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a b s t r a c t 

This study investigated the spatio-temporal variations in the occurrence of COVID-19 (confirmed cases 

and deaths) in relation to climate fluctuations in 61 countries, scattered around the world, from Decem- 

ber 31, 2019 to May 28, 2020. Logarithm transformation of the count variable (COVID-19 cases) was used 

in a multiple linear regression model to predict the potential effects of weather variables on the preva- 

lence of the disease. The study revealed strong associations ( −0.510 ≤ r ≤ −0.967; 0.519 ≤ r ≤ 0.999) 

between climatic variables and confirmed cases of COVID-19 in majority (68.85%) of the selected coun- 

tries. It showed evidences of 1 to 7-day delays in the response of the infection to changes in weather 

pattern. Model simulations suggested that a unit fall in temperature and humidity could increase (0.04–

18.70%) the infection in 19.67% and 16.39% of the countries, respectively, while a general reduction ( −0.05 

to 9.40%) in infection cases was projected in 14.75% countries with a unit drop in precipitation. In con- 

clusion, the study suggests that effective public health interventions are crucial to containing the pro- 

jected upsurge in COVID-19 cases during both cold and warm seasons in the southern and northern 

hemispheres. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In rapid succession, the first COVID-19 case (a severe acute 

espiratory syndrome coronavirus 2), which was first reported on 

ecember 31, 2019 in the city of Wuhan, China, has caused an 

utbreak of human-to-human transmission globally. The disease 

as declared a Public Health Emergency of International Concern 

PHEIC) on January 30, 2020 and then a pandemic on March 11, 

020 by the World Health Organization, WHO ( Chan et al., 2020 ; 

ai et al., 2020 ; Li et al., 2020 ). Since the inception of the disease,

oncerted efforts have been made to have a better understanding 

f the genomics, hosts, modes of transmission and epidemiological 

ink of the disease ( Sahu et al., 2020 ). Previous studies have re-

ealed that a significant number of respiratory infectious diseases 

isplay seasonal patterns in their incidence. However, the impact 

f climate variability and other extrinsic factors on COVID-19 trans- 

ission is still a subject of debate. 

Climate is one of many factors likely affecting the spread of 

he virus ( Briz-Redón and Serrano-Aroca, 2020 ; Di Pietro et al., 

020 ; Mishra and Wargocki, 2020 ) and that the host’s behaviour 
∗ Corresponding author. 
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 Kraemer et al., 2019 ) and population density ( Geoghegan and 

olmes, 2017 ) are important predictors of the capacity of the 

irus to spread ( Araujo and Naimi, 2020 ). Recent studies suggested 

hat infected humans can be asymptomatic and transmit the virus 

o others, generating substantial uncertainties regarding the over- 

ll risk of epidemic outbreaks under a variety of different cli- 

ate, ecological and social settings ( Li et al., 2020 ). Specifically, 

raujo and Naimi (2020) submitted that immediate physical en- 

ironment can mediate human-to-human transmission of COVID- 

9 and that unsuitable climates can cause the virus to destabilize 

uickly, hence reducing its capacity to become epidemic. Further, 

he strong association of COVID-19 to a sharp North/South climate 

radient, with a faster spread in warm and cold temperate climates 

ave been reported ( Araujo and Naimi, 2020 ; Briz-Redón and 

errano-Aroca, 2020 ; Di Pietro et al., 2020 ; Méndez-Arriaga, 2020 ). 

imilarly, Mishra and Wargocki (2020) , Sajadi et al. (2020) and 

ang et al. (2020a) suggested a close relationship between the in- 

idence of COVID-19 epidemics and climate with countries in high 

atitudes (characterized by temperate and/or continental climate) 

xhibiting a high incidence of the disease. On the other hand, Briz- 

edón and Serrano-Aroca (2020) and O’Reilly et al. (2020) stressed 

hat since local transmission of the disease has been confirmed to 

pan all climatic zones, further studies on the impact of climate 

https://doi.org/10.1016/j.sste.2021.100417
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sste
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sste.2021.100417&domain=pdf
mailto:oaeludoyin@oauife.edu.ng
https://doi.org/10.1016/j.sste.2021.100417
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ariability, on COVID-19 transmission is vital to increase under- 

tanding of the factors underlying the spread of the disease across 

he globe. Also, scholars have argued that atmospheric pollu- 

ion could significantly contribute to the anomalous variability of 

OVID-19 depending on concentrations and chronicity of exposure 

 Conticini et al., 2020 ; Fattorini and Regoli, 2020 ; Zhu et al., 2020 ).

Owing to the introduction of lockdown measures (including 

ransportation, businesses, and industrial shutdowns) by govern- 

ents around the world to limit the COVID-19 pandemic, air 

uality has improved significantly in major cities of the world 

 Bashir et al., 2020 ). This is because reduced fossil fuel consump- 

ion will lower emissions into the atmosphere resulting in cleaner 

ir ( Sharif et al., 2020 ). About 20–50% in greenhouse gas emissions 

e.g. CO 2 , O 3 , NO x and SO x ) or/and other air pollutants (such as

M2.5, PM10, BC and benzene) in Korea, China, Spain, Germany, 

taly, USA and New York compared to pre-epidemic years were re- 

orted in the literature ( Collivignarelli et al., 2020 ; Conticini et al., 

020 ; Gautam, 2020 ; Knowland et al., 2020 ; Wang et al., 2020b ).

t has been argued that resumption of large-scale industrial ac- 

ivities after the epidemic will probably reverse the environmen- 

al changes, once the epidemic is controlled ( Bashir et al., 2020 ; 

ernauer and Slowey, 2020 ). 

Previous studies suggested that people under lockdown will 

ore likely develop psychological problems like stress disorders, 

ear, depression, emotional fatigue, and insomnia than people who 

reely move ( Brooks et al., 2020 ; Fofana et al., 2020 ). Fattorini and

egoli (2020) , thus, argued that environmental control should be 

ntegrated with human health protection into sustainable develop- 

ent as measures for controlling epidemics, on a long-term pro- 

ection rather than a short-term, incidence-based measure. As new 

ases of COVID-19 are being confirmed daily around the world, 

here is a heightened concern, and pressure is mounting on re- 

earchers from various fields of study to improve our understand- 

ng of the factors underlying the spread of the disease. Some per- 

inent questions at the moment for COVID-19 mitigation strategies 

re: (i) Will the virus be less transmissible in hot and humid cli- 

ates? (ii) Will changes in weather affect the transmission inten- 

ity of COVID-19? And (iii) will asynchronous seasonal global out- 

reaks occur in future if the spread of the disease continues to fol- 

ow the current trend? The present study, therefore, investigates 

otential effects of spatio-temporal variations in world’s geograph- 

cal climate (in terms of humidity, temperature and precipitation) 

n the COVID-19 occurrence (incidence rate and prevalence rate) 

nd its fatality rate. The study is designed to uncover certain un- 

erlying trends on the spread of COVID-19 concerning climate vari- 

bility and link the results with findings from related previous re- 

earches with a view to providing useful information on the vul- 

erability of different climatic regions of the world to COVID-19 

nfection that could help to curtail its spread. 

. Methods 

.1. Data 

Laboratory-confirmed infection case series of daily local trans- 

issions of COVID-19 across the globe from the date of first 

eported case till May 28, 2020 (12.00 GMT) were obtained from 

ttps://ourworldindata.org/coronavirus; https://covid19info.live/. 

he website contained the worldwide country by country and 

egional COVID-19 data on many aspects of the disease such 

s the number of infections and death and other epidemiolog- 

cal and surveillance records. In addition, global climate data 

hourly time-series of temperature, humidity, and precipitation) 

f high-resolution ERA5 datasets (freely available at https://cds. 

limate.copernicus.eu/#!/home) were obtained and analysed. 

