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BACKGROUND: Smoking and COPD are risk factors for cardiovascular disease, and the
pathogenesis may involve endothelial dysfunction. We tested the hypothesis that
endothelium-derived epoxyeicosatrienoic acid (EET)-mediated endothelial function is
impaired in patients with COPD and that a novel soluble epoxide hydrolase inhibitor,
GSK2256294, attenuates EET-mediated endothelial dysfunction in human resistance vessels
both in vitro and in vivo.

METHODS: Endogenous and stimulated endothelial release of EETs was assessed in 12 patients
with COPD, 11 overweight smokers, and two matched control groups, using forearm
plethysmography with intraarterial infusions of fluconazole, bradykinin, and the combina-
tion. The effects of GSK2256294 on EET-mediated vasodilation in human resistance arteries
were assessed in vitro and in vivo in a phase I clinical trial in healthy overweight smokers.

RESULTS: Compared with control groups, there was reduced vasodilation with bradykinin
(P ¼ .005), a blunted effect of fluconazole on bradykinin-induced vasodilation (P ¼ .03), and
a trend toward reduced basal EET/dihydroxyepoxyeicosatrienoic acid ratio in patients with
COPD (P ¼ .08). A similar pattern was observed in overweight smokers. In vitro, 10 mM
GSK2256294 increased 11,12-EET-mediated vasodilation compared with vehicle (90% �
4.2% vs 72.6% � 6.2% maximal dilatation) and shifted the bradykinin half-maximal effective
concentration (EC50) (–8.33 � 0.172 logM vs –8.10 � 0.118 logM; P ¼ .001 for EC50).
In vivo, 18 mg GSK2256294 improved the maximum bradykinin response from 338% �
46% before a dose to 566% � 110% after a single dose (P ¼ .02) and to 503% � 123% after a
chronic dose (P ¼ .003).

CONCLUSIONS: GSK2256294 attenuates smoking-related EET-mediated endothelial
dysfunction, suggesting potential therapeutic benefits in patients with COPD.
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COPD is the third leading cause of death worldwide and
a risk predictor for atherosclerosis.1-3 Several
pathophysiological processes may contribute to disease
progression and increased cardiovascular risk in COPD,
including systemic effects of smoking, chronic
inflammation,4 and endothelial dysfunction.5 Patients
with COPD are also more likely to have other
cardiovascular comorbidities, including central
abdominal obesity and metabolic syndrome, particularly
in earlier stages of COPD.6-8 Endothelium-derived
hyperpolarizing factor (EDHF) and, particularly,
epoxyeicosatrienoic acid (EET) are involved in the
modulation of vascular tone,9 attenuation of
inflammation,10 and activation of fibrinolysis by
augmenting tissue plasminogen activator (tPA)
expression.11

EETs are synthesized by cytochromeP450 (CYP) enzymes,
and metabolized to their less biologically active diols by
soluble epoxide hydrolase (sEH) enzymes.12 Smoking has a
synergistic effect with CYP450 and sEH polymorphisms,13
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resulting in enhanced sEH activity, reduced plasma EETs,
and increasing overall risk of myocardial infarction.14

Plasma EET levels are reduced in patients with coronary
artery disease who are obese orwho smoke.15 EETs are also
produced in lung epithelial cells, and they may become
dysfunctional inCOPD.12 In vivo, smokers exhibit reduced
endothelial responses to bradykinin,5 and this may be
associated with impaired EDHF-mediated
vasodilation.16,17 However, the functional role of EETs
has not yet been characterized in humans.

Upregulation of EETs by sEH inhibition in animals
improves metabolic syndrome18 and lung function
and attenuates smoking-related inflammation and
emphysema.19 GSK2256294 is a novel potent sEH
inhibitor in phase I clinical development and may have
the potential to impact systemic and pulmonary
endothelial function. As this was a phase I clinical trial
mainly focused on safety and tolerability in healthy
people, we used a cohort of overweight smokers as
representative of patients with early-stage COPD.

We hypothesized that EET synthesis is reduced in
patients with COPD and otherwise healthy overweight
smokers and that sEH inhibition would upregulate EETs
and endothelial dysfunction. We completed a
physiological study in which we assessed EET-mediated
basal tone, and the EET component of bradykinin
stimulated vasodilation in patients with COPD and in
overweight smokers to maximize the impact of
cardiovascular risk factors in otherwise healthy subjects.
Subsequently, we examined the effects of a novel sEH
inhibitor, GSK2256294, in human resistance arteries
in vitro and in vivo in a phase I clinical trial with an
experimental medicine arm to provide early proof of
mechanism for target engagement in overweight
smokers. The study design, safety, and pharmacokinetic
data from the phase I trial were reported separately,20

and we only report the effects of sEH inhibition on
endothelial function in this manuscript.

