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Aberrant metabolism contributes to tumor initiation, progression, metastasis, and drug
resistance. Metabolic dysregulation has emerged as a hallmark of several hematologic
malignancies. Decoding the molecular mechanism underlying metabolic rewiring in
hematological malignancies would provide promising avenues for novel therapeutic
interventions. Single-cell metabolic analysis can directly offer a meaningful readout of
the cellular phenotype, allowing us to comprehensively dissect cellular states and access
biological information unobtainable from bulk analysis. In this review, we first highlight the
unique metabolic properties of hematologic malignancies and underscore potential
metabolic vulnerabilities. We then emphasize the emerging single-cell metabolomics
techniques, aiming to provide a guide to interrogating metabolism at single-cell
resolution. Furthermore, we summarize recent studies demonstrating the power of
single-cell metabolomics to uncover the roles of metabolic rewiring in tumor biology,
cellular heterogeneity, immunometabolism, and therapeutic resistance. Meanwhile, we
describe a practical view of the potential applications of single-cell metabolomics in
hematopoiesis and hematological malignancies. Finally, we present the challenges and
perspectives of single-cell metabolomics development.

Keywords: single-cell metabolomics, metabolic reprogramming, hematopoiesis, hematological malignancies,
glucose metabolism, amino acids metabolism, lipid-related metabolism
INTRODUCTION

Metabolism consists of a series of biochemical reactions that occur within a living organism to
maintain life. As genetic or non-genetic alterations, tumor cells rewire metabolic pathways to adapt
to their rapid growth and proliferation. Metabolic reprogramming of cancer cells is now deemed
one of the hallmarks of cancer (1). Increasing evidence suggests that dysregulated cell metabolism
facilitates tumor initiation, progression, metastasis, and drug resistance. The metabolic alterations of
cancer cells are mainly reflected in the increase in glucose and glutamine uptake and fatty acid
metabolism, which are crucial for promoting the rapid synthesis of nucleotides, proteins, and lipids,
meeting energy requirements and maintaining redox homeostasis (2–4). Moreover, metabolic
alterations also modulate cell signaling pathways and post-translational modifications (PTMs) (5).
Metabolites can serve as signaling molecules that directly affect both pro-inflammatory and anti-
inflammatory outcomes (6–8). Emerging evidence suggests that metabolic regulation of PTMs on
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DNA and histones impacts gene expression (9, 10). Furthermore,
metabolic enzymes have been reported to have ‘moonlighting’
functions as RNA-binding proteins (11). Metabolic alterations in
cancer are triggered by various mechanisms that instigate
signaling pathways and regulate the expression of metabolism-
related genes (3).

Alterations inmetabolic processes vary fromcancer to cancer, as
nutrient availability, oncogenic activation, proliferative state or
microenvironment are spatially and temporally heterogeneous.
As a result, each type of cancer cell has distinct needs in terms of
energy and biomass production (12–14). When analyzing the
metabolism of different hematological malignancies, the
heterogeneity between them should also be considered.

A growing number of studies regard cancer as a kind ofmetabolic
diseases, as do hematological malignancies. Hematological
malignancies can be classified as leukemia, myeloma, and
lymphoma and are often deadly. The most common hematological
malignancies include acute myeloid leukemia (AML), chronic
myeloid leukemia (CML), acute lymphoblastic leukemia (ALL),
chronic lymphocytic leukemia (CLL), multiple myeloma (MM),
Hodgkin lymphoma (HL), and non-Hodgkin lymphoma (NHL).
Aberrant metabolism and metabolic reprogramming play important
roles in the pathogenesis of hematologic disorders. The metabolic
characteristicsof leukemiacells areusuallydifferent fromthoseof their
normal counterparts, manifested by increased glycolysis,
glutaminolysis, and lipogenesis. Metabolic differences provide new
therapeutic targets to overcome hematological malignancies.
Moreover, metabolic reprogramming contributes to an
immunosuppressive microenvironment, increasing the probability
of resistance to anticancer therapies. Recurrence and refractory always
exist inpatientswithhematologicmalignancies, and long-termoverall
survival remains unsatisfactory. Newer and more sophisticated
therapeutic approaches are imperative. Metabolic therapies alone or
in combination with other treatment regimens, such as
immunotherapy, targeted therapy, and chemotherapy, bring new
opportunities for patients with hematologic malignancies.