RA5 reanalysis is the fifth generation of atmospheric reanaly- 
2 
is of the global climate developed by the European center for 

edium-Range Weather Forecasts (ECMWF). It combines model 

ata with observations from across the world into a globally 

omplete and consistent dataset using the laws of physics with 

orizontal resolution of 0.25 ° × 0.25 ° ( Copernicus Climate Change 

ervice, 2017 ). 

.2. Statistical analysis and procedures 

We analysed laboratory-confirmed infection case series of daily 

ocal transmissions of COVID-19 in 61 countries (representing 

3.7% of countries with available COVID-19 data) in Asia, Oceania, 

urope, North and South America, Arctic region and Africa from 

he date of first reported case in each country till May 28, 2020. 

imilarly, daily means of the climatic parameters over the selected 

ountries during the study period were estimated. In order to en- 

ure that the datasets that were analysed were valid and of good 

uality, data cleaning process was performed on both datasets to 

emove missing values. The local transmission ratio (LTR), defined 

y Méndez-Arriaga (2020) as the number of confirmed positive 

ases divided by the number of the effective contagion days since 

ommunity onset of the disease, was estimated. 

Multiple regression analysis and lag correlation (0–7 days) were 

erformed to examine the association or relationship between 

he daily meteorological parameters i.e. temperature/ °C, relative 

umidity/% and precipitation/mm (as independent variables) and 

OVID-19 cases (dependent variable). Before fitting linear regres- 

ion models and correlation, we first subjected the data to statisti- 

al test for collinearity among the variables and normality as sug- 

ested by Zar (1992) . As expected, the dependent variable (a count 

ariable that did not conformed to these assumption) was trans- 

ormed (using logarithm transformation) while the outliers (ele- 

ents that are greater than the 3 scaled median absolute deviation 

MAD) away from the median) that could introduce substantial er- 

ors in the outcomes of the analysis, were removed or smoothened 

using MATLAB® command “filloutliers”, version 2019a) before fur- 

her analysis. 

The variance stabilizing logarithm-transformation was per- 

ormed on the dependent variable, Y as a function of time, t (days) 

sing Eq. (1) as fully described in Feng et al. (2014) and Rodríguez- 

arranco et al. (2017) : 

og ( Y t ) = β + β1 X t 1 + β2 X t 2 + β3 X t 3 + ∈ (1) 

here β was the y-intercept, βi =1 , 2 , 3 were the regression coeffi- 

ients for the three independent variables (temperature, humidity, 

nd precipitation) respectively and ∈ was the random error 

Global spatial variations in monthly means of the three me- 

eorological parameters between December 2019 and May 2020 

ere obtained and presented. In addition, changes in monthly 

eans of these parameters relative to December 2019 (the month 

he first case of the disease was reported in China) were evalu- 

ted. Spatial patterns of confirmed COVID-19 cases were visualised 

y plotting their logarithmic values across different locations us- 

ng the open access Paleontological Statistics (PAST3, version 3.12; 

ammer et al., 2001 ) software. We adopted kriging interpolation 

lgorithm (which accounts for uncertainties due to associated fit 

arameters in semivariogram as documented in Davis (1986) and 

e Smith et al. (2018) ) for the ‘gridding’ (interpolation of scattered 

D data points onto a regular grid) operation. Furthermore, the 

otential effects of a unit change in the values of meteorological 

arameters on the spread of the infections in different regions of 

he world were also predicted. We used the findings from related 

revious studies on the roles of non-climatic factors in the global 

pread of COVID-19 to explain the patterns of results obtained in 

his present studies. Finally, possible effective methods of contain- 
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Fig. 1. COVID-19 confirmed and death cases in the 61 selected countries in (a) Africa, (b) Asia and Oceania, (c) Europe (d) North America, (e) South America, and (f) the 

Arctic Region from December 31, 2019 to May 28, 2020 at 12.00 GMT ( left vertical axis for the number of infected cases while right vertical axis is for the number of death ). 
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ent of the disease in different countries and regions were sug- 

ested based on results of the model simulations. 

. Results 

.1. Daily and spatial (monthly) variations in COVID-19 confirmed 

nd death cases 

Fig. 1 shows variation in the number of infection and death 

rom COVID in the designated six regions of the world (i.e. Africa, 

rtic region, Asia & Oceania, Europe, North America, and South 

merica). The results demonstrated that while Asia reported an 

utbreak of the disease around January 2020, the rest of the world 

id not report such until March 2020. Interestingly, Europe and 

orth America consequently experienced more dramatic changes 

n the number of infection and fatality, but the rest of the world 

itnessed more gradual increases during the period. The results 

how a sharp rise in the number of cases and deaths from March 

020, with both outcomes peaking sometime in April over Europe 

nd North America. In other regions, however, the number of in- 

ected individuals and fatalities recorded were found to continue to 

ise from March/April till the end of the study period. The total re- 
3 
orted cases during the study period were 1870,835 (North Amer- 

ca); 1016,034 (Europe); 709,329 (South America); 694,471 (Asia & 

ceania); 387,723 (Arctic region) and 74,819 (Africa). Similarly, the 

otal fatality recorded in the six regions were 124,241 (Europe); 

16,015 (North America); 35,063 (South America); 22,184 (Asia); 

057 (Arctic region) and 1971 (Africa). Fig. 2 describes the monthly 

patial (along the latitude and longitude) spread of the infection 

rom the epicentre from December 2019 to May 2020. Globally, the 

pread of the disease was more pronounced in the northern hemi- 

phere and the prominent direction of the transmission was from 

hina to the western countries. 

Estimated local transmission ratio (LTR) for each of the coun- 

ries scattered over different regions are presented in Fig. 3 . 

n Africa, LTR values ranged between about 371 and 2 persons 

ay −1 ( Fig. 4 a). South Africa had the highest closely followed by 

gypt (LTR = 275 persons day −1 ) while the least was recorded in 

imbabwe. India (LTR = 1070 persons day −1 ) and Iran (LTR = 957 

ersons day −1 ) were the highest in Asia & Oceania while New 

ealand (LTR = 2 persons day −1 ) was the lowest ( Fig. 4 b). In

urope, United Kingdom had the highest LTR (2365 persons day −1 ) 

losely followed by Spain (2095 persons day −1 ) while Norway (74 

ersons day −1 ) and Bulgaria (22 persons day −1 ) were the lowest 
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Fig. 2. Spatial plot of log of COVID-19 confirmed cases in (a) December 2019, (b) January, (c) February (d) March, (e) April, and (f) May, 2020 ( the black dots represent the 61 

selected countries around the world ). 
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 Fig. 4 c). The USA in North America, Brazil in South America and

ussia in the Arctic region had the highest LTR of 23,943, 5280 and 

280 persons day −1 respectively. The results revealed that North 

merican countries had the highest LTR of 26,334 persons day −1 . 

ext was Europe (8991 persons day −1 ), closely followed by South 

merica (9108 persons day −1 ), Asia (4692 persons day −1 ), and the 

rctic Region (3421 persons day −1 ) while Africa came last with 

TR of 1069 persons day −1 respectively (See supplementary Fig. 1). 