Methods
All study procedures were conducted in accordance with the
Declaration of Helsinki, were approved by appropriate institutional
review boards, and received favorable opinions from local ethics
committees (13/EE/0032, 12/LO/1832), and the Medicines and
Healthcare products Regulatory Agency. Analysis and statistical
methods are described in e-Appendix 1. All subjects were recruited
following written consent.

We used forearm venous occlusion plethysmography21 to assess
vascular function in vivo with intraarterial infusion of challenge
agents through a 27-gauge needle (Coopers Needleworks) inserted
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into the brachial artery. Venous plasma concentrations of EET/DHET
were assessed as representative of sEH activity at baseline and during
the forearm blood flow studies. Oscillometric BP was monitored in
the noninfused arm. Detailed methods and statistical analyses can be
seen in e-Appendix 1.

Study 1

Twelve male patients with COPD (FEV1/FVC < 0.7 and FEV1

< 80% postbronchodilator use), and 12 healthy sex-matched control
groups (matched control group 1) underwent a single forearm blood
flow study to assess EET-mediated vasodilation (UK Clinical
Research Network Portfolio ID: 14339). Patients taking concomitant
medications that interfere with CYP450 or cyclooxygenase enzymes
were asked to stop for at least 4 days prior to the forearm blood
flow procedure. Overall endothelium-dependent function was
assessed by infusing bradykinin (100, 300, and 1,000 pmol/min;
Bachem Distribution Services GmbH), and stimulated EET release
was assessed by coinfusing bradykinin with 0.4 mmol/min
fluconazole, a CYP inhibitor that inhibits EET synthesis (Pfizer Ltd.)
(e-Fig 1).9 Endothelium-independent responses were assessed using
12 and 38 nmol/min (3 and 10 mg/min) sodium nitroprusside (SNP)
(Nitroprussiat FIDES).

Study 2

Twelve overweight smokers ($ 10 cigarettes/d and > 5 pack-year
history, weight > 60 kg, and BMI 28-35 kg/m2) and equal numbers
of healthy sex- and age-matched nonsmoker control groups
journal.publications.chestnet.org
(matched control group 2) underwent the same forearm blood flow
protocol as did subjects in study 1.

Study 3

We first assessed the effects of sEH inhibition in vitro by application of
GSK2256294 to human resistance arteries treated with L-nitroarginine
methyl ester (LNAME) and indomethacin (detailed description of
methods in e-Appendix 1) and in vivo using forearm blood flow
before a dose, after a single dose (acute effects), and after 14 days
(chronic effects) of oral GSK2256294. Responses to bradykinin (300,
600, and 1,000 pmol/min) were assessed in the presence of 8 mmol/
min NG-monomethyl-L-arginine (LNMMA; Bachem) and 6 mmol
(1 g) IV aspirin (Aspergic Sanofi-Aventis) to inhibit nitric oxide
(NO) and prostaglandin I2 synthesis to maximize EDHF and EET
(e-Fig 2). Venous concentrations of tPA and plasminogen activator
inhibitor type 1 (PAI-1) were measured before and after each dose
of bradykinin.22 Challenge agent doses were chosen based on
previous studies.5

To assess the effects of GSK2256294 in vivo, we studied healthy
overweight smokers (no concomitant medications) as a paradigm for
a COPD population in a phase I clinical trial to provide early proof
of mechanism (ClinicalTrials.gov NCT01762774). Thirty male
overweight smokers, were allocated in a 2:1 ratio between
GSK2256294 (6 mg or 18 mg) and placebo for 14 days of repeated
doses. GSK2256294 doses were chosen based on enzyme inhibition
and pharmacokinetic data from the single-dosing cohorts.20
Results

Study 1

Subject demographics are presented in Table 1. The
average FEV1 was 53% � 13% predicted and the
FEV1/FVC ratio was 0.5 � 0.1 in the subjects with
COPD. There was a trend toward a higher plasma
concentration of the basal EET/DHET ratio in the
matched control group 1 compared with patients with
COPD (0.54 � 0.12 vs 0.45 � 0.14; P ¼ .08) (Fig 1).

There was a dose-dependent increase in the forearm
blood flow ratio following bradykinin in both groups
(P < .0001). Bradykinin response was significantly
higher in the matched control group 1 than in patients
with COPD (maximal dilatation 1,314% � 191%
vs 552% � 103%; P ¼ .005) (Fig 2A). In the
presence of fluconazole, maximum dilatation to
bradykinin was reduced in matched control group 1
(406% � 64%; P < .0001) but not in patients with
COPD (447% � 124%; P ¼ .32), showing a significant
between-group difference in inhibition (P ¼ .03). There
was no difference in SNP response between groups
(data not shown). BP values remained constant
throughout the studies.