Metabolomics provides the best view of biological phenotypes
by profiling changes in endogenous metabolites. Insights into the
role of metabolic reprogramming in tumor biology have largely
been accomplished by bulk metabolic analysis techniques.
However, bulk analyses neglect intratumoral heterogeneity, so the
mechanisms underlying critical disease events of hematological
malignancies remain obscure, such as treatment resistance and
clonal evolution. Propelled by a set of recent technological advances
in single-cell metabolomics, new insights into tumor metabolism
are rapidly emerging, which are often not available on other omics
layers (Figure 1). Single-cell metabolomics technologies will
provide an understanding of hematological malignancies at
unprecedented depth and reveal new insights into the
pathogenesis of hematologic malignancies.

In this review, we summarize the unique metabolic
characteristics of hematologic malignancies. Then, we illustrate
the research progress of single-cell metabolomics technology.
Applications and potential of single-cell metabolomics in
hematopoiesis and hematologic malignancies are discussed.
Finally, we present the challenges and perspectives of single-
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cell metabolomics development. This review will provide a clear
navigation of numerous single-cell metabolomics technologies
and strategies.
UNIQUE METABOLIC PROPERTIES OF
HEMATOLOGIC MALIGNANCIES

Glucose Metabolism
Themost commonmetabolic alteration in cancer is aerobic glycolysis.
In the presence of oxygen, normal cells will take up glucose for
respiration and continue with oxidative phosphorylation
(OXPHOS), whereas some tumor cells are more likely to take
glucose for glycolysis to rapidly produce ATP, anabolic intermediates
and lactate (1), which is known as the Warburg effect. Lactate can
promote tumor cell growth andmetastasis by stimulating angiogenesis
and acidifying the tumor microenvironment, and also cause local
inflammatory responses (15–17). A high level of glucose consumption
is a conserved characteristic of most hematological malignancies
(Figure 2). The PI3K-AKT/mTOR signaling pathway activates the
expression of downstream glycolytic genes, including GLUT1, HK2,
PFKFB3, LDHA, PKM2 and suppressors of the tricarboxylic acid
(TCA) cycle such as PDK (4), resulting in a shift in glucose
utilization (Figure 3). Competitive glucose metabolism as a target
boosts the emergence of novel therapeutic approaches for
hematologic malignancies.
FIGURE 1 | Overview of representative single-cell metabolomics methods for
metabolic profiling. Hematological malignancies have abnormal metabolic
characteristics, reflected in glucose metabolism, amino acids metabolism, and
lipid-related metabolism. Some emerging single-cell metabolomics (SCM)
techniques can help us better understand metabolic signatures at the single-
cell level and provide unprecedented insights into hematological malignancies.
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Cellular glucose uptake is mediated by transmembrane glucose
transporters (GLUTs), and most hematological malignancies, such
as AML, CML, B-ALL and MM, take up abundant glucose
through overexpressed GLUT1. Studies have demonstrated
GLUT1 as a therapeutic target for hematological malignancies
(Figure 2) (18–22). MM cells also exhibit an unexpected
dependence on GLUT4, GLUT8 and GLUT11. Myeloma cells
exhibit reliance on GLUT4 for basal glucose consumption,
maintenance of apoptotic effector Mcl-1 expression, growth, and
survival, while GLUT8 and GLUT11 are required for proliferation
and viability in myeloma (23). Likewise, 60% of CLL cells
overexpressed GLUT4, facilitating glucose transport (24). The
human immunodeficiency virus (HIV) protease inhibitor
Frontiers in Oncology | www.frontiersin.org 3
ritonavir has an off-target inhibitory effect on GLUT4 expression
in CLL andMM, resulting in the reduction of cell viability (23, 24).
Notably, GLUT1 is not increased in CLL cells, and CLL cells seem
not to follow the Warburg effect (25, 26). Distinct signatures of
glucose metabolism have been found in AML patients, which
demonstrated prognostic value in cytogenetically normal AML
patients (27). Internal tandem duplication (ITD) mutation in the
Fms-like tyrosine kinase 3 gene (FLT3/ITD) causes a significant
increase in aerobic glycolysis through AKT-mediated upregulation
of mitochondrial hexokinase 2 (HK2) and renders leukemia cells
highly dependent on glycolysis (28). The combination of the FLT3
tyrosine kinase inhibitor sorafenib and glycolytic inhibitor 2-
deoxy-d-glucose (2-DG) enhanced cytotoxicity in AML (28).

