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Introduction

Recently, Whitney and Garland [1]

(hereafter ‘‘WG’’) reanalyzed a dataset

presented in Lynch and Conery [2]

(hereafter ‘‘LC’’) using phylogenetic statis-

tical techniques. Contrary to LC, WG

found little support for the idea that Neu

(the product of effective population size

and the mutation rate) is statistically

related to genome size or six other

genomic attributes. Lynch [3] has re-

sponded with criticisms of the WG ap-

proach and interpretations. Below we

carefully consider these criticisms, present

additional analyses, and conclude that the

WG analyses are robust. In addition, we

explore the consistency of some predic-

tions of the mutational-hazard (MH)

hypothesis [3] and provide some guidance

regarding future tests.

Given that both analyses used the same

dataset, the heart of the issue is the choice

of analysis techniques and interpretation

of results. Below, we use the terms

‘‘phylogenetic’’ and ‘‘nonphylogenetic’’ to

describe the techniques employed by WG

and LC, respectively. ‘‘Nonphylogenetic’’

remains in quotes because, in fact, species-

level regression or correlation analyses that

do not explicitly incorporate phylogenetic

history do assume a particular phyloge-

ny—a star phylogeny (polytomy) in which

all species are equally related and all

branches have equal lengths [4,5] .

The Appropriateness of
Phylogenetic Analyses

Lynch [3] argues that both Neu and

measures of genome complexity (e.g.,

genome size) are so evolutionarily labile

that analyses incorporating a hierarchical

phylogenetic tree are unnecessary and

potentially misleading (but see [6]). The

issue can be empirically addressed [7,8].

The key test of whether a phylogenetic or

‘‘nonphylogenetic’’ regression analysis is

more appropriate examines the regression

residuals for phylogenetic signal [8,9].

Phylogenetic signal in the residuals is

evidence that the evolutionary response

of the dependent variable to the indepen-

dent variable was not so rapid as to make

phylogeny unimportant in regression anal-

yses. This was the agnostic approach taken

in WG, letting the statistics indicate the

best-fit model. The phylogenetic models

had better fit (see Table 1 in [1]),

indicating significant phylogenetic signal

in the residuals. These models did not

support the hypothesis that Neu explains a

significant fraction of the variation in

genomic attributes such as genome size.

Although the key insight regarding trait

lability is determined from the phyloge-

netic signal of the regression residuals, it

can also be instructive to examine phylo-

genetic signal for particular traits. Table 1

presents estimates of phylogenetic signal

(K) for the dataset under discussion; all

traits show significant (and often extremely

strong) phylogenetic signal, indicating that

species cannot be considered statistically

independent entities for any of these traits

[7]. Such strong phylogenetic signal may

be counterintuitive for Neu, which is a

population-level trait as opposed to a

‘‘standard’’ individual-level morphological

trait. However, Ne can be construed as an

emergent trait that reflects several other

traits (e.g., mating system, dispersal ability,

social group size, body size) that generally

do show phylogenetic signal (e.g., [7]). In

any case, the empirical data do not

support Lynch’s contention that Neu (as

estimated by ps, the average nucleotide

heterozygosity at silent sites) is so labile as

to ‘‘hav[e] no shared phylogenetic history’’

across the species in the dataset.

Next, Lynch argues that phylogenetic

techniques are inappropriate for the cur-

rent dataset because ‘‘. . . phylogenetic

inertia is overshadowed by other evolu-

tionary effects. For example, for the two

most closely related species . . . mouse and

human . . . numerous shared features of

genome architecture are a consequence of

convergent evolution, not shared ances-

try.’’ He observes that genome sizes in

different species may be determined by the

abundances of different transposable ele-

ment (TE) families. Although it is certainly

true that genome architecture can be

superficially similar because of convergent

evolution, and that such convergence can

evolve via different underlying compo-

nents (e.g., different TEs in the case of

genome size), these observations do not

automatically override the necessity for

phylogenetic analyses. Phylogenetic non-

independence must be accounted for if it

exists, no matter how it arises. Phyloge-

netic signal in the residuals of the regres-

sion of genome size on Neu (see WG and

Table 2 of the current article) indicates

that related species could share similar

values of other traits (aside from Neu) that

influence genome size. We posit that traits

influencing the proliferation of TEs (e.g.,

mating system, methylation propensity,

RNAi-mediated interference) show phylo-

genetic signal and are partly responsible

for the nonindependence observed among

residual genome sizes of closely related

species. Another non-mutually-exclusive

hypothesis is that related taxa share

physiological traits that partly determine

the environments in which they can live

(e.g., [10,11]), and that the resulting

shared environmental conditions have
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caused selection favoring similar-sized

genomes. Regardless of one’s ability to

identify the lower-level traits involved,

phylogenetic nonindependence of residu-

als is present in the current dataset (WG

and Table 2 of the current article), and

ignoring it can lead to incorrect inferences

about associations between traits.

