayesCpi I_condor e

 104.6   wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_ BayesCpi _condor e

 104.7   wuxiaoli     11/11 17:37  0+07:59:44 R  0   366.2 run_ BayesCpi _condor e

 104.8   wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_ BayesCpi _condor e

 104.9   wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_ BayesCpi _condor e

 104.10  wuxiaoli     11/11 17:37  0+07:59:44 R  0   390.6 run_ BayesCpi _condor e

11 jobs; 0 idle, 11 running, 0 held

hIgh-throughPut comPutIng vIa PIPelInIng for 
genomIc selectIon
PIPelInIng for IncreasIng comPutIng throughPut
Now that we have had some experience with submitting par-
allel jobs in a Condor pool, it is time for us to get the flavor 
of pipelining for HTC. Actually, pipelining is not something 
new to us, but a natural concept in everyday life. For instance, 
consider the assembly of a car. Possible steps in the assembly 
line are the installation of the engine, the hood, and the wheels 
(in that order, with arbitrary interstitial steps). Such an auto-
mobile assembly line increases the manufacturing throughput. 
In computer science, pipeline refers to a set of data processing 
elements connected in series, so that the output of one element 
is the input of the next (Figure 2). The elements of a pipeline 
are often executed in parallel or in a time-sliced fashion. The 
procedure can be divided into stages, each completing a part of 
an instruction. The stages are connected to each other to form a 
pipe: instructions enter at one end, progress through the stages, 
and exit at the other end. Pipelining increases the CPU instruc-
tion throughput, that is, the number of instructions completed 
per unit of time, leading to lower total execution time and higher 
instruction throughput.

FiGure 2 | Pipelining with sequential (upper) and parallel (middle and 
lower) execution. Here, S1–S4 can be viewed as four stages of the 
computing job, and each of them can consist of sub-stages such as S2a, S2b, 
and S2c.

FiGure 3 | A DAG with three sequential jobs.

A

B C

D

FiGure 4 | A DAG with four nodes (among them jobs B and C run in 
parallel).
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goIng further – What oPPortunItIes do We have?
Though the concept of HTC may still be considered to be new 
to many researchers in animal breeding and genetics, the HTC 
revolution has already happened, as reflected in the development 
of computer hardware and software, as well as scalable parallel 
computing architectures. In this section, we briefly review existing 
computer architectures and infrastructures that can be leveraged 
for HTC, and explore new-generation hardware and software for 
massive parallel computing.

leveragIng htc archItectures and Infrastructures for 
genomIc selectIon
It is an undeniable fact that, nowadays, computer hardware is no 
longer made for serial computation. Nearly all new-generation 
computers have been equipped with multi-core central processors. 
Many different computer systems supporting HPC have emerged 
and are becoming increasingly widely used. These include massively 
parallel processors (MPP), symmetric multiprocessors (SMP), 
cache-coherent non-uniform memory access (CC-NUMA), dis-
tributed systems, and clusters (Hwang and Xu, 1998). Comparison 
of the architectural and functional characteristics of these systems 
can be found in Buyya (1999). Briefly, a MPP is a large parallel 
processing system with a shared-nothing architecture. It is typi-
cally composed of several hundred processing elements (nodes), 
connected through a high-speed interconnection network (switch). 
In a MPP, each node can have a variety of hardware computers, 
but generally consists of a main memory and one or more proces-
sors. Each node runs a separate copy of the operating system. SMP 
systems usually have from 2 to 64 processors, and are considered to 
have a shared-everything architecture. In these systems, the proces-
sors share all the global resources available, such as bus, memory, 
and I/O system. A single copy of the operating system runs on these 
systems. CC-NUMA is a scalable multiprocessor system having 
a CC-NUMA. This system gets its name from the non-uniform 
times to access the nearest and most remote parts of memory. Like 
an SMP, every processor in a CC-NUMA system has a global view 
of all of the memory. A distributed system consists of multiple 
independent computers that communicate through a computer 
network, interacting with each other in order to achieve a common 
goal. Each computer runs its own operating system.

volumes in recent decades, it is possible to select subsets of these 
candidate genes that can provide alternative panels for predict-
ing genetic merit in genomic selection. The analysis starts with 
data input and editing (S1). Next, panels of candidate genes that 
significantly affect the quantitative trait will be selected according 
to certain criteria (S2). Finally, predictive accuracy of these pan-
els will be compared using cross-validation (S3). Thus, a pipeline 
can be formed that automate all these steps (Figure 5). Instead of 
DAGMan, many scripting languages can be very useful to build 
pipelines and/or manage pipelining jobs. In this example, these 
are seven R programs, three for S1 and two for S2, and for S3, 
respectively. Instead of using DAGMan, a Perl wrapper program 
can be used to manage these processes into a functional pipeline. 
Furthermore, multiple pipelines can be run in parallel, where each 
pipeline processes data for one trait based on one or more statistical 
methods, and as such, the computing throughput can be dramati-
cally increased.

