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Allogeneic stem cell transplantation (alloSCT) is a curative therapy for hematopoietic
malignancies. The therapeutic effect relies on donor T cells and NK cells to recognize and
eliminate malignant cells, known as the graft-versus-leukemia (GVL) effect. However, off
target immune pathology, known as graft-versus-host disease (GVHD) remains a major
complication of alloSCT that limits the broad application of this therapy. The presentation
of recipient-origin alloantigen to donor T cells is the primary process initiating GVHD and
GVL. Therefore, the understanding of spatial and temporal characteristics of alloantigen
presentation is pivotal to attempts to separate beneficial GVL effects from detrimental
GVHD. In this review, we discuss mouse models and the tools therein, that permit the
quantification of alloantigen presentation after alloSCT.

Keywords: transplantation, antigen presentation, allogeneic stem cell transplantation, graft-versus-host disease,
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INTRODUCTION

Allogeneic stem cell transplantation (alloSCT) remains a curative therapy for a broad range of
hematopoietic malignancies including acute myeloid leukemia (AML) and myelodysplastic
syndrome. The therapeutic effect largely resides in graft-versus-leukemia (GVL) effects where
graft-derived donor T cells and NK cells recognize allogeneic, hematopoietic or tumor-associated
antigens. Unfortunately, this process is closely related to adverse immune effects, namely graft-
versus-host disease (GVHD), where donor T cells attack normal recipient tissue. To date, the
separation of beneficial GVL from detrimental GVHD remains the greatest unmet need in alloSCT.

The immunological pathways of both GVL and GVHD are initiated by the presentation of
allogeneic antigens to donor T cells: Autologous or syngeneic (from an identical twin donor)
transplants do not induce classical GVL or GVHD due to the lack of alloreactivity (1). AlloSCT
using rigorous T cell-depletion (TCD) prevents severe GVHD but increases leukemia relapse (2–4),
indicating that the recognition of alloantigens by the donor T cell is essential in disease
pathophysiology. Therefore, studies to elucidate potential spatial and temporal differences in
antigen presentation within GVL and GVHD have been undertaken (i.e. what types of antigen
presenting cells (APC) and donor T cell subsets are involved, in which organs, and at what time
after transplant?).
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When choosing mouse models to study GVHD, at least three
factors should be considered. Firstly, who are the cellular
mediators of disease? As we previously reviewed (5, 6), both
donor CD4 and CD8 T cells which recognize alloantigens
presented by MHC class II (MHC-II) and class I (MHC-I)
respectively, can mediate distinct patterns of GVL and GVHD.
Host APC initiate both GVHD and GVL, in contrast, donor APC
predominantly invoke GVHD but not GVL (7–9). To define the
specific pathways of MHC-I vsMHC-II dependent T cell GVHD
and the donor vs. host APC involved, alloantigen-specific T cell
receptor (TCR) transgenic T cells are useful tools, particularly
when combined with mutant mice bearing defined genetic
defects in antigen presentation. Secondly, donor T cell
responses can generally be initiated by one of two types of
alloantigen presentation. One is the presentation of host minor
histocompatibility antigens (miHAs) derived from polymorphic
proteins which are present in recipients but not donors (10, 11).
A miHA is presented by MHC which is shared by the donor and
the host, and donor T cells recognize miHAs in the same way as
pathogen-derived antigens are seen. This process includes a
process known as epitope or antigen spreading whereby T cells
recognize a family of antigens that have diversified from the
original parental epitope (12). This explains why HLA-matched
unrelated donors are at a higher risk for GVHD than HLA-
matched sibling donors (13), since the frequency of genetic
disparity for individual miHA is generally two-fold higher (10,
14). The other type of antigen recognition by the donor T cell is
within the complex of mismatched MHC and a non-
polymorphic peptide. Naive T cells have been educated in the
thymus to react a peptide loaded on self MHC. Therefore, donor
T cells are not designed to react to antigen presented by a
mismatched MHC. However, a scenario can occur whereby the
molecular complex of a peptide and mismatched MHC is
structurally sufficiently similar to that of another peptide and
matched MHC to activate a donor T cell. This type of donor T
cell antigen recognition happens in MHC-mismatched
transplantation and is known as molecular mimicry (15). This
process explains why increased numbers of mismatched MHC
loci (6/8, 7/8 vs 8/8 HLA match) significantly increases GVHD
and decreases overall survival regardless of the underlying
type of malignant disease (16). Thirdly, the pathophysiology
and manifestations of GVHD seen after transplant should
recapitulate those in clinical GVHD. The pathways of antigen
presentation leading to GVHD are highly promiscuous in
xenograft systems where immune deficient mice (and their
APC) stimulate a human T cell response, such that their
usefulness in studying the mechanisms of GVHD is
somewhat limited.