Finally, Lynch makes two general

criticisms of phylogenetic methods. First,

he asserts ‘‘it can be shown’’ that the

phylogenetically independent contrast

method inflates the sampling variance of

the independent variable and decreases r2

values by <30%. No justification or

citation is given for this assertion, and we

know of no such bias. Moreover, r2 values

are generally not directly comparable

across ‘‘nonphylogenetic’’ and phylogenet-

ic regression models [9]. Second, citing

[12], Lynch states that ordinary least-

squares (OLS) correlations are ‘‘on aver-

age, unbiased’’ and that similar correla-

tions are expected ‘‘whether or not shared

phylogenetic history is accounted for.’’

Indeed, empirically, parameter estimates

from the two types of analyses are often

similar (see also [5,13]). However, this

average outcome across studies does not

prevent phylogenetic versus ‘‘nonphyloge-

netic’’ analyses from giving very different

answers for a particular dataset, which is

clearly the case here. Thus, any conclusion

that a ‘‘nonphylogenetic’’ analysis will

always provide the correct inference is

not warranted.

Estimation of Neu

Lynch identifies three issues relating to

Neu and to estimating Neu via ps : 1)

estimates of ps are associated with high

sampling variance; 2) because of con-

straints on Ne and u, many prokaryote

species will have similar Neu values; and 3)

ps in unicellular species is subject to

downward bias resulting from selection

on silent sites, perhaps causing prokaryotic

Neu estimates to be off by more than an

order of magnitude. These issues are

properly viewed as criticisms of the dataset

itself, not the chosen analysis. They are

equally applicable to the OLS analysis of

LC and have no bearing on whether a

phylogenetic versus ‘‘nonphylogenetic’’

analysis is more appropriate.

We note that error in the independent

variable can be incorporated into both

phylogenetic and ‘‘nonphylogenetic’’ re-

gression analyses using special techniques

Table 1. Univariate measures of
phylogenetic signal for log10-
transformed traits in the dataset.

Trait K P

Neu 0.93 ,0.001

Genome size (Mb) 1.25 ,0.001

Gene number 1.43 ,0.001

Half-life of gene duplicates 0.62 0.047

Intron size 0.72 0.002

Intron number 1.47 0.045

Transposons (number) 0.63 0.002

Transposons (fraction of
genome)

1.08 ,0.001

K varies from 0 to 1 to .1, indicating, respectively,
no phylogenetic signal, that relatives resemble
each other as much as expected under Brownian
motion–like evolution, and that relatives are more
similar to each other than expected under
Brownian motion [7]. P-values indicate significant
phylogenetic signal based on randomization tests
of the mean squared error. Results are from the
Picante package in R [34,35] utilizing the
phylogeny presented in [1] with all = 1 branch
lengths.
doi:10.1371/journal.pgen.1002092.t001

Table 2. Relationships between Neu and genome size as estimated by three types of linear regression models: ‘‘nonphylogenetic’’
(OLS), phylogenetic generalized least squares (PGLS; equivalent to phylogenetically independent contrasts), and phylogenetic
regression in which the residual variation is modeled as an Ornstein-Uhlenbeck process (RegOU).

Model Topology Branch Lengths ln Max Likelihood N b r2 d P for Regression

Ordinary Least Squares (OLS)

-- -- 225.53 29 21.17 0.64a ,0.001

Phylogenetic Generalized Least Squares (PGLS)

Coelomata All = 1 223.51 29 20.33 0.08 0.137

Coelomata Fossil 232.36 29 20.25 0.04 0.326

Coelomata rRNA 239.76 29 0.05 0.00 0.983

Ecdysozoa All = 1 224.06 29 20.34 0.09 0.124

Ecdysozoa Fossil 232.33 29 20.26 0.04 0.313

Ecdysozoa rRNA 239.73 29 0.00 0.00 0.994

Phylogenetic Regression under an Ornstein-Uhlenbeck Process (RegOU)