The example data consist of 2,246 animals, each genotyped 
for 384 candidate genes, with EBVs for 15 traits. A linear model 
was used in the data analysis, which includes EBV as the response 
variables and additive marker effects as the predictors. Stepwise 
regression analysis was used for variable (gene) selection based on 
P-values, Akaike’s information criterion (AIC; Akaike, 1974), and 
Bayesian information criterion (BIC; Schwarz, 1978), respectively.

Fifteen jobs, each corresponding to one trait, were submitted to 
a HTC cluster at UW (Figure 6). The analyses were implemented 
using the pipeline developed specifically for genomic selection (Wu 
et al., 2010). These jobs were queued after submission and sub-
sequently took turns running on available machines (also called 
nodes). The stage for data input, QC, and processing completed 
quickly. At the stage of variable selection, stepwise regression based 
on AIC, BIC, and P-value were used for feature selection for each 
trait, activating a total of 45 parallel jobs. Upon completion, results 
were transferred back to the submit machine (Figure 7A) and 
deployed in web folders with secured access (Figure 7B).

FiGure 5 | Workflow of a high-throughput computing pipeline for 
predicting genetic merit using candidate gene panels.

FiGure 6 | running and waiting time in parallel computing for 
prediction of genetic merit using candidate genes for 15 quantitative 
traits, each with three alternative methods for feature selection. Here, 
x-axis represents time of computing, and y-axis represents number of jobs 
pending (yellow bars) and number of jobs running (green bars).
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to heavy-use buildings and departments, and 1 GB connections 
to the rest. The existing computational infrastructures can be 
used for HTC in genomic selection programs. Furthermore, the 
UW CHTC has off-campus collaborators. When the local UW 
computer resources become not sufficient, grid middleware con-
nectivity can play an essential role. In this area, the UW is an active 
participant in NSF TeraGrid activities and a leading institution 
for the NSF/DOE Open Science Grid (OSG). These grid-based 
HTC resources will further enhance our computing capability 
and facilitate infusing HTC and grid computing techniques into 
genomic selection.

gPu-enabled massIve Parallel comPutIng – reInventIng 
Wheels that can fly
In comparison to the traditional data processing pipeline 
residing on CPU, performing general-purpose computations 
on a graphics processing unit (GPU) is a new concept even to 
the  computing field at large. The central processors have been 

On the other hand, many HTC infrastructures have already 
been built, though very few of them have been used for genomic 
selection. At the UW–Madison campus, for instance, there are 
existing HTC infrastructures that can be leveraged for genomic 
selection, in terms of CPU capacity, network connectivity, stor-
age availability, and middleware connectivity. For CPU capacity, 
we can make use of the many computer clusters across the UW–
Madison campus, which are linked together to share resources via 
technology developed by the UW Condor Team. These campus 
installations include the currently existing Grid Laboratory of 
Wisconsin (GLOW) resources, the Center for  High-Throughput 
Computing (CHTC) resources, and the Department of Computer 
Sciences (DCS) cluster. Together these clusters represent over 
6,200 CPU cores for computing. These machines follow a roughly 
4 year replacement cycle, and as such vary between 2.0 GHz single 
core machines and 1 GB of RAM per CPU, to more recent multi-
core machines. For network connectivity, the UW network is cur-
rently comprised of a 10 GB backbone with 10 GB connections 