Pyruvate kinase (PKM2) and lactate dehydrogenase A (LDHA)
play important roles in the initiation, maintenance, and progression
of CML and AML in mice, and deletion of PKM2 or LDHA results
in significantly prolonged disease latency (29). LDHA inhibitor
oxamate suppressed proliferation and induced apoptosis in T-ALL
FIGURE 3 | Signaling pathways that regulate metabolism. Growth factors
affect metabolism by activating RTKs, and the PI3K/AKT axis can be
activated as downstream of RTK and RAS. mTORC1, downstream of PI3K/
AKT, can be activated upon AKT-mediated phosphorylation or suppressed
through AMPK-mediated phosphorylation. NOTCH1 signaling promotes the
activation of PI3K-AKT-mTOR signaling. PI3K-AKT-mTOR signaling can alter
metabolism by regulating multiple transcription factors, nutrient transporters,
and phosphorylating metabolic enzymes. HIF, MYC, and SREBP-1 are
downstream transcription factors of mTORC1 that promote glycolysis,
glutamine metabolism, fatty acid synthesis, and mitochondrial biogenesis.
MYC can collaborate with HIF to enhance the expression of genes involved in
glucose uptake and glycolysis, including LDHA, pyruvate dehydrogenase
kinase-1 (PDK-1), and HK-2. Apart from this, MYC targets function to
enhance mitochondrial biogenesis and function, especially glutamine
metabolism. MYC can induce glutamine transporters expression (e.g.
SLC7A5 and SLC1A5) and increase the levels of glutaminase. SREBP as a
downstream effector of mTORC1 can induce the expression of several key
enzymes related to fatty acid and sterol biosynthesis, such as ATP citrate
lyase (ACLY) and fatty acid synthase. Moreover, SREBP interacts with MYC
to regulate lipogenesis and then promote tumorigenesis. P53 forms a positive
feedback loop with AMPK to repress glycolytic activity and promote OXPHOS
and PPP. Phosphoserine STAT3 binds to and activates the promoter of LPL.
FIGURE 2 | Metabolic alterations in hematological malignancies. Metabolic
alterations in hematological malignancies are mainly reflected in the increase
in glucose and glutamine uptake and fatty acid metabolism to promote the
rapid synthesis of nucleotides, proteins, and lipids. Different metabolic
pathways are marked with distinct colors. Unique metabolic characteristics
exhibited in one or a few types of hematological malignancies are labeled.
Some special enzymes or reaction processes in the metabolic process, which
can be used as potential therapeutic targets, are marked with an asterisk.
The yellow capsules represent the drugs in clinical trials, whereas the green
capsules represent FDA-approved drugs targeting the metabolic process of
hematological malignancies. The dashed line with arrow represents
anabolism. GLUT, glucose transporter; HK2, hexokinase2; G6P, glucose-6-
phosphate; G6PD, Glucose-6-phosphate dehydrogenase; R5P, ribose-5-
phosphate; PPP, pentose phosphate pathway; NADPH, nicotinamide adenine
dinucleotide phosphate; F1,6BP, fructose-1,6-biphosphate; GA3P,
glyceraldehyde 3-phosphate; DHAP, dihydroxyacetone phosphate; F1P,
fructose-1-phosphate; PEP, phosphoenolpyruvate; PKM2, pyruvate kinase
M2; FA, fatty acid; FATP, fatty acid transport protein; OAA, oxaloacetate; a-
KG, a-ketoglutarate; Asp, Asparagine; Asn, asparagine; ASNS, asparagine
synthetase, ASS1, arginine succinate synthase-1; Arg, arginine; CAT, cationic
amino acid transporters; BCAA, branched-chain amino acid; BCKA,
branched-chain Keto acid; IDH, isocitrate dehydrogenases; 2HG, 2-
hydroxyglutarate; Glu, Glutamate; Gln, glutamine; GLS, glutaminase; Try,
tryptophan; Kyn, kynurenine; IDO, indoleamine 2,3-dioxygenase, LPL,
lipoprotein lipase; MCT, monocarboxylate transporter; LDHA, lactate
dehydrogenase A; FAO, fatty acid oxidation; FAS, fatty acid synthesis; TCA,
tricarboxylic acid cycle.
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cell lines and primary T-ALL cells through the c-Myc-ROS and
PI3K/AKT/GSK3b signaling pathways (29). In the myeloma
microenvironment, lactate is also produced by stromal cells and
then enters myeloma cells via monocarboxylate transporter 1
(MCT1). Lactate contributes to the survival of MM cells in
autocrine or paracrine manners (30). Treatment with a-cyano-4-
hydroxy cinnamate (CHC), a known inhibitor of MCT, dose-
dependently induced cell death in MM cell lines and primary
MM cells (31). HL cells are prone to undergo OXPHOS within
mitochondria. Some non-cancer cells, such as tumor-associated
macrophages (TAMs) with high glycolysis, could promote tumor
growth in HL (32). HL tumor cells have high mitochondrial
metabolism, high expression of MCT1, and uptake and utilization
of lactate released from TAMs.