Although not significant, plasma concentrations of
the EET/DHET ratio in response to bradykinin was
higher in the matched control group 1 compared with
patients with COPD (maximum 8.6 � 3.4 vs 6.8 � 1.1;
P ¼ .83). Although it was not significant, in the
presence of fluconazole, total EET/DHET levels were
slightly lower in matched control group 1 (maximum
4.7 � 0.4; P ¼ .27) but not in patients with COPD
(5.2 � 0.9; P ¼ .70) (Fig 3A).

Study 2

Although not significant, the basal EET/DHET ratio
was higher in the matched control group 2 compared
with overweight smokers (0.46 � 0.06 vs 0.39 � 0.04;
P ¼ .33) (Fig 1).

Bradykinin response was higher in the matched
control group 2 than in overweight smokers (maximal
dilatation: 930% � 81% vs 575% � 112%; P ¼ .02)
(Fig 2B). In the presence of fluconazole, maximum
dilatation to bradykinin was reduced in the matched
control group 2 (400% � 49%; P < .0001) but not in
overweight smokers (437% � 57%; P ¼ .16), resulting in
a significant between-group difference (P ¼ .002). There
was no difference in SNP response between groups
(data not shown). BP values remained constant
throughout the studies. There was no difference in the
bradykinin response between subjects with COPD and
overweight smokers (P ¼ .72).
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Figure 1 – Plasma concentration of basal EET/DHET in patients with
COPD and overweight smokers. There was a trend toward a higher EET/
DHET ratio in matched control group 1 (blue) than in patients with
COPD (red; P ¼ .08) and a higher EET/DHET ratio in matched control
group 2 (blue) compared with overweight smokers (gray; not significant).
DHET ¼ dihydroxyepoxyeicosatrienoic acid; EET ¼ epoxyeicosatrienoic
acid.
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Although not significant, the increase in the EET/DHET
ratio in response to bradykinin was higher in the healthy
matched control group 2 compared with overweight
smokers (maximum 10.31 � 4.43 vs 5.66 � 0.46; P ¼
.80). In the presence of fluconazole, EET/DHET was
reduced in the matched control group 2 but were slightly
increased in overweight smokers (maximum, 5.02 �
0.38 vs 8.19 � 2.18; P ¼ .003) (Fig 3B).

Study 3

In LNAME- and indomethacin-treated resistance
vessels, GSK2256294 10 mM increased 11,12-EET-
mediated vasodilation compared with vehicle (n ¼ 6 in
each group; 90% � 4% vs 73% � 6% maximal dilatation)
(Fig 4A) and shifted the bradykinin EC50 (n ¼ 6;
–8.33 � 0.17 logM vs –8.10 � 0.12 logM; P ¼ .001)
(Fig 4B). However, vasodilation from 8,9-EET was
unaltered (maximal dilatation, 82% � 16% vs 72% �
19%), suggesting that the effects were regioisomer
specific. The vasodilation from papaverine (100 mM),
a test of direct smooth muscle vasodilation, was
unchanged with GSK2256294 administration.

In vivo, 28 subjects, including the 11 who took part in
the physiological study, completed forearm blood flow
studies before dosing, after a single dose, and after
14 days of repeated dosing with placebo (n ¼ 6) or
GSK2256294, 6 mg or 18 mg (n ¼ 11 in each group)
(Table 1). There was a trend toward increased
bradykinin response after single and repeated dosing in
the active treatment groups. In subjects who received
6 mg, response to bradykinin increased by 23% �
17% on day 1 and by 22% � 22% on day 14. In those
who received 18 mg, bradykinin response increased by
14% � 17% on day 1 and 12% � 14% on day 14.
Responses to SNP did not change.
[ 1 5 1 # 3 CHES T MA R C H 2 0 1 7 ]
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Figure 2 – Forearm blood flow responses in (A) patients with COPD and (B) overweight smokers. Bradykinin-induced vasodilation (solid lines)
was greater in healthy matched control groups (blue) than in patients with COPD (red; *P ¼ .005) and overweight smokers (gray; §P ¼ .02). In the
presence of fluconazole (dotted lines), bradykinin-induced vasodilation was reduced in healthy matched control subjects (**P < .0001 and §§P < .0001)
but not in patients with COPD or overweight smokers. BK ¼ bradykinin; FBF ¼ forearm blood flow.
In a post hoc analysis of the forearm blood flow ratio,
there was an improvement in bradykinin-induced
responses following dosing with the active drug
compared with placebo (P ¼ .007), with the greatest
effect in the active-drug 18-mg group. In this group, the
maximum bradykinin response improved from 338% �
46% before dosing to 566% � 110% after a single dose
(P ¼ .02) and to 503% � 123% after chronic dosing (P ¼
.003) (Fig 5).