FiGure 7  | results stored on the submit machine (A) and also deployed in web-accessible folders (B).
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science, a thread of execution is the smallest unit of processing that 
can be scheduled by an operating system. Simply put, CUDA is 
a way to write parallel C code for various CUDA-enabled graph-
ics processors. CUDA can be downloaded from the NVIDIA web 
site2, and it is free! A toy example of GPU parallel programming 
for adding two vectors is shown in Figure 8. A CUDA C program 
is similar to a standard C program, except a couple of noticeable 
differences. First, CUDA C adds the _global_ qualifier to standard 
C. This part alerts the compiler that a function should be compiled 
to run GPU (referred to as a device) instead the CPU (referred to as 
the host). Second, a function that executes on the device is given a 
different name, called a kernel. A kernel differs from a standard C 
function in that it contains extra parameters in the angle brackets. 
In this example, we have addVec <<< 1, N >>> (x, y, z), where the 
first number represents the number of blocks we would like the 
device to execute the kernel, and the second number represents the 
number of threads per block we would like the CUDA runtime to 
create on our behalf. The total number of threads running simulta-
neously for a given kernel is the product of those two parameters. 
In this example, if we define the value of the first parameter to 
be N = 512 and the value of the second parameter to be 1, then 
the total number of threads running concurrently is 512. In addi-
tion, nvcc is used to compile the CUDA part of the code, instead 
of gcc used by the standard C, and the debugger and profilers are 
therefore different.

Nowadays, most computers are equipped with at least one 
CUDA-enabled GPU. Unfortunately, the statistical packages cur-
rently available are not designed to accommodate these new features 
provided by GPU-enabled massive computing. Thus, these pack-
ages will have to be re-engineered accordingly. This represents a 
tremendous task that may revolutionize the software development 
for genomic selection. An analog is like reinventing the wheels: 
while “traditional wheels” are designed so that they can only run 
on roads, the next-generation “wheels” can fly as well. In high-
throughput/performance applications for genomic selection, this 
is saying that we will have to rebuild statistical packages for massive 
parallel computing on heterogeneous platforms that contains both 
CPU and GPU.

To summarize, the HTC revolution has already taken place, 
and the age of HTC for genomic selection is right here. We 
expect that HTC has the potential to bring revolutionary changes 
to genomic selection programs, such as faster solutions, bet-
ter statistical methods, more informed decisions, and more 
competitive products. In the animal breeding industry, this 
new-generation computing solution represents a tremendous 
competitive edge in the marketplace, because it can give users 
the ability to quickly model their data and subsequently manipu-
late a product or process to see the impact of various decisions 
before they are made. To this end, we anticipate that HTC will 
have a profound impact on post-genome era selection programs 
in animals and plants, and it will eventually change our view 
and our routine practice of data analysis and decision-making 
involved in genomic selection.

 evolving in both clock speeds and core counts. In the meantime, 
the state of graphics processors have been undergone a dramatic 
revolution as well. The late 1980s and early 1990s have witnessed 
the growth in popularity of graphically driven operating systems 
such as Microsoft Windows, and latter in turn helped create a 
market for a new type of processor. In the early 1990s, users 
began purchasing 2D display accelerators for their PCs. These 
display accelerators offered hardware-assisted bitmap operations 
to assist in the display and usability of graphics operating sys-
tems. From a parallel computing standpoint, NVIDIA’s release 
of the GeForce 3 series (chips) in 2001 possibly represented the 
most important breakthrough in GPU technology. Essentially, 
the GPUs of the early 2000 were designed to produce a color for 
every pixel on the screen using programmable arithmetic units 
known as pixel shaders. Because the arithmetic being performed 
on the input colors and textures was completely controlled by 
the programmer, it was observed that these input “colors” could 
actually be any data. So, if the inputs were actually numerical 
data signifying something other than color, then programmers 
could program the pixel shaders to perform arbitrary compu-
tation on this data. Because of its high arithmetic throughput, 
GPU-enabled computing has promised massive throughput 
which otherwise can not be obtained from the central proces-
sor’s traditional computing.

 Toward this effort, NVIDIA’s Compute Unified Device 
Architecture (CUDA) makes parallel programming and using 
thousands of simultaneous threads straightforward. In  computer 

// Kernel definition
__global__ void addVec(float* x, float* y, float* z) 
{

int i = threadIdx.x;
z[i] = x[i] + y[i];

}

int main (void)
{

…
// Kernel invocation with N threads
addVec<<<1,N>>>(x, y, z)
…

}

A

B

FiGure 8 | illustration of GPu-enabled parallel computing: (A) graphic 
representation of summing two vector x and y into vector z; (B) CuDA C 
code (partial) for summing two vectors.

2www.nvidia.com/cuda
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