Many non-transgenic donor and host combinations have
been well established for the study of GVHD. These include
MHC mismatched or MHC-matched but miHA-mismatched
models which are typically dominated by MHC-I or II dependent
GVHD that is largely strain dependent. We direct the reader
to excellent reviews on the subject of these non-transgenic
models (17). Here we focus on antigen-specific models
of GVHD.
Frontiers in Immunology | www.frontiersin.org 2
ALLOANTIGEN PRESENTATION IN
MODELS OF GVHD TARGETING MINOR
HISTOCOMPATIBILITY ANTIGENS
In MHC matched systems, the cognate recognition of antigen by
a mature, thymically educated, donor T cell requires the TCR to
interact with host polymorphic peptide (miHA) presented by a
HLA molecule common to donor and host. Defined human
miHAs have been the subject of recent reviews (10, 11, 14).
While the most common molecular mechanism generating
miHAs is single nucleotide polymorphisms (SNPs) within gene
exons that modify peptide binding to MHC or TCR, other
mechanisms such as altered protein transport/processing or
transcription can also cause the generation of dramatically new
epitopes (10, 11). The expression of ovalbumin (Ova) in BMT
recipients under control of ubiquitous (e.g. b-actin) promoters
may mimic the latter setting. Since ova is not expressed by
normal mice, transgenic ova production by recipient mice can be
a dominant antigen to CD4+ and CD8+ T cells (18, 19). When
ova expression is limited to specific cell types such as
hematopoietic cells (20, 21) or leukemic cells (22), it may
mimic hematopoiesis-specific or leukemia-specific miHA.
Given that these hematopoietic- or leukemia-restricted miHAs
have attracted attention as targets for clinical TCR transgenic T
cell therapy (23, 24), these antigen model systems can be useful in
understanding immunity within these contexts. In regard to ova,
extensive tool reagents are available. Ova peptide-specific CD4+

and CD8+ TCR transgenic mice (OT-II, DO11.10 and OT-I
mice) can be utilized as a source of donor T cells, whereby short
term T cell activation and expansion can be used to quantify
antigen presentation (18, 19, 25). Ova peptide-MHC tetramers
can be utilized to detect peptide-specific T cells within polyclonal
T cells (26) and the monoclonal antibody (25-D1.16) can also
quantify ova-peptide loaded within MHC -I to quantify direct
antigen presentation (27). Many foreign peptide/proteins other
than ova, such as virus-derived proteins, can also be exploited in
a similar fashion (Table 1).

Similarly, strain-specific models of endogenous antigen also
exist. H60 protein, a ligand for NKG2D, is expressed by
hematopoietic cells but not parenchyma cells in a strain-
specific manner. H60 is expressed by BALB.B mice but not
C57Bl6 (B6) nor C3H.SW mice, and these three stains are all
MHC-matched (H-2b) but miHA disparate. Recently, H60
transduction has been undertaken into B6-background
leukemia or recipient mice and H60 peptide-H2Kb tetramers
used to detect responding CD8+ T cells in combination with
MHC-I deficient mice (H-2Kb-/-) to demonstrate how defects in
leukemia antigen presentation promote exhaustion of donor T
cells and ineffective GVL (42) (Table 1).