Coelomata All = 1 222.59* 29 20.20 0.04 1.31 0.328

Coelomata Fossil 225.51 29 21.14 0.61 0.00 ,0.001

Coelomata rRNA 225.55 29 21.16 0.64 0.00 ,0.001

Ecdysozoa All = 1 223.08* 29 20.20 0.04 1.35 0.332

Ecdysozoa Fossil 225.51 29 21.14 0.61 0.00 ,0.001

Ecdysozoa rRNA 225.55 29 21.16 0.64 0.00 ,0.001

For each of the phylogenetic regression models, two alternate tree topologies were used, each with three alternate sets of branch lengths. Log10 (genome size) was
regressed on log10(Neu); b = regression slope; d = REML estimate of the OU parameter. PGLS and OLS models are compared using ln maximum likelihoods, with a higher
likelihood taken as evidence of a better-fitting model. OU and OLS models are compared with ln maximum likelihood ratio tests; asterisks (*) indicate that the OU model
fit significantly better than OLS (P,0.05). All analyses were done using the Regressionv2.m Matlab program of [9], available from TG on request. Methods and full results
are available at http://hdl.handle.net/1911/61373.
aLynch and Conery [2] reported r2 = 0.66; the discrepancy apparently arises because their analysis used 30 species, only 29 of which were reported in their online
supplement.

doi:10.1371/journal.pgen.1002092.t002
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(e.g., [14]). However, such techniques

require that the error be quantified. For

the current dataset, error in ps is not

quantified, and thus neither we nor Lynch

have the opportunity to apply such

techniques.

Tree Topologies and Branch
Lengths

Lynch argues that potential uncertainties

associated with tree topology and branch

lengths weaken the conclusions of WG. We

agree that errors in topologies and branch

lengths can influence the outcomes of

phylogenetically based statistical analyses

[4,5,15]. However, the key point is that a

‘‘nonphylogenetic’’ analysis (e.g., the OLS

regression performed in LC) is not phylog-

eny-free. Regression analyses assume that

residuals in the dependent (Y) variable are

independent and identically distributed.

Under Brownian-motion-like evolution,

the only phylogenetic tree that generates

the appropriate variance–covariance ma-

trix (an identity matrix) is a star phylogeny,

in which each taxon is equally related to all

other taxa and branch lengths are equal

[4,5]. In effect, the LC analysis assumes

that humans are no more closely related to

mice than to bacteria. Clearly, if there are

critical errors in tree topology (and branch

lengths) that undermine the conclusions of

the alternate analyses under discussion

here, then they are found in the star

phylogeny assumed by LC.

The sensitivity of a phylogenetic com-

parative analysis is often assessed by

examining alternative topologies and/or

branch lengths (e.g., [16]). To assess the

robustness of the WG results, we have

investigated a second topology suggested

by Lynch [3] and two additional sets of

branch lengths. The WG topology fol-

lowed the ‘‘Coelomata hypothesis,’’

whereas the alternate topology reflects

the ‘‘Ecdysozoa hypothesis’’ and unites

nematodes and arthropods in a monophy-

letic group [17]. We did not investigate a

third topology suggested by Lynch, as it is

not supported in recent analyses [18–20].

Three sets of branch lengths were calcu-

lated for the two trees: arbitrary lengths

(all = 1) as in WG, lengths derived from

fossil-based divergence times, and lengths

based on ribosomal RNA substitutions.

Full methodological details are available as

supplementary material from the Rice

Digital Scholarship Archive at http://hdl.

handle.net/1911/61373. Consistent with

the WG results, none of the six phyloge-

netic generalized least-squares (PGLS)

analyses found statistically significant rela-

tionships between Neu and genome size,

and the models using all = 1 branch

lengths best fit the data (had the highest

likelihoods) regardless of the topology

(Table 2). Thus, the conclusion of no

relationship between Neu and genome size

appears robust to substantial variation in

topologies and branch lengths.

The analyses of topologies and branch

lengths described above (including the star

topology assumed by OLS) all assume a

Brownian motion–like model of residual

trait evolution. If residual evolution has

not been Brownian motion–like, then both

PGLS and OLS analyses may be suspect.

This is why WG explored an additional

model—the Ornstein-Uhlenbeck (OU)

model, which is based on a diffusion

process in which a particle wanders via a

random walk, but is bounded by a

restraining force whose power increases

with distance from the starting point

[7,21]. Felsenstein ([21], p. 464) argued

that the OU process is a good model for

‘‘the motion of a population which is

wandering back and forth on a selective

peak under the influence of genetic drift’’

or for ‘‘the wanderings of an adaptive peak

in the phenotype space.’’ WG verified that

a regression model with residuals modeled

as an OU process (RegOU; [9]) fit

significantly better than OLS, and found

that it also did not support a relationship

between Neu and genome size. We have

expanded those results by examining

RegOU models for the full set of topolo-

gies and branch lengths (Table 2). Again,

the best-fitting models for both topologies

had starter branch lengths of 1.0 and did

not support a significant relationship

between Neu and genome size (Table 2).