Leukemia cells show a marked dependence on the pentose
phosphate pathway (PPP), which is a branch of glycolysis, to
generate ribose-5-phosphate (R5P) for nucleic acid synthesis and
NADPH for biosynthetic reactions and oxidative balance
(Figure 2). In AML serum samples, the PPP intermediate D-
ribose phosphate was reduced (27). Critical PPP genes were
upregulated in 61% of patients with AML (33). Glucose-6-
phosphate dehydrogenase (G6PD) is the first enzyme in the
PPP pathway, whose inhibitor 6-aminonicotinamide (6AN)
induces cytotoxicity against AML cells in vitro and in vivo
(34). In addition to PPP, fructolysis is an alternative strategy to
provide carbon intermediates for the glycolytic pathway in AML
(35). AML cells can compensate for low glucose levels by
upregulating fructose transporter GLUT5 (36). GLUT5 is
upregulated in Philadelphia chromosome-positive ALL (Ph+

ALL), leading to imatinib resistance, thus targeting GLUT5
might be promising in Ph+ ALL patients (37, 38).

Pyruvate and some other fuel sources, such as glutamine, can
enter the mitochondrial TCA cycle and undergo OXPHOS, which
is an important reaction in mitochondria. Although aerobic
glycolysis is the main metabolic mode of hematological
malignancies, some of them also increase OXPHOS to gain
energy and anabolic precursors. The examined untreated CLL
patients exhibit a metabolic signature of oxidative stress (25), and
OXPHOS is a predominant pathway in CLL for energy production
(39). CLL cells have an increasedmitochondrial number andmass,
displaying heightened mitochondrial respiration, elevated levels of
reactive oxygen species (ROS), and enhanced antioxidant capacity
(25, 40–42). Metformin inhibits mitochondrial complex I,
inducing apoptosis of quiescent CLL cells and inhibiting cell
cycle entry (43). Activated 5’ AMP-activated kinase (AMPK)
inhibits mammalian target of rapamycin complex 1 (mTORC1)
while promoting oxidative metabolism and mitochondrial
complex I activity, resulting in a decreased level of aerobic
glycolysis in T-ALL cells (44). AML patient samples display an
increased mitochondrial mass without a concomitant increase in
respiratory chain complexes activity, which makes AML cells seem
more susceptible to oxidative stress (45). Increased glycolysis and
inefficient OXPHOS in AML patients may contribute to drug
resistance (46). However, in different AML cell lines, NB4 cells
tend to undergo glycolysis, while THP-1 cells are recognized to be
dependent on OXPHOS (47). THP-1 cells are resistant to 2-DG
Frontiers in Oncology | www.frontiersin.org 4
treatment, while NB4 cells are sensitive to 2-DG treatment; the
difference is that AMPK responds differently to 2-DG (47).

Isocitrate dehydrogenase (IDH) catalyzes the decarboxylation
of isocitrate to a-KG, however, mutant IDH1 and IDH2 reduce a-
KG to 2-hydroxyglutarate (2HG), which could alter the epigenetic
landscape of leukemic progenitors (48, 49). IDH mutations are
prone to occur in AML (50, 51), and the FDA-approved drugs
ivosidenib and enasidenib have been identified as small molecules,
targeting IDH1 and IDH2 in AML, respectively. Furthermore,
vorasidenib (AG-881) and LY3410738 are under investigation in
phase I trials for the treatment of AML patients with IDH1 and/or
IDH2 mutation (52, 53).

Amino Acids Metabolism
Apart from glucose, cancer cells rely heavily on glutamine to
obtain the necessary energy and building blocks to survive and
proliferate. Glutamine serves as a carbon source for the
replenishment of TCA cycle intermediates and a nitrogen
source for the biosynthesis of nucleotides and amino acids.
Glutamine is converted to glutamate by glutaminase (GLS).
Almost all hematological malignancies depend on glutamine
metabolism, and targeting glutamine metabolism has been