.2. Daily variations in weather conditions and mean monthly 

limatology 

The estimated global monthly climatology of surface air tem- 

erature ( °C), relative humidity (%) and total precipitation (mm) 

or December 2019 in China are depicted in Fig. 4 . It showed rel-

tively warmer climate (20–40 °C) in the tropics (25 °N–25 °S) but 

older climate ( −60 - + 19 °C) in the higher latitudes in the north

e.g. parts of Artic region, Europe, northern Africa, Asia and North 

merica) and southern hemispheres (e.g. parts of South America, 

ceania and southern Africa) ( Fig. 4 a). The Arctic (e.g. Georgia, Ice- 

and, Kyrgyzstan, Kazakhstan, Russia and Uzbekistan) and Oceania 

e.g. Australia and New-Zealand) regions were extremely cold ( < 

30 °C) during this period. Furthermore, most parts of the word 

ere very humid with relative humidity greater than 50% ( Fig. 4 b). 

owever, some islands in the Pacific, India, and Atlantic oceans, as 

ell as a few places in Far East Asia (e.g. Bangladesh, China and In-

ia), had very low relative humidity between 10 and 40%. The most 

umid inland regions (with humidity ≥ 80%) were found in the 

ropics and northern hemisphere. In addition, wet regions (with 

ecords of precipitation ≥ 10 mm) were found in the tropical parts 

f western (e.g. Nigeria, Senegal, Ghana) and southern Africa (e.g. 

auritius, Zimbabwe), southern Asia & Oceania (e.g. Indonesia, 

ustralia and New-Zealand); southern parts of North America (e.g. 

exico) as well as South America (e.g. Argentina, Brazil, Ecuador, 

araguay, Peru and Uruguay) ( Fig. 4 c). During this month, most 

arts of Europe, Asia, North America, and the Oceania were very 

ry. Fig. 5 presents changes in global monthly climatology of tem- 

erature, humidity and precipitation in the months of March and 

pril 2020 (relative to December 2019). Results revealed general 
4 
ecrease in temperature between December 2019 and March 2020 

n the Arctic Region ( −5 to −27 °C), Oceania ( −2 to −10 °C), parts

f Europe ( −2 to −10 °C), Asia ( −2 to −10 °C), South and North

merica ( −2 to −10 °C), and southern Africa ( −2 to −10 °C).The 

rea with the highest warming (10–15 °C rise in temperature) was 

ound in the southern coast of South America ( Fig. 5 a). The tem-

erature decreased further in April with more areas around the 

orld getting colder while the South Pole and southern coast of 

outh America became warmer. Relative humidity was found to 

ncrease (5–40%) in warmer regions and decreased ( −5 to −40%) 

n a colder region ( Fig. 5 b).Similarly, there were further increase 

nd decrease in relative humidity in the month of April. Notably 

re the South Pole, Oceania parts of Asia and North America with 

igher humidity. Apart from parts of southern Asia with signifi- 

ant increase and decrease in wetness ( ± 40 mm), other regions 

howed a slight, albeit insignificant, increase or decrease in pre- 

ipitation in March and April 2020 ( Fig. 5 c). 

.3. Relationship between variations in COVID-19 infections and 

eather conditions 

Scattered plot of COVID-19 cases in relation to selected weather 

arameters indicate non-normal distribution and erratic linear pat- 

erns between new daily COVID-19 cases and the parameters (Sup- 

lementary Fig. 2). The logarithm-transformation of the dependent 

ariable and removal of outliers, nonetheless, produced accept- 

ble normal distribution and collinearity among the variables re- 

uired for regression analysis as done in this study. Consequently, 

he lagged correlation coefficient at 0 to 7-days period was evalu- 

ted to ascertain the level of weather-COVID-19 daily occurrences 

 Tables 1–6 ). The coefficients reveal strong (positive and negative) 

elationships between the weather parameters and COVID-19 in- 

ections in about 67.2% of the selected countries. Strong and posi- 

ive correlation coefficients were obtained between (new) reported 

ases and temperature in two African countries i.e. Egypt and 

thiopia ( Table 1 ), as well as in some Asia countries (Bangladesh, 

ndia, Indonesia, Iran, Iraq, Pakistan, Qatar, Saudi Arabia and 

emen; Table 2 ), Europe (Bulgaria, United Kingdom, Poland, and 

omania; Table 3 ), North America (Canada, Mexico, Cuba and the 
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Table 1 

Lagged correlation coefficients at 0 to 7-days between the daily reported infected cases and temperature (TMP in °C), relative humidity (RHU in %) and precipitation (PRE in mm) over selected countries in Africa ( ∗ significant at 

p ≤ 0.05; bold value is an indicator of lagging ). 

Parameter Lag/days Countries 

Cameroon CAR Egypt Ethiopia Ghana Kenya Madagascar Mauritius Nigeria South Africa Senegal Tanzania Zimbabwe 

TMP 0 −0.097 −0.166 0.905 ∗ 0.617 ∗ −0.510 ∗ −0.823 ∗ −0.601 ∗ 0.019 −0.074 −0.962 ∗ −0.385 −0.040 −0.397 

1 −0.056 −0.144 0.948 ∗ 0.614 ∗ −0.518 ∗ −0.805 ∗ −0.538 ∗ 0.030 −0.057 −0.961 ∗ −0.390 0.043 −0.371 

2 −0.104 −0.154 0.978 ∗ 0.565 ∗ −0.468 −0.808 ∗ −0.552 ∗ 0.031 −0.052 −0.967 ∗ −0.399 −0.032 −0.392 

3 −0.101 −0.134 0.999 ∗ 0.519 ∗ −0.501 ∗ −0.812 ∗ −0.630 ∗ 0.014 −0.044 −0.966 ∗ −0.446 0.011 −0.345 

4 −0.086 −0.126 0.999 ∗ 0.580 ∗ −0.453 −0.786 ∗ −0.635 ∗ 0.033 −0.044 −0.952 ∗ −0.512 ∗ 0.027 −0.401 

5 −0.061 −0.127 0.998 ∗ 0.606 ∗ −0.405 −0.775 ∗ −0.575 ∗ 0.039 −0.044 −0.960 ∗ −0.568 ∗ −0.010 −0.464 

6 −0.113 −0.162 0.980 ∗ 0.513 ∗ −0.324 −0.748 ∗ −0.557 ∗ 0.029 −0.022 −0.958 ∗ −0.605 ∗ −0.042 −0.421 

7 −0.050 −0.154 0.956 ∗ 0.441 −0.354 −0.736 ∗ −0.558 ∗ 0.056 0.013 −0.965 ∗ −0.629 ∗ −0.040 −0.371 

RHU 

0 0.532 ∗ 0.368 −0.494 0.079 −0.647 ∗ 0.564 ∗ −0.449 0.014 0.862 ∗ −0.796 ∗ 0.656 ∗ 0.062 −0.401 

1 0.543 ∗ 0.376 −0.564 ∗ 0.063 −0.616 ∗ 0.574 ∗ −0.445 0.049 0.880 ∗ −0.778 ∗ 0.639 ∗ 0.014 −0.371 

2 0.553 ∗ 0.384 −0.588 ∗ 0.072 −0.562 ∗ 0.578 ∗ −0.457 −0.016 0.896 ∗ −0.771 ∗ 0.644 ∗ 0.096 −0.484 

3 0.551 ∗ 0.367 −0.615 ∗ 0.112 −0.558 ∗ 0.571 ∗ −0.458 0.058 0.908 ∗ −0.733 ∗ 0.656 ∗ −0.010 −0.546 

4 0.549 ∗ 0.382 −0.620 ∗ 0.035 −0.533 ∗ 0.562 ∗ −0.548 ∗ −0.014 0.910 ∗ −0.742 ∗ 0.681 ∗ 0.001 −0.480 

5 0.546 ∗ 0.390 −0.580 ∗ 0.043 −0.605 ∗ 0.556 ∗ −0.531 ∗ 0.007 0.923 ∗ −0.814 ∗ 0.677 ∗ 0.009 −0.408 

6 0.557 ∗ 0.401 −0.548 ∗ 0.158 −0.638 ∗ 0.551 ∗ −0.578 ∗ −0.048 0.908 ∗ −0.812 ∗ 0.671 ∗ 0.110 −0.428 