Thresholds

Lynch [3] states that the MH hypothesis

predicts threshold (nonlinear) relationships

on a log scale between Neu and measures of

genome complexity, including genome

size. Therefore, he argues that the WG

analyses of linear relationships are inher-

ently flawed. We find this argument

inconsistent, given that a central analysis

of LC examines the relationship between

log Neu and log genome size and reports a

highly significant linear relationship

(r2 = 0.66; their Figure 1b). Furthermore,

neither LC nor [22] discuss thresholds or

nonlinearity in the Neu / genome size

relationship, nor is there obvious visual

evidence of thresholds in the data (Figure

1b of [2]; Figure 4.8 of [22]; Figure 3a of

[1]). As with genome size, three of the

remaining six attributes analyzed in WG

(gene number, the half-life of gene dupli-

cates, and intron size) are clearly not

associated with thresholds in LC, given

that they are presented as linear relation-

ships or, in the case of gene number, a

slightly curvilinear relationship (see Fig-

ures 1–3 of [2]).

WG did perhaps err in conducting linear

analyses of Neu against three other genomic

attributes associated with thresholds in LC:

intron number, transposon number, and

transposon fraction. However, Lynch’s

argument that a ‘‘substantial reduction in

the correlation of [Neu with] genomic

attributes’’ does not contradict the MH

hypothesis but instead follows from WG’s

use of phylogenetic techniques is not

correct: the problem is not that WG used

PGLS, but that within PGLS, they chose to

model linear rather than threshold rela-

tionships for these particular attributes.

PGLS is capable of modeling any relation-

ship possible with OLS [23], including

linear, polynomial, and break-point rela-

tionships (e.g., segmented regression [24]).

A simple approach to test for threshold

effects of Neu is via the PGLS equivalent of

ANCOVA [9] on two groups separated

into low versus high Neu. Of the 15 species

with Neu and intron number data in the

LC dataset, only two fall into the ‘‘high’’

Neu class (Neu.0.015); similarly, of the 18

species with transposon number (or frac-

tion) data, only three fall into the ‘‘high’’

Neu class (Neu.0.0128). These highly

unbalanced designs do not allow confi-

dence in analysis via either regular or

phylogenetic ANCOVA. Therefore, the

LC dataset does not permit robust con-

clusions about the responses of introns and

transposons to Neu thresholds, regardless of

whether one utilizes phylogenetic or ‘‘non-

phylogenetic’’ techniques.

Lessons from Other Studies

Lynch takes issue with WG’s interpre-

tations of two other studies. In both cases,

he argues that the metric used to estimate

the strength of drift/selection (allozyme-

derived Ne [25]; Ka/Ks [26]) is inappropri-

ate for investigating relationships between

drift and genome complexity. We argue

below that allozyme-derived Ne is in fact

informative for the dataset in [25]. The

merits of Ka/Ks have been discussed

elsewhere [26–28] and will not be treated

further here. Despite concerns about the

Ka/Ks metric, Lynch [3] nonetheless views

the results in bacteria [26] as ‘‘compelling

support’’ for the MH hypothesis.

Whitney et al. [25] examined allo-

zyme-based estimates of Ne and genome

size for 205 species of seed plants; using

phylogenetically independent contrasts,

no significant relationship was detected.
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(OLS analysis found a significant nega-

tive relationship, apparently the basis of

Lynch’s characterization of the results as

‘‘consistent’’ with the MH hypothesis.)

Lynch argues first that allozyme data are

not useful for estimating Neu, because

allozymes are products of protein-se-

quence variation and thus are less

reliable surrogates of neutral variation

than silent sites. We agree that there are

likely constraints on allozyme H that

limit the maximum Neu that can be

estimated; however, it does not follow

that the signal of Neu is completely

erased. In fact, as discussed in [25], a

significant positive correlation exists be-

tween allozyme-based and sequence-

based Neu estimates in a subset of the

plant dataset. Furthermore, for a subset

of the LC dataset for which allozyme

data were available, allozyme-based Neu

was as strongly related to genome size as

was sequence-based Neu [25]. Lynch also

argues that regressions in [25] should

have used Neu rather than Ne. In that

analysis, Ne was calculated from hetero-

zygosity H via Ne = ((1–H)22–1)/(8u),

assuming a constant u of 1025. That

assumption means that, computationally,

it makes absolutely no difference whether

Neu or Ne were used; neither had a

significant relationship with genome size

in phylogenetic analyses.