LNMMA and aspirin inhibited basal flow equally on
all 3 days in the three treatment arms (e-Table 1).
BP remained stable, and there were no changes to
tPA in response to BK or in PAI-1 release (data not
shown).
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significant, there was a trend toward a greater increase in total EET/DHET
compared with patients with COPD (red) and overweight smokers (gray). In
reduced total EET/DHET ratio in the healthy group but not in patients with C
abbreviations.

journal.publications.chestnet.org
Discussion
The findings from these studies suggest that COPD and
smoking are associated with impaired overall endothelial
function and reduced stimulated vascular EET
production. Proof-of-mechanism data demonstrate that
sEH inhibition with GSK2256294 results in
improvements in vascular function both in vitro and
in vivo.

We elected to study patients with COPD and
overweight smokers, as the mechanisms behind
COPD, smoking, and cardiovascular disease remain
poorly understood. Both smokers and patients with
COPD exhibit low-grade systemic inflammation,1

which plays a key role in endothelial activation,
10000 100 300

BK dose (pmol/min)

Overweight smokers
B

in in patients with (A) COPD and (B) overweight smokers. Although not
ratio in response to bradykinin (solid lines) in healthy subjects (blue)
the presence of fluconazole (dotted lines), there was a trend toward a
OPD or overweight smokers. See Figure 1 and 2 legends for expansion of
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Figure 4 – In vitro study. Effect of GSK2256294 on (A) 11,12-EET-induced vasodilation and (B) BK-induced vasodilation in LNAME- and
indomethacin-treated human resistance arteries. (A) Isolated human arterioles (n ¼ 6) were preconstricted with endothelin-1, and 11,12-EET-induced
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(gray) and presence of 1 mM (red) and 10 mM (blue) GSK2256294. *P < .05 compared with control group. LNAME ¼ L-nitroarginine methyl ester. See
Figure 1 and 2 legends for expansion of other abbreviations.
resulting in endothelial dysfunction and the initiation
of atherosclerosis.23 It has been demonstrated that
patients with COPD,5 smokers,24 and ex-smokers25

exhibit a similar degree of endothelial dysfunction,
suggesting that smoking may be the key contributing
factor. Cardiovascular risk factors are more likely to
cluster in obesity, manifesting as a syndrome of
increased adipocytes, hyperglycemia, and dyslipidemia,
with underlying low-grade inflammation. In
normotensive overweight subjects with metabolic
syndrome, acetylcholine-induced rather than
bradykinin-induced vasodilation is reduced, possibly
suggesting a lesser degree of endothelial dysfunction.9

However, the extent to which EETs contributed to
this endothelial dysfunction remained unclear. Our
study was the first to interrogate this further, and
forearm blood flow data suggest that EET production
is impaired similarly in patients with COPD and
overweight smokers, supported by plasma
quantification of EET/DHET as a representative of
sEH activity.

We observed a trend toward reduced baseline EET/
DHET in patients with COPD and overweight smokers,
and when comparing the two matched control groups,
the baseline EET/DHET ratio was slightly less in the
younger matched control subjects for overweight
smokers (matched control group 2) than those for
COPD (matched control group 1). However, human
plasma EET and DHET levels are notoriously difficult
to quantify due to their instability; thus, definitive
conclusions cannot be drawn from these insignificant
results but can only be taken in context of our forearm
blood flow data and previous published data. In
560 Original Research
animals, obesity is associated with reduced hepatic
expression of EET-producing CYP2C enzymes.26 In
mesenteric arteries of obese Zucker rats, there are
reduced CYP2C and CYP2J enzymes, with enhanced
activity of sEH enzymes.27 Increased sEH activity may
represent more advanced inflammation, as in coronary
artery disease; those who are obese or who smoke
exhibit the lowest EET/DHET ratio.15 sEH activity is
associated with forearm blood flow, as subjects with the
Lys55Arg polymorphism in the sEH encoding gene
(EPHX2) exhibit higher sEH activity and reduced
vasodilator responses to bradykinin.28 Smoking can
also significantly upregulate EPHX2,29 and this is
associated with increased coronary artery calcification
in humans.13