7 0.561 ∗ 0.392 −0.506 ∗ 0.182 −0.595 ∗ 0.568 ∗ −0.544 ∗ 0.002 0.891 ∗ −0.801 ∗ 0.681 ∗ 0.051 −0.424 

PRE 

0 0.436 0.291 0.443 0.439 −0.593 ∗ 0.048 −0.423 0.030 0.652 ∗ −0.823 ∗ 0.596 ∗ 0.097 −0.453 

1 0.443 0.282 0.514 ∗ 0.435 −0.574 ∗ 0.096 −0.397 −0.010 0.639 ∗ −0.834 ∗ 0.644 ∗ 0.025 −0.446 

2 0.441 0.287 0.495 0.367 −0.597 ∗ 0.129 −0.361 −0.011 0.656 ∗ −0.835 ∗ 0.676 ∗ 0.001 −0.455 

3 0.447 0.330 0.449 0.341 −0.594 ∗ 0.120 −0.395 −0.007 0.671 ∗ −0.830 ∗ 0.682 ∗ 0.016 −0.437 

4 0.456 0.349 0.435 0.389 −0.583 ∗ 0.119 −0.427 −0.011 0.692 ∗ −0.818 ∗ 0.638 ∗ −0.014 −0.463 

5 0.459 0.330 0.428 0.383 −0.570 ∗ 0.126 −0.385 −0.043 0.707 ∗ −0.830 ∗ 0.609 ∗ 0.039 −0.471 

6 0.452 0.285 0.392 0.296 −0.554 ∗ 0.142 −0.383 −0.015 0.717 ∗ −0.835 ∗ 0.581 ∗ 0.056 −0.447 

7 0.434 0.324 0.341 0.273 −0.554 ∗ 0.177 −0.384 0.014 0.709 ∗ −0.839 ∗ 0.579 ∗ 0.072 −0.429 
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Table 2 

Lagged correlation coefficients at 0 to 7-days between the daily reported infected cases and temperature (TMP in °C), relative humidity (RHU in %) and precipitation (PRE in mm) over selected countries in Asia and Oceania ( ∗

significant at p ≤ 0.05; bold value is an indicator of lagging ). 

Parameter Lag/days Countries 

Afghanistan Bangladesh China India Indonesia Iran Iraq Israel Japan Pakistan Qatar S/Arabia Yemen Australia N/Zealand 

TMP 0 0.430 0.549 ∗ −0.275 0.938 ∗ 0.453 0.682 ∗ 0.836 ∗ 0.262 0.199 0.771 ∗ 0.838 ∗ 0.858 ∗ 0.443 −0.113 −0.244 

1 0.405 0.560 ∗ −0.284 0.931 ∗ 0.471 0.679 ∗ 0.847 ∗ 0.244 0.185 0.802 ∗ 0.839 ∗ 0.857 ∗ 0.446 −0.071 −0.238 

2 0.380 0.569 ∗ −0.303 0.928 ∗ 0.535 ∗ 0.669 ∗ 0.856 ∗ 0.235 0.192 0.818 ∗ 0.838 ∗ 0.857 ∗ 0.484 −0.076 −0.236 

3 0.390 0.579 ∗ −0.310 0.921 ∗ 0.551 ∗ 0.659 ∗ 0.834 ∗ 0.215 0.204 0.843 ∗ 0.837 ∗ 0.857 ∗ 0.513 ∗ −0.053 −0.240 

4 0.349 0.591 ∗ −0.329 0.920 ∗ 0.562 ∗ 0.660 ∗ 0.844 ∗ 0.194 0.182 0.837 ∗ 0.828 ∗ 0.859 ∗ 0.510 ∗ −0.048 −0.200 

5 0.352 0.610 ∗ −0.354 0.926 ∗ 0.553 ∗ 0.643 ∗ 0.858 ∗ 0.204 0.140 0.794 ∗ 0.817 ∗ 0.863 ∗ 0.538 ∗ −0.051 −0.188 

6 0.343 0.627 ∗ −0.356 0.936 ∗ 0.572 ∗ 0.634 ∗ 0.817 ∗ 0.207 0.119 0.789 ∗ 0.826 ∗ 0.870 ∗ 0.534 ∗ −0.043 −0.220 

7 0.370 0.624 ∗ −0.380 0.936 ∗ 0.484 0.649 ∗ 0.804 ∗ 0.206 0.141 0.778 ∗ 0.838 ∗ 0.877 ∗ 0.533 ∗ −0.056 −0.241 

RHU 

0 −0.007 0.876 ∗ 0.397 −0.436 −0.623 ∗ −0.218 −0.719 ∗ −0.204 0.029 −0.354 −0.722 ∗ −0.471 −0.223 0.064 0.342 

1 0.075 0.888 ∗ 0.384 −0.420 −0.560 ∗ −0.181 −0.740 ∗ −0.185 −0.038 −0.372 −0.709 ∗ −0.455 −0.283 0.035 0.322 

2 0.110 0.891 ∗ 0.304 −0.408 −0.584 ∗ −0.169 −0.715 ∗ −0.187 −0.039 −0.411 −0.705 ∗ −0.442 −0.365 −0.007 0.323 

3 0.137 0.893 ∗ 0.330 −0.385 −0.518 ∗ −0.140 −0.716 ∗ −0.167 −0.050 −0.425 −0.700 ∗ −0.426 −0.373 −0.090 0.306 

4 0.126 0.891 ∗ 0.337 −0.355 −0.527 ∗ −0.123 −0.687 ∗ −0.127 0.014 −0.435 −0.670 ∗ −0.404 −0.380 −0.079 0.282 

5 0.169 0.882 ∗ 0.392 −0.321 −0.492 −0.123 −0.700 ∗ −0.168 0.063 −0.423 −0.648 ∗ −0.372 −0.387 −0.089 0.203 

6 0.208 0.881 ∗ 0.417 −0.287 −0.511 ∗ −0.095 −0.679 ∗ −0.191 0.011 −0.415 −0.638 ∗ −0.346 −0.355 −0.072 0.182 

7 0.240 0.893 ∗ 0.439 −0.253 −0.501 −0.091 −0.666 ∗ −0.175 0.001 −0.440 −0.643 ∗ −0.337 −0.357 −0.076 0.198 

PRE 

0 0.422 0.896 ∗ −0.167 0.575 ∗ −0.053 0.607 ∗ 0.466 0.108 0.086 0.518 ∗ 0.141 0.385 0.488 −0.135 −0.007 

1 0.402 0.918 ∗ −0.194 0.591 ∗ 0.043 0.601 ∗ 0.450 0.037 0.037 0.527 ∗ 0.159 0.409 0.494 −0.111 −0.032 

2 0.460 0.935 ∗ −0.226 0.592 ∗ 0.142 0.601 ∗ 0.380 0.107 0.057 0.522 ∗ 0.178 0.420 0.458 −0.177 −0.001 

3 0.454 0.943 ∗ −0.217 0.603 ∗ 0.218 0.619 ∗ 0.340 0.103 0.058 0.550 ∗ 0.189 0.431 0.433 −0.188 −0.022 

4 0.412 0.931 ∗ −0.216 0.626 ∗ 0.302 0.603 ∗ 0.363 0.115 0.051 0.554 ∗ 0.196 0.464 0.466 −0.166 −0.017 

5 0.471 0.903 ∗ −0.241 0.695 ∗ 0.302 0.599 ∗ 0.380 0.130 0.090 0.531 ∗ 0.212 0.500 ∗ 0.436 −0.176 −0.026 

6 0.495 0.880 ∗ −0.221 0.760 ∗ 0.244 0.566 ∗ 0.339 0.099 0.065 0.559 ∗ 0.260 0.524 ∗ 0.392 −0.155 −0.059 

7 0.561 0.874 ∗ −0.218 0.803 ∗ 0.192 0.614 ∗ 0.352 0.075 0.062 0.581 ∗ 0.282 0.539 ∗ 0.395 −0.210 −0.093 