Kuo et al. [26] analyzed 42 paired

bacterial genomes, using the efficacy of

purifying selection in coding regions (as

estimated by Ka/Ks) to quantify genetic

drift. Bacterial taxa experiencing greater

levels of genetic drift—implying a smaller

evolutionary Ne—had smaller genomes.

Lynch [3] argues that these results support

the MH hypothesis because ‘‘the theory

predicts that with increasing power of

random genetic drift, effectively neutral

genomic features will evolve in the direc-

tion of mutation bias’’ and because ‘‘there

is a deletion bias in bacteria’’ in contrast to

an insertion bias in eukaryotes. Thus, the

predicted Neu and genome size/complexity

relationship is positive for prokaryotes and

negative for eukaryotes. These statements

appear to represent a revision of the MH

hypothesis, which in previous treatments

[2,22] had assumed an insertion bias in

both groups and a continuous, negative

Neu versus genome size relationship across

prokaryotes and eukaryotes.

The assertion that mutation bias differs

in direction for prokaryotes and eukary-

otes is difficult to evaluate. We note that

studies examining mutation bias typically

find a deletion bias in both groups (e.g.,

[29] and references therein). More impor-

tantly, most of these studies use sequence

data from diverged lineages to estimate the

ratio of insertions to deletions. In previous

discussions, Lynch has argued [22,30] that

such studies do not accurately estimate the

quantity of interest (de novo mutation

bias), in contrast to lab mutation accumu-

lation studies involving relaxation of

selection. We agree: indels in sequence

data from naturally diverged lineages

reflect not only mutation but also subse-

quent selection and drift and thus may not

represent the de novo mutation spectrum.

However, lab mutation accumulation

studies [31,32] are simply too few to allow

generalizations about mutation biases in

prokaryotes versus eukaryotes. The lack of

hard data on de novo mutation bias means

that any nonzero correlation between Neu

and genome size can be judged ‘‘consis-

tent’’ with the MH hypothesis simply by

claiming the appropriate mutation bias.

Regardless, the new prediction for de-

creasing prokaryotic genome size with

decreasing Neu is not supported by the LC

dataset, whether analyzed using ‘‘nonphy-

logenetic’’ or phylogenetic methods. We

regressed genome size on Neu using both

OLS and PGLS for just the seven bacterial

species and found no statistical relationship

in either analysis (b = 20.19 and 20.11,

P = 0.47 and 0.49, respectively). Although

the sample size is small, we note the trends

are for genome size and Neu to move in

opposite directions, counter to the predic-

tion if a deletion bias in bacteria is assumed.

In summary, the datasets of Whitney et

al. [25] and of LC do not support the MH

hypothesis regardless of the assumed direc-

tion of mutation bias. The Kuo et al. data

[26] contradict the MH hypothesis, assum-

ing a universal insertion bias, but support it

under an assumption of a deletion bias in

prokaryotes. We conclude, as did WG, that

current comparative datasets examining

drift and genome size provide little support

for the MH hypothesis.

Conclusions

We agree with Lynch [3] that the MH

hypothesis should not be rejected based on

the difficulty of performing formal hypoth-

esis tests. We note, however, that such

difficulty does not in turn justify accep-

tance based on inappropriate statistical

models. We find the theoretical population

genetic basis of the original LC argument

sound: smaller effective population size

should result in an increasing role for drift

relative to selection and an increasing

probability of fixation of slightly deleteri-

ous mutations that alter genome size and

complexity. Our focus, however, is not

whether effective population size plays a

role, but how important it might be

relative to numerous other factors that

might influence genome size and com-

plexity. Does Neu explain 66% of the

variation in genome size across the tree

of life, 6%, or 0.6%? The WG analysis and

those presented herein suggest that, given

the demonstrated phylogenetic noninde-

pendence of the data at hand, the 66%

estimate claimed by LC is far too high; in

fact, any influence of Neu on genome size is

not statistically detectable in better-fitting

phylogenetic regression models (Table 2).

Finally, we question whether simple re-

gression models (regardless of whether

they are phylogenetic or ‘‘nonphyloge-

netic’’) can ever provide unequivocal

support for the MH hypothesis. One of

the major criticisms expressed in WG and

in [33] is that Neu is highly correlated with

other aspects of organismal biology, in-

cluding body size, mating system, devel-

opmental rate, and metabolic rate. Thus,

comparative analyses using only Neu as a

predictor variable may be uninformative

about the actual mechanisms driving

genome size and complexity; multivariate

analyses are needed.
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