HLA molecules are highly polymorphic (43). Since HLA-
mismatched transplants ( including haplo- ident ica l
transplantation) are all semi HLA-matched, mismatched HLA-
derived peptides can be presented by another shared HLA. To
mimic this scenario, TEa transgenic TCR (Va2/Vb6) T cells and
YAe antibody recognize the same complex of mismatched MHC-
derived peptide presented within MHC-II (Ea52-68 peptide and
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I-Ab respectively) (35, 39, 40). B6 mice lack I-Ea chain, hence, do
not express I-E, a MHC-II locus, whereas many other strains
express the I-Ea chain. Thus the Ea52-68 peptide derived from
the I-Ea chain of relevant recipient strains can stimulate TEa T
cells and bind to the YAe antibody in an I-Ab-restricted manner.
To our knowledge, YAe, the aforementioned 25-D1.16 and
AW3.18 which binds to hen egg lysozyme (HEL) peptide
loaded on I-Ak, are the only antibodies that bind to specific
peptide-MHC complexes that are commercially available
(Table 1). They are highly useful tools for the quantification of
antigen presentation. Thus while antigen-specific T cell
expansion detected by tetramer or as TCR transgenic T cell
expansion reflects overall antigen presentation, these antibodies
allow direct quantification of antigen presentation within
individual APC subsets that are distinguishable by flow
cytometry (e.g. donor cell vs. host cells, dendritic cell subsets vs
macrophages, and within different organs) (44).

The transplantation of a female-derived graft into a male
recipient is a known risk factor for GVHD (13). Multiple H-Y
antigens encoded by Y-chromosome genes have been identified
(e.g. SMCY, UTY, DBY, DEFRY) and reactive T cell clones have
been isolated from female transplant recipients rejecting male
grafts and male recipients transplanted with female grafts (45–
48). Multiple murine TCR clones and TCR transgenic lines
reactive to H-Y antigens (e.g. UTY, DBY) have been generated
on a B6 background (Table 1) (30–34). In addition to their clear
clinical relevance, these systems allow the use of male B6 mice
from most transgenic and mutant strains (e.g. MHC-deficient
recipients) to delineate mechanistic pathways of antigen
presentation. As such, these systems provide powerful tools for
the study of GVHD. The incorporation of reporter constructs
such as luciferase into these TCR transgenic systems allows
Frontiers in Immunology | www.frontiersin.org 3
detailed and tissue specific compartmentalization of antigen
presentation (20, 44, 49, 50).
ALLOANTIGEN PRESENTATION IN
MODELS CHARACTERIZED BY
MOLECULAR MIMICRY

It is well established in studies some 50 years ago that 1 - 10%
peripheral T cells are reactive to non-self (mismatched) MHC,
although the frequency of T cells that can respond to self
(matched) MHC-expressing cell loaded with foreign Ag is likely
at least 100-fold lower (51, 52). However, the mechanism
underlying the high degree of clonal T cell alloreactivity to
MHC-mismatched antigen has only recently been elucidated (53,
54). For decades there was a controversy over whether a T cell
reacts to peptide-alloMHC (mismatched MHC) complexes in a
peptide-centric or MHC-centric manner. In the former, TCR
primarily interacts with the peptide rather than mismatched
MHC, whereas the latter anticipates that a TCR primarily
recognizes structural determinants on the (mismatched) MHC
structure (15, 54, 55). The dispute has now been settled in favor of
reactivity against the hybrid of peptide- and MHC-centric
hypothesis. A TCR can thus recognize peptide-loaded allogeneic
MHC 1) in docking modes disparate to those that are germline-
encoded following thymic education (55) and 2) in the germline-
encoded mode via molecular mimicry whereby the TCR binds to
very similar structure formed by a foreign peptide presented on
self-MHC and an endogenous peptide presented on allogeneic
MHC (15). Both theories potentially explain allogeneic MHC
reactivity. The former scenario of disparate docking modes has
been demonstrated for 2C TCR (H-2Kb) T cells which react to a
TABLE 1 | Minor antigens within MHC matched systems and antigen-specific TCR transgenic T cells (top), peptide-MHC tetramer to detect antigen-specific T cells
(middle) and antibodies to quantify antigen-MHC complexes (bottom).