6
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Fig. 3. Estimated Local Transmission Ratio (LTR) in different countries in (a) Africa, (b) Asia and Oceania, (c) Europe (d) North America, (e) South America, and (f) the Arctic 

Region from December 31, 2019 to May 28, 2020 at 12.00 GMT. 
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SA; Table 4 ), and the Arctic region (Kyrgyzstan, Russia; Table 5 ). 

ountries where correlations between COVID-19 cases and tem- 

erature were negative and significant (at p < 0.05) include: 

hana, Kenya, Madagascar, and South Africa in Africa ( Table 1 ); 

nd Argentina, Brazil, Chile, Paraguay and Peru in South Amer- 

ca ( Table 6 ). With respect to relative humidity, there was positive 

nd significant relationship with COVID-19 infections in Cameroon, 

igeria, Kenya, and Senegal (Africa) and Bangladesh (Asia). The re- 

ationship was, however, negative ( −0.506 ≤ r ≤ −0.906) but sig- 

ificant in Egypt, Ghana, Madagascar and South Africa (Africa); In- 

onesia, Iraq and Qatar (Asia); Belgium, Bulgaria, United Kingdom, 

ermany, France, Netherlands, Poland and Romania (Europe); Mex- 

co (North America); as well as Brazil and Peru (South America). 

uring the study period, precipitation had significant and positive 

orrelations (0.514 ≤ r ≤ 0.947) with the (new) reported COVID- 

9 cases in Egypt, Nigeria and Senegal (Africa); Bangladesh, India, 

ran and Pakistan (Asia); and Kyrgyzstan, Kazakhstan, Russia and 

zbekistan (Arctic region). However, this relationship was signifi- 

antly negative ( −0.530 ≤ r ≤ −0.839) in Ghana and South Africa 

Africa), Brazil and Peru (South America). 

In addition, some significant varying time-delay effects were 
btained between climatic variables and COVID-19 infections. For a

7 
nstance, time-lag between change in temperature and maxi- 

um occurrence of infection was 1-day in Canada (North Amer- 

ca; Table 4 ) and Argentina (South Africa; Table 6 ). In addi- 

ion, the results revealed 2-day lagging in Ghana and South 

frica (Africa); Poland (Europe); Iran and Qatar (Asia); Mex- 

co (North America); and Chile (North America). Three-day 

agging was obtained in Egypt, Pakistan and Peru Madagas- 

ar recorded 4-day lagging. Yemen and Kyrgyzstan had 5- 

ay lagging to temperature effects while Bangladesh and the 

SA had 6-day time lag. Similar wobbling results were ob- 

ained for relative humidity and precipitation with time-lags 

anging between 1 and 7 days in 16 and 10 countries 

espectively. 

.4. Statistical simulations of COVID-19 infections in relation to 

hanges in weather 

Projected percentage changes in COVID-19 cases associated 

ith a unit decrease in temperature ( °C), relative humidity 

%) and precipitation (mm) are illustrated in Fig. 6 . Generally, 

ur results suggested that one-degree Celsius drop in temper- 

ture will alter (increase or decrease) the number of COVID- 
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Fig. 4. Global monthly climatology of (a) surface air temperature, (b) relative humidity and (c) total precipitation for the month of December 2019 (The period when the 

first case was first confirmed). 

8 
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Fig. 5. Change in global monthly climatology of (a) surface air temperature, (b) relative humidity and (c) total precipitation in the months of March (left panel) and April 

(right panel) 2020 (The peak of the epidemic worldwide) relative to December, 2019. 
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9 cases significantly (at p < 0.05) in six countries in Africa 

ncluding Ethiopia (14.10%), Egypt ( −9.40%), Madagascar (1.40%), 

outh Africa (1.60%), Kenya ( −1.25), and Ghana ( −2.70%; Fig. 6 a). 

imilar results were obtained in one country, each, in Asia 

Iraq = −4.50%; Fig. 6 b), and Europe (Bulgaria = −18.70%; Fig. 6 c)

s well as five in North America (Canada = 0.16%, USA = 0.45%, 

exico = −0.63%, Puerto Rico = −1.42% and Cuba = 0.45%; 

ig. 6 d); Seven in South America (Peru = 2.20%,Paraguay = 0.71%, 

razil = 0.49%, Ecuador = 0.27%, Trinidad and Tobago = 0.20%, 

uyana = −0.12%, and Venezuela = −0.10%; Fig. 6 e) and four 

n the Arctic region (Iceland = 0.55%, Georgia = 0.15%, Kyrgyzs- 

an = −0.37%, and Russia = −0.17%; Fig. 6 f). For 1% drop in rel-

tive humidity, the model projected significant changes in three 

ountries, each, in Africa (Ethiopia = 1.7%, Egypt = −2.5%, and 

hana = −1.3%), North America (USA = −0.1%, Mexico = 0.1%, and 

uerto Rico = 0.07%) and Arctic region (Iceland = −0.11%, Kyrgyzs- 

an = 0.04%, and Russia = 0.04%); two in Asia (Iraq = 1.2%; Pak- 

stan = −0.4), 1 in Europe (Bulgaria = 7.2%); and four in South 

merica (Peru = 0.40%,Paraguay = 0.10%, Brazil = 0.15%, Ecuador 

 −0.14%). Finally, significant changes were obtained with 1 mm 

rop in two countries in North America (Canada = −0.09% and the 

SA = −0.07%), one country, each, in Asia (Pakistan = −0.05) and 

outh America (Chile = −0.1%) and 5 in the Arctic region (Kyr- 

yzstan = −0.10%, Iceland = −0.09%, Georgia = −0.09%, Russia 

 −0.07% and Uzbekistan = −0.05%). 
9 
. Discussion 

The present study revealed that the total number of reported 

ases and death had reached 4753,211 and 303,531 respectively 

y the end of the study period (May 28, 2020) in all the se- 

ected 61 countries scattered over the globe. In order of severity 

f the disease, the North America (1.87 million cases) and Europe 

1.02 million cases) were on top. They were followed by South 

merica (709,329), Asia & Oceania (694,471), and the Arctic re- 

ion (387,723) while Africa was in the rear with 74,819 confirmed 

ases. Mortalities from COVID-19 followed very similar pattern. The 

ighest was recorded in Europe with 124,241 deaths closely fol- 

owed by North America (116, 015 death) and then South America 

35,063), Asia (22,184), Arctic region (4057) and Africa (1971). Re- 

ults demonstrated that the order of the LTR from the highest to 

he lowest in the six regions is: North America (26,334 persons 

ay −1 ) - Europe (8991 persons day −1 ) - South America (9108 per- 

ons day −1 ) - Asia (4692 persons day −1 ) - Arctic region (3421 per-

ons day −1 ) – Africa (1069persons day −1 ). 

Results of spatial distribution of the infections suggested that 

pread of the disease was highest in the northern hemisphere 

i.e. high latitudes, with temperate and/or continental climate) and 

he prominent direction of the transmission was mainly from the 

picentre to Europe and North America; mimicking the popular 

ravel patterns from China. Previous studies have reported that no- 
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Table 3 

Lagged correlation coefficients at 0 to 7-days between the daily reported infected cases and temperature (TMP in °C), relative humidity (RHU in%) and precipitation (PRE in 

mm) over selected countries in Europe ( ∗ significant at p ≤ 0.05; bold value is an indicator of lagging ). 