The reduced EET synthesis and endothelial
dysfunction observed in patients with COPD and
overweight smokers may be a result of chronic low-
grade inflammation secondary to smoking.30 In
animals, dimethyl sulfoxide-soluble smoke particles
can upregulate endothelium-derived vasoconstrictors
through the nuclear factor kappa light-chain enhancer
of activated B cells (NF-kB),31 a pivotal protein
controlling the transcription of genes relevant to the
pathophysiology of the blood vessel wall, including
adhesion molecules and cytokines.10 EETs exert their
antiinflammatory effects by inhibiting the activation of
NF-kB.10 Inflammatory states are associated with
downregulation of hepatic and extrahepatic CYP450
enzymes, resulting in a vicious cycle of reduced EET
production and an ineffective EET-mediated
antiinflammatory effect both locally and
systemically.32
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Figure 5 – Phase I clinical trial. Responses to bradykinin in overweight
smokers who received (A) placebo, (B) 6 mg, and (C) 18 mg of active
drug. Bradykinin induced significant vasodilation on all 3 days in all
three treatment groups (P < .0001). Forearm blood flow improved
overall in the active drug group (P ¼ .007), with the greatest effect in the
18-mg active drug group, after acute dosing (*P ¼ .02 in C) and after
14 days chronic dosing (**P ¼ .003 in C). Solid lines represent predose;
small dotted lines represent acute dose, and long dotted lines represent
chronic dose. See Figure 2 legend for expansion of abbreviations.
GSK2256294 is a potent sEH inhibitor that exerts high
levels of sEH enzyme inhibition both in vitro19 and
in vivo.20 In human left internal mammary arteries,
11,12-EETs are the most potent regioisomer,33 and we
confirmed that both 11,12-EET- mediated and
bradykinin-mediated vasodilation were enhanced in the
journal.publications.chestnet.org
presence of GSK2256294 in human resistance arteries.
In animal models of cigarette smoking and obesity, sEH
inhibition improves lung34 and endothelial function35

and attenuates pulmonary inflammation, as reflected by
reduced inflammatory cells, including neutrophils and
macrophages.19 In human bronchial cells, treatment
with exogenous EETs protects against cigarette smoke
extract-induced injury.36 Consistent with in vitro results,
both acute and chronic sEH inhibition for up to 2 weeks
improves responses to bradykinin.

No changes were observed in tPA release following sEH
inhibition. tPA is a fibrinolytic serine protease that is
released from the endothelium and regulates
degradation of intravascular fibrin. Impaired tPA release
can be associated with coronary atherosclerosis and
cigarette smoking.25 Treatment of human endothelial
cells with exogenous EETs, particularly 11,12-EETs, can
increase tPA protein expression in a dose- and time-
dependent manner, possibly due to activation of a
G-protein, while not affecting PAI-1, the endogenous
inhibitor of tPA.11 tPA release may also be dependent on
the agonist, and in this group of overweight smokers,
substance P may elicit a greater response.24

Some limitations of this study warrant consideration.
Since the main focus of the phase I clinical trial was
on safety, tolerability, and pharmacokinetics of
GSK2256294 in healthy volunteers, we were not able to
test this novel drug in patients with COPD. In addition,
the lack of a nonsmoking control group in the phase I
clinical trial means that the magnitudes of the effects of
both doses of GSK2256294 were relatively small and
similar to the variance in bradykinin responses in the
placebo group. Therefore, phase II studies in larger
patient groups are required to draw definitive
conclusions.

Some evidence also suggests that in NO-deficient
conditions, EETs may be upregulated.9 Thus, by creating
an NO-deficient milieu during the forearm blood flow
study with LNMMA, we may have masked any further
upregulation of EETs by sEH inhibition. Larger clinical
trials in patients with COPD, without concomitant
inhibition of NO synthase, would be required to further
understand the clinical impact of sEH inhibition. This
must also be approached with caution because of the
potential of EETs to stimulate angiogenesis, and possibly
modulate cancer genesis and metastasis,37 although,
interestingly, dual-action cyclooxygenase and sEH
inhibition may in fact suppress cancer.38 We found no
changes in serum vascular endothelial growth factor, the
561
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active drug group with this dosing regimen, after
14 days.20

Conclusions
Patients with COPD and overweight smokers have
impaired endothelial function and dysregulated EETs
562 Original Research
signaling. sEH inhibition can augment bradykinin-
induced vasodilation in human resistance vessels both
in vitro and in vivo, suggesting that sEH inhibition
may be a novel therapeutic target to ameliorate
cardiovascular risk in patients with smoking-related
endothelial dysfunction.
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