Ag protein Ag peptide MHC-restriction TCR-Transgenic mouse Reference

Ova albumin OVA257-264
(SIINFEKL)

H-2Kb OT-I (19)

H60 LTFNYRNL H-2Kb J15 (28, 29)
H-Y, Uty gene WMHHNMDLI H-2Db MataHari (30)
H-Y unknown H-2Db HY-TCR (31)
H-Y unknown I-Ab Rachel (32)
H-Y, Dby gene NAGFNSNRANSSRSS I-Ab Marilyn (33, 34)
I-E Ea52-68 I-Ab TEa (35)
Ova albumin OVA323-339 I-Ab OT-II (18)
Ova albumin OVA323-339,

327-333, 328-338
I-Ad DO11.10 (25)

Ag protein Ag peptide MHC-restriction TCR Detection tetramer Reference

H60 LTFNYRNL H-2Kb H6/H-2Kb tetramer (36, 37)
H-Y, Uty gene WMHHNMDLI H-2Db HY-Uty/H-2Db tetramer (37)
Ova albumin OVA323-339 I-Ab OVA323-339/I-Ab tetramer (38)
Ova albumin OVA323-339 I-Ad OVA323-339/I-Ad tetramer (26)

Ag protein Ag peptide MHC-restriction Antibody reactivity Clone Reference

Ova albumin OVA257-264 (SIINFEKL) H-2Kb Against SIINFEKL bound to H-2Kb 25-D1.16 (27)
I-Ea chain Ea52-68 I-Ab Against Ea52-68

peptide bound to I-Ab
Y-Ae (39, 40)

hen egg lysozyme (HEL) HEL-derived peptide (HEL48-62) I-Ak Against HEL peptide (residue 48-62) bound to I-Ak AW3.18 (41)
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self-peptide (dEV8, also known as Ndufa454–61) derived from
enzyme NADH-ubiquinone oxidoreductase, loaded on H-2Kb

(56, 57) and indeed this clone has been used to study positive
selection in the thymus (57, 58). This scenario is of questionable
relevance to transplant immunology where non-self-reactive
mature T cells recognize MHC-mismatched cells. In the latter
setting, what is striking is the demonstration that a TCR clone
(LC13) recognizing Epstein-Barr virus (EBV)-derived peptide on
self-MHC (HLA-B*0801) can recognize self-peptide on some
allogeneic MHCs (HLA-B*4402 and B*4405, but not B*4403)
due to a similar conformation (molecular mimicry) after TCR
ligation (15). HLA-B*4402 or B*4405 transfected HLA class I-
deficient (C1R) cell lines (C1R-B*4402 and C1R-B*4405) but not a
B*0801 transfected one (C1R-B*0801) can activate LC13,
indicating that endogenous antigens (e.g. ATP-binding cassette
protein) can stimulate TCR clones when they are presented by
some but not all allogeneic HLA molecules. Vice versa, an EBV-
peptide can stimulate LC13 when it is presented by self-HLA
(B*0801) but not allogeneic HLA (B*4405). Indeed, healthy
individuals that are heterozygous for HLA-B*0801 and B*4402
do not possess this dominant LC13 TCR clonotype, demonstrating
this clonotype has been clonally deleted due to potential self-
reactiveness, and instead, they generate alternative clonotypes
reactive to the same viral epitope (59). This suggests a
phenomenon whereby one TCR clone reactive to a foreign
peptide also responds to endogenous peptides presented by other
MHC molecules within one individual. In the MHC-mismatched
allogeneic transplant a donor TCR repertoire will encounter new
MHC molecules, and be activated by host mismatched MHC
molecules loaded with endogenous (non-polymorphic) peptides
[a schematic illustration depicting the different modes of
alloantigen presentation has been published previously (5)].

To study alloantigen presentation by a mismatched MHC
molecule, MHC-mismatched models can be chosen [e.g. B6 (H-
2b) ! BALB/c (H-2d)]. MHC-partial mismatched or haplo-
mismatched models include the possibility that matched MHC
molecules present miHAs derived from mismatched MHC
molecules. In this context, B6-background Bm1 (MHC-I
mutation resulting in amino acid substitution) and Bm12
(MHC-II mutation resulting in amino acid substitution) mice
are useful (Table 2). When either CD4+ or CD8+ T cells and BM
cells from wild-type B6 were injected into lethally irradiated Bm1
and Bm12 recipients, donor CD4+ T cells induced lethal GVHD
in only Bm12 recipients, and donor CD8+ T cells did so only in
Bm1 recipients (67). When Bm12 T cells were transplanted in
MHC-II deficient or wild-type B6 mice, serum IFN-g was
elevated in wild-type recipients but not in MHC-II deficient
recipients (68). Similarly, in-vitro culture (mixed lymphocyte
reaction) demonstrated that B6 CD4+ T cells proliferate in
response to Bm12 cells but not Bm1 or B6 (self) cells, and B6
CD8+ T cells proliferate to Bm1 cells but not Bm12 or B6 cells
(67). Despite the potential possibility that Bm1 and Bm12
mutation themselves serve as miHAs on conserved MHC-I or
II molecules, this scenario would generate both CD4+ and CD8+