Parameters Lag/days Countries 

Belgium Bulgaria U/Kingdom Germany France Netherlands Norway Poland Portugal Romania Spain 

TMP 0 0.454 0.668 ∗ 0.677 ∗ 0.127 −0.087 0.329 −0.051 0.769 ∗ 0.143 0.700 ∗ 0.069 

1 0.432 0.636 ∗ 0.642 ∗ 0.112 −0.095 0.317 −0.079 0.756 ∗ 0.144 0.654 ∗ 0.077 

2 0.390 0.606 ∗ 0.528 ∗ 0.076 −0.111 0.293 −0.072 0.775 ∗ 0.112 0.631 ∗ 0.094 

3 0.367 0.569 ∗ 0.495 ∗ 0.040 −0.111 0.272 −0.044 0.741 ∗ 0.107 0.628 ∗ 0.105 

4 0.342 0.542 ∗ 0.543 ∗ 0.025 −0.132 0.256 −0.057 0.723 ∗ 0.111 0.633 ∗ 0.107 

5 0.326 0.534 ∗ 0.556 ∗ −0.002 −0.134 0.242 −0.214 0.704 ∗ 0.095 0.643 ∗ 0.101 

6 0.289 0.535 ∗ 0.576 ∗ −0.009 −0.147 0.238 −0.263 0.667 ∗ 0.113 0.631 ∗ 0.113 

7 0.302 0.528 ∗ 0.622 ∗ 0.003 −0.167 0.226 −0.154 0.643 ∗ 0.072 0.593 ∗ 0.160 

RHU 

0 −0.861 ∗ −0.607 ∗ −0.654 ∗ −0.650 ∗ −0.663 ∗ −0.850 ∗ −0.226 −0.871 ∗ 0.243 −0.720 ∗ 0.246 

1 −0.857 ∗ −0.569 ∗ −0.646 ∗ −0.639 ∗ −0.604 ∗ −0.832 ∗ −0.285 −0.890 ∗ 0.249 −0.709 ∗ 0.247 

2 −0.849 ∗ −0.557 ∗ −0.644 ∗ −0.650 ∗ −0.532 ∗ −0.832 ∗ −0.283 −0.906 ∗ 0.227 −0.688 ∗ 0.244 

3 −0.885 ∗ −0.518 ∗ −0.613 ∗ −0.628 ∗ −0.512 ∗ −0.852 ∗ −0.247 −0.901 ∗ 0.272 −0.661 ∗ 0.216 

4 −0.923 ∗ −0.472 −0.639 ∗ −0.654 ∗ −0.533 ∗ −0.873 ∗ −0.232 −0.892 ∗ 0.274 −0.637 ∗ 0.194 

5 −0.857 ∗ −0.466 −0.626 ∗ −0.634 ∗ −0.516 ∗ −0.868 ∗ −0.336 −0.903 ∗ 0.226 −0.660 ∗ 0.189 

6 −0.795 ∗ −0.459 −0.623 ∗ −0.588 ∗ −0.460 −0.827 ∗ −0.237 −0.920 ∗ 0.243 −0.685 ∗ 0.172 

7 −0.814 ∗ −0.433 −0.642 ∗ −0.547 ∗ −0.449 −0.779 ∗ −0.135 −0.899 ∗ 0.183 −0.655 ∗ 0.129 

PRW 

0 −0.100 0.387 0.139 −0.345 −0.270 −0.318 −0.226 0.088 0.183 0.316 0.182 

1 −0.099 0.358 0.058 −0.330 −0.254 −0.317 −0.224 0.111 0.155 0.276 0.192 

2 −0.160 0.323 −0.011 −0.365 −0.181 −0.306 −0.225 0.087 0.171 0.254 0.208 

3 −0.178 0.315 0.015 −0.365 −0.170 −0.329 −0.202 0.072 0.184 0.266 0.234 

4 −0.218 0.343 0.044 −0.388 −0.179 −0.353 −0.142 0.081 0.172 0.295 0.216 

5 −0.227 0.359 0.019 −0.417 −0.194 −0.366 −0.278 0.077 0.177 0.276 0.197 

6 −0.198 0.344 0.063 −0.397 −0.222 −0.351 −0.335 0.000 0.177 0.228 0.193 

7 −0.181 0.340 0.085 −0.356 −0.230 −0.335 −0.212 −0.003 0.142 0.205 0.222 

Table 4 

Lagged correlation coefficients at 0 to 7-days between the daily reported infected cases and temperature (TMP in °C), relative humidity (RHU in %) and precipitation (PRE in 

mm) over selected countries in North America ( ∗ significant at p ≤ 0.05; bold value is an indicator of lagging ). 

Parameters Lag/days Countries 

Canada Cuba Mexico Puerto-Rico USA 

TMP 0 0.766 ∗ 0.674 ∗ 0.660 ∗ 0.590 ∗ 0.619 ∗

1 0.773 ∗ 0.651 ∗ 0.664 ∗ 0.519 ∗ 0.623 ∗

2 0.756 ∗ 0.650 ∗ 0.668 ∗ 0.501 0.628 ∗

3 0.755 ∗ 0.658 ∗ 0.667 ∗ 0.487 0.613 ∗

4 0.737 ∗ 0.651 ∗ 0.663 ∗ 0.453 0.615 ∗

5 0.747 ∗ 0.637 ∗ 0.654 ∗ 0.449 0.620 ∗

6 0.739 ∗ 0.620 ∗ 0.643 ∗ 0.449 0.638 ∗

7 0.737 ∗ 0.611 ∗ 0.634 ∗ 0.412 0.614 ∗

RHU 

0 −0.134 0.009 −0.627 ∗ −0.126 −0.092 

1 −0.091 0.018 −0.607 ∗ −0.120 −0.090 

2 −0.097 0.034 −0.592 ∗ 0.012 −0.080 

3 −0.142 0.061 −0.577 ∗ 0.083 −0.113 

4 −0.119 0.008 −0.568 ∗ 0.027 −0.086 

5 −0.096 0.001 −0.559 ∗ −0.081 −0.082 

6 −0.090 −0.009 −0.549 ∗ 0.008 −0.024 

7 −0.106 −0.016 −0.538 ∗ 0.044 −0.034 

PRE 

0 0.318 0.158 −0.042 0.165 0.367 

1 0.346 0.178 0.060 0.172 0.358 

2 0.317 0.198 0.141 0.148 0.361 

3 0.323 0.179 0.211 0.164 0.348 

4 0.322 0.180 0.247 0.176 0.353 

5 0.307 0.176 0.253 0.148 0.352 

6 0.306 0.176 0.241 0.117 0.379 

7 0.320 0.154 0.229 0.098 0.360 

t

p
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F

t
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2

able countries to the west of China (such as Malaysia, the Philip- 

ines, Indonesia, and Thailand in Asia; major hubs in Europe, the 

S and Australia; Paraguay in South America as well as Burkina 

aso and the Democratic Republic of the Congo in Africa) were 

he popular travel destinations from China before Wuhan’s lock- 

own ( Lai et al., 2020 ; O’Reilly et al., 2020 ). However, the pattern

f results obtained in the present study did not wholly conform to 

he observed travel patterns. This is probably because travel pat- 
10 
erns alone are not the only variables responsible for the spread 

f the disease. Country specific factors such as early imposition 

f lockdown, enforcement of other virus containing measures and 

nvironmental factors like intensity of sunlight which is impor- 

ant in the synthesis of Vitamin D in the body may play impor- 

ant roles. Vitamin D has been found to be protective of infec- 

ions from coronaviruses including COVID-19 ( Chakrabarti et al., 

020 ). 
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Table 5 

Lagged correlation coefficients at 0 to 7-days between the daily reported infected cases and temperature (TMP in °C), relative humidity (RHU in %) and precipitation (PRE in 

mm) over selected countries in the Arctic region ( ∗ significant at p ≤ 0.05; bold value is an indicator of lagging ). 

Parameters Lag/days Countries 

Georgia Iceland Kyrgyzstan Kazakhstan Russia Uzbekistan 

TMP 0 0.387 −0.283 0.758 ∗ −0.006 0.856 ∗ 0.375 

1 0.363 −0.309 0.725 ∗ −0.083 0.832 ∗ 0.388 

2 0.346 −0.299 0.687 ∗ −0.059 0.819 ∗ 0.388 

3 0.340 −0.300 0.715 ∗ −0.062 0.811 ∗ 0.372 

4 0.330 −0.297 0.764 ∗ −0.068 0.804 ∗ 0.410 

5 0.354 −0.260 0.777 ∗ −0.064 0.778 ∗ 0.437 

6 0.354 −0.257 0.777 ∗ −0.083 0.753 ∗ 0.476 

7 0.392 −0.265 0.746 ∗ −0.092 0.719 ∗ 0.519 

RHU 

0 0.104 0.162 −0.207 −0.168 −0.331 −0.363 

1 0.215 0.056 −0.133 −0.121 −0.317 −0.379 

2 0.178 0.065 0.027 −0.078 −0.332 −0.304 

3 0.174 0.073 0.079 −0.071 −0.348 −0.277 

4 0.193 0.115 0.100 −0.080 −0.364 −0.326 

5 0.231 0.074 −0.014 −0.069 −0.354 −0.287 

6 0.323 0.001 −0.038 −0.103 −0.355 −0.268 

7 0.335 −0.050 −0.091 −0.091 −0.349 −0.327 

PRE 

0 0.263 −0.059 0.615 ∗ 0.582 ∗ 0.650 ∗ 0.595 ∗

1 0.296 −0.134 0.556 ∗ 0.581 ∗ 0.645 ∗ 0.577 ∗

2 0.249 −0.115 0.625 ∗ 0.634 ∗ 0.637 ∗ 0.571 ∗

3 0.246 −0.119 0.709 ∗ 0.676 ∗ 0.633 ∗ 0.639 ∗

4 0.276 −0.125 0.733 ∗ 0.635 ∗ 0.622 ∗ 0.613 ∗

5 0.346 −0.095 0.679 ∗ 0.638 ∗ 0.614 ∗ 0.557 ∗

6 0.375 −0.155 0.748 ∗ 0.620 ∗ 0.609 ∗ 0.575 ∗

7 0.322 −0.147 0.635 ∗ 0.605 ∗ 0.592 ∗ 0.652 ∗

Table 6 

Lagged correlation coefficients at 0 to 7-days between the daily reported infected cases and temperature (TMP in °C), relative humidity (RHU in %) and precipitation (PRE in 

mm) over selected countries in the South America ( ∗ significant at p ≤ 0.05; bold value is an indicator of lagging ). 

Parameters Lag/days Countries 

Argentina Brazil Chile Colombia Guyana Ecuador Paraguay Peru Uruguay Trinidad/Tobago Venezuela 

TMP 0 −0.682 ∗ −0.724 ∗ −0.731 ∗ 0.248 0.194 −0.144 −0.460 −0.910 ∗ −0.300 0.042 0.122 

1 −0.709 ∗ −0.715 ∗ −0.753 ∗ 0.231 0.187 −0.124 −0.584 ∗ −0.916 ∗ −0.276 0.006 0.085 

2 −0.672 ∗ −0.749 ∗ −0.758 ∗ 0.239 0.215 −0.129 −0.599 ∗ −0.910 ∗ −0.285 −0.057 0.016 

3 −0.622 ∗ −0.803 ∗ −0.752 ∗ 0.237 0.202 −0.083 −0.512 −0.918 ∗ −0.285 0.038 0.194 

4 −0.576 ∗ −0.825 ∗ −0.732 ∗ 0.218 0.234 −0.020 −0.316 −0.907 ∗ −0.267 −0.010 0.195 

5 −0.609 ∗ −0.816 ∗ −0.717 ∗ 0.222 0.316 −0.074 −0.221 −0.884 ∗ −0.204 0.000 0.156 

6 −0.611 ∗ −0.814 ∗ −0.727 ∗ 0.254 0.264 −0.116 −0.246 −0.859 ∗ −0.205 −0.001 0.138 

7 −0.664 ∗ −0.810 ∗ −0.739 ∗ 0.272 0.203 −0.190 −0.253 −0.848 ∗ −0.203 −0.101 0.067 

RHU 

0 0.315 −0.774 ∗ 0.148 −0.138 0.052 0.137 −0.181 −0.702 ∗ 0.471 −0.194 0.318 

1 0.365 −0.799 ∗ 0.219 −0.139 −0.009 0.100 −0.170 −0.684 ∗ 0.442 −0.146 0.392 

2 0.365 −0.747 ∗ 0.278 −0.163 −0.036 0.092 −0.009 −0.626 ∗ 0.501 −0.180 0.435 

3 0.346 −0.710 ∗ 0.204 −0.162 0.039 0.103 0.017 −0.569 ∗ 0.462 −0.199 0.276 

4 0.297 −0.691 ∗ 0.107 −0.136 −0.051 0.060 0.015 −0.580 ∗ 0.445 −0.128 0.234 

5 0.276 −0.684 ∗ −0.008 −0.102 −0.042 −0.017 0.019 −0.596 ∗ 0.412 −0.110 0.250 

6 0.254 −0.672 ∗ −0.050 −0.086 −0.093 −0.002 0.056 −0.505 0.462 −0.132 0.314 

7 0.278 −0.697 ∗ −0.030 −0.127 −0.020 −0.038 0.029 −0.457 0.454 −0.124 0.357 

PRE 

0 −0.260 −0.493 −0.393 0.317 0.299 0.121 −0.364 −0.590 ∗ 0.185 0.059 0.394 

1 −0.273 −0.533 ∗ −0.427 0.282 0.159 0.206 −0.407 −0.588 ∗ 0.106 0.009 0.380 

2 −0.243 −0.568 ∗ −0.430 0.269 0.196 0.171 −0.359 −0.598 ∗ 0.098 −0.032 0.424 

3 −0.194 −0.591 ∗ −0.410 0.294 0.322 0.113 −0.244 −0.569 ∗ 0.178 −0.042 0.416 

4 −0.139 −0.589 ∗ −0.411 0.294 0.361 0.116 −0.100 −0.530 ∗ 0.185 −0.067 0.365 

5 −0.187 −0.570 ∗ −0.439 0.310 0.318 0.130 −0.087 −0.493 0.130 −0.049 0.340 

6 −0.216 −0.552 ∗ −0.488 0.319 0.174 0.073 −0.097 −0.448 0.023 −0.012 0.340 

7 −0.254 −0.531 ∗ −0.509 0.314 0.155 0.034 −0.096 −0.418 0.179 −0.042 0.405 
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Spatial fluctuations in the global climatology revealed general 

ecrease in temperature during the study period in the Arctic, 

ceania, southern Africa and some parts of Europe, Asia, South 

nd North America. However, increased temperature (warmer cli- 

ate) was recorded in the South Pole and southern coast of 

outh America. Conversely and as expected, relative humidity was 

ound to increase in warmer regions and decreased in a colder 

egion. Most regions of the world had a slight and insignifi- 
11 
ant increase or decrease in precipitation with exception of some 

arts of southern Asia with significant increase or decrease in 

recipitation. 