T cell responses, and so can be discounted. Instead, they suggest
that both mutated MHC-I and II, H2-Kbm1 and H2-Ab1bm12, are
Frontiers in Immunology | www.frontiersin.org 4
loaded with endogenous peptides that bind B6 CD8+ and CD4+

TCR repertoires, respectively. There are other many similar
MHC-I-mutated mice, most of which have mutation in the H-
2K locus (e.g. bm3 and bm8) (69, 70), while MHC-II-mutated
strains are limited to Bm12 (Table 2).

In contrast to studies utilizing specific mutations within MHC
class I or II, TCR transgenic T cells which react to specific MHC
disparities have also been exploited. In addition to the previously
described 2C TCR transgenic CD8+ T cells, 4C TCR transgenic
CD4+ T cells from B6 mice respond to an endogenous and
ubiquitously expressed mouse non-polymorphic peptide
presented on I-Ad (66).
ANTIGEN PRESENTATION IN XENOGRAFT
TRANSPLANT MODELS

There has been a controversy in regard to how faithfully inbred
murine allogeneic transplant models recapitulate GVHD in
outbred humans. A number of studies have thus been
conducted in xenogeneic transplant systems whereby human
hematopoietic cells [most commonly peripheral blood
mononuclear cells (PBMC)] are transplanted into severely
immunodeficient mice (e.g. NSG, NRG, NOG mice) (71).
PBMC is predominantly composed of lymphocytes, although
APC including monocytes and dendritic cells are included.
However, there is no hematopoietic progenitor or stem cell
components, hence, the differentiation of human APC is not
sustained. There is also a question as to whether human T cells
can appropriately recognize murine MHC and if not whether
these systems are indeed clinically relevant. In addition, there are
three other major constraints to the interpretation of xenogeneic
transplant systems. Firstly, it does not phenocopy clinical
GVHD. While clinical acute GVHD typically targets the skin,
liver and gastrointestinal (GI) tract and the intestinal disease
usually determines lethality, the skin and GI tract display only
very mild changes after xenogeneic transplant (72, 73). The
major pathogenic manifestations of GVHD in xenogeneic
transplant models are predominantly observed in the liver and
lung and give rise to lethality. Second, since human cell
engraftment is limited and predominantly of T cells after
PBMC are transplanted, the GVHD induced is unlikely to
recapitulate the spectrum seen following full T and myeloid
cell engraftment seen in species-specific systems. Finally, it is
unclear the role that mouse anti-human graft rejection (e.g. by
myeloid cells) plays in the spectrum of GVHD seen in these
systems (72, 74, 75).

It has been demonstrated that murine MHC-I and II
molecules stimulate human T cells after human PBMC
injection into NSG mice (73, 75, 76). When recipient NSG
mice lack murine MHC-I expression, disease lethality and the
frequency of human CD3+ T cells in the recipient are reduced.
The presence or absence of murine MHC-II expression is less
important in isolation since its deficiency does not attenuate
lethality (75). Although these data suggest that human T cells can
react to murine MHC, human T cells primarily respond to
September 2021 | Volume 12 | Article 715893
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humanMHC (HLA) molecules rather than murine MHC in vitro
(77, 78). Therefore, multiple immunodeficient mouse strains
expressing HLA class I (e.g. HLA-A2) and class II (e.g. HLA-
DR1 or DR4) have been developed (73, 79, 80). These mice have
been demonstrated to develop HLA-restricted anti-virus human
T cell clones after human HSC transplantation (79, 80),
suggesting the transgenic human HLA indeed preferentially
invoke human TCR responses. However, physiological
upregulation of MHC and antigen presentation therein are not
assured. While multiple cytokines (i.e. interferon (IFN)-g,
interleukin (IL)-4, IL-6, IL-10, IFN-a/b and tissue necrosis
factor) and glucocorticoids modulate MHC-I and II expression
(81, 82) and many are secreted by human T cells after xenogeneic
transplantation, the majority are not cross-reactive with the
relevant murine receptors.

The presence of both murine and human MHC in these
humanized transgenic systems likely creates promiscuous
antigen recognition. NSG mice with intact murine MHC (H-2)
and transgenic HLA-A*0201 expression develop accelerated
lethality after transplantation with human PBMC, but
equivalent histopathology (relative to HLA-A*0201-negative
NSG mice) (83). In vitro assays demonstrate that multiple
human CD4+ and CD8+ T cell clones are reactive to both
murine MHC-I and II (84). In addition, highly aberrant
CD4+CD8+ T cell expansion within tissue has been seen after
xenogeneic but not clinical transplantation and this likely reflects
non-physiological antigen presentation (85). Thus while the
mechanism by which human TCR can respond to a murine
peptide-MHC complex is an intriguing question, the reality is that
disordered antigen presentation is a serious confounding factor.

Another possible approach of in vivo model is to utilize the
mice which have already been reconstituted by human
hematopoiesis. To achieve human hematopoietic APC
engraftment, the transplant of human bone marrow or cord
blood (CB) derived CD34+ HSC into immune deficient mice is
promising (74, 86, 87). These methods achieved stable and high
level of human cell engraftment in the BM and spleen (> 50%) but
with a low frequency of CD33+ or CD14+ human myeloid cells.
Human CB-derived HSC injection into newborn NSG mice
demonstrated the presence of human HLA-DR+CD11c+ cell in
the spleen three months after transplant (86). NSG-SGM3
Frontiers in Immunology | www.frontiersin.org 5
(NSGS) mice which express additional transgenic genes for
human IL-3, GM-CSF and SCF and MISTRG mice which
express human IL-3, GM-CSF, M-CSF, thrombopoietin and
SIRPa, significantly improve human myeloid cell reconstitution
(88–90). Nevertheless, the issue of concurrent murine MHC
expression in these systems remains a confounding variable.
CONCLUSIONS

The advantage of fully murine models that permit delineation of
antigen-specific responses includes the ability to spatially and
temporally track antigen presentation and resultant T cell
responses in vivo, coupled with extensive availability of mutant
and transgenic strains to delineate mechanisms of disease.
Nevertheless, it remains important to validate these results
with polyclonal T cells in MHC-mismatched or miHA-
mismatched transplant models. The use of xenograft models
are increasingly important for the examination of immune
independent therapeutic effects (e.g. the effect of a drug on a
human leukemia in vivo) or human-human cellular interactions
in vivo (e.g. a human CAR T cell or TCR transgenic T cell
response against a human leukemia). In contrast, the species
mismatch inherent in these systems at the APC-T cell interface
makes them more problematic as a robust preclinical transplant
platform. Hence, the use of xenogeneic models for GVHD/GVL
studies ought to be used cautiously, sparingly, and ideally as an
adjunct to appropriate allogeneic models.
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TABLE 2 | Antigen presentation within mismatched MHC. miHA matched.

Mismatched
MHC

MHC
mutation

Known peptide/MHC complex T cell’s
self-MHC

Reactive TCR
Detection by

T cell from Reference

H-2Kbm1 7
nucleotides

H-2Kb Multiple clones from
C57BL6

(60)

H2-Ab1bm12 3
nucleotides

H2-Ab1b Multiple clones from
C57BL6

(61, 62)

H-2Ld dEV8 (self-peptide)/H-2Kb,
dEV8/H-2Kbm3,
SIYR (foreign peptide)/H-2Kb,
p2Ca/H-2Ld,
QL9/H-2Ld

H-2b 1B2 (anti-2C TCR
mAb)

2C TCR transgenic
mice

Originally BALB.B CD8+ T
cells when immunized P815
(DBA/2 mastocytoma line)
and BALB/c splenocytes
(63–65).

H2-IAd

(I-Ad)
unknown non-polymorphic mouse
peptide/I-Ad

H2-Ab1
(I-Ab)

4C TCR transgenic
mice

(66)
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