Results revealed that the effects of daily variations in climate 

n the spread of COVID-19 infection varied from across differ- 

nt climatic regions of the world. We obtained both negative 

 −0.510 ≤ r ≤ −0.967) and positive (0.519 ≤ r ≤ 0.999) strong 

elationships (at p < 0.05) between climatic variables and con- 
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Fig. 6. Projected changes in COVID-19 infection with a unit change (decrease) in temperature (TMP), humidity(RHU) and precipitation (PRE) in different countries in (a) 

Africa, (b) Asia and Oceania, (c) Europe (d) North America, (e) South America, and (f) the Arctic Region from December 31, 2019 to May 28, 2020 at 12.00 GMT. 
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rmed cases of COVID-19 in about 42 (68.85%) of the selected 

ountries. Temperature gave significant correlations in 49.2% of 

ll the selected countries around the world (with 34.4% positive 

nd 14.6% negative). Relative humidity showed positive and nega- 

ive relationship in 0.08% and 44.26% of the countries respectively 

hile precipitation produced 18.03% (positive) and 0.07% (nega- 

ive). Méndez-Arriaga (2020) in Mexico found significant associa- 

ions between the climate (positive for precipitation and negative 

or temperature) and the local transmission ratio of the disease. 

ur results showed that local transmission of the disease spanned 

ll climatic zones i.e. from cold and dry to hot and humid re- 

ions as previously reported ( O’Reilly et al., 2020 ; WHO, 2020 ) 

hich was found to be triggered by travel patterns out of the 

igh-risk countries ( Lai et al., 2020 ). However, our results revealed 

o significant relationship between the climate and COVID-19 

ases in 30.77% of countries in Africa ( i.e . Central Africa Republic, 

auritius, Tanzania and Zimbabwe); 30.77% in Asia (Afghanistan, 

hina, Israel, and Japan); 100% in Oceania (Australia and New 

ealand); 27.27% in Europe (Spain, Portugal, Norway), 54.55% in 

outh America (Colombia, Ecuador, Uruguay, Guyana, Trinidad and 

obago, and Venezuela), and 33.3% in the Arctic region (Geor- 

ia and Iceland). Briz-Redón and Serrano-Aroca (2020) in their 

patio-temporal analysis for exploring the effect of temperature 
12 
n COVID-19 had also reported no significant association between 

ariations in climate and the evolution of the disease in Spain. 

ossible reasons for these findings could be due to various fac- 

ors such as variations in demographic, socioeconomic, cultural, the 

tandard of healthcare, level of compliance with national policies 

n COVID-19 protocols to fight the pandemic. Furthermore, there 

ere strong evidences of 1 to 7-day delays in the response of the 

nfection to changes in climate. This is an indication that the ef- 

ects of climate variations may take 1 to 7 days to manifest in an 

nfected individuals or it may be a manifestation of the incubation 

eriod of COVID-19 infections, which is 2–14 days. Previous stud- 

es have reported that delayed response to diseases, which may 

owever vary with victim’s age, body characteristics and underly- 

ng health condition may adversely affect the turnout of victims in 

eeking medical treatment and that the condition may be danger- 

us in countries with poor testing rate (e.g. Tanimola et al., 2013 ) 

Statistical model simulations suggested that one-degree Celsius 

all in temperature could significantly increase COVID-19 infec- 

ion in two (15.38%) African countries (Ethiopia and South Africa); 

hree (60%) countries in North America (Canada, USA and Cuba); 

ve (45.45%) countries in South America (Peru, Paraguay, Brazil, 

rinidad and Tobago and Ecuador); and two (33.3%) countries in 

he Arctic region (Iceland and Georgia). One-degree fall in tem- 
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erature, however, projected significant decrease the infection in 

hree (23.08%) countries in Africa (Egypt, Kenya and Ghana); one 

ountry, each, in Asia (0.07%; Iraq) and Europe (0.09%; Bulgaria); 

 countries, each, in North America (40.0%; Mexico, Puerto Rico); 

outh America (18.2%; Guyana and Venezuela) and the Arctic re- 

ion (33.3%; Kyrgyzstan and Russia). When the relative humidity 

alls by one-percent, it projected an increase in COVID-19 cases in 

ne country, each, in Africa (7.69%; Ethiopia); Asia (7.69%; Iraq), 

nd Europe (9.09%; Bulgaria); two in North America (40%; Mex- 

co and Puerto Rico); three South America (27.27%; Peru, Paraguay 

nd Brazil) and two in the Arctic region (33.33%; Kyrgyzstan and 

ussia). On the other hand, a decrease in the infection was pre- 

icted in two countries in Africa (18.18%; Egypt, and Ghana); one, 

ach, in Asia (7.69%; Pakistan), North America (20%; USA), South 

merica (9.09%; Ecuador) and the Arctic region (16.67%; Iceland) 

or a drop in relative humidity. A general reduction in COVID-19 

ases was projected with a unit drop in precipitation in two coun- 

ries in North America (40%; Canada and the USA), one, each, in 

sia (7.69%; Pakistan) and South America (9.09%; Chile) and five 

n the Arctic region (83.33%; Kyrgyzstan, Iceland, Georgia, Russia 

nd Uzbekistan). Wang et al. (2020a) had also reported that one- 

egree Celsius drop/rise in temperature could increase or reduce 

OVID-19 infection rate in China and the US while a 1% drop/rise 

n relative humidity could increase/reduce the spread of the dis- 

ase. Our results, thus, confirmed the fact that the local transmis- 

ion of the disease might not reduce significantly by the onset of 

armer season/summer in the northern hemisphere. Similarly, the 

ntensity of the infection might increase or reduce during the ad- 

ancing winter in the southern hemisphere. As such effective pub- 

ic health interventions such as social distancing, wearing of face 

ask and frequent washing of hands with an alcohol-based san- 

tizer among others are crucial to containing the transmission of 

OVID-19. 

. Conclusion 

We have assessed the potential effects of climate variations (hu- 

idity, temperature, and precipitation) on COVID-19 in different 

limatic zones of the world. Data used include daily records of 

OVID-19 (confirmed cases and deaths) in 61 selected countries 

ell-distributed over six designated regions of the world (Africa, 

sia & Oceania, Europe, North America, South America and the 

rctic region) from December 31, 2019 to May, 28 2020 (at 12.00 

MT). In addition, daily records of temperature, humidity, and 

recipitation obtained from high-resolution (0.25 ° by 0.25 °) ERA5 

atasets for the same period were used. The data were analysed 

sing statistical and geo-statistical methods, including multiple lin- 

ar regression model, correlation analysis and spatial gridding. Our 

ndings revealed higher spread of the spatial distribution of the 

nfections in the northern hemisphere (i.e. high latitudes, with 

emperate and/or continental climate) and the prominent direction 

f the transmission was more from the epicentre to the western 

ountries. There were strong indications that the effects of vari- 

tions in climate on the spread of COVID-19 infection were both 

egative ( −0.510 ≤ r ≤ −0.967) and positive (0.519 ≤ r ≤ 0.999) 

nd significant (at p < 0.05). The impacts varied across differ- 

nt climatic regions of the world. There were also evidence of 1 

o 7-day lagging in the response of the infection to changes in 

eather. The model simulations suggested that one-degree Celsius 

all in temperature could significantly increase COVID-19 infection 

n 19.67% of the selected countries of the world but projected a 

ecrease in other 18.03%. Similarly, one unit drop in relative hu- 

idity could upsurge COVID-19 infection in 16.39% of the countries 

ut a decrease in 0.1%. However, a decrease in a unit precipitation 

as expected to generally reduce the infection in 14.75% countries. 

he findings had revealed that local transmission of the disease in 
13 
oth the northern and southern hemispheres might not shrink dur- 

ng the summer months. As such, public health interventions like 

ocial distancing, wearing of face mask and frequent washing of 

ands with soap or alcohol-based sanitizers are crucial to control- 

ing the transmission of COVID-19 in all seasons. This paper has 

mproved our knowledge of the spread of COVID-19 by showing 

hat warm, wet and humid climates could significantly influenced 

he spread of the disease. However, climatic factors are not the 

nly variables responsible for the observed variations in the dis- 

ase transmission. Further areas of research can look at the effects 

f climate on the spread of the disease while controlling for other 

actors that can affect transmissibility such as adherence to COVID- 

9 control measures, international travels and population densities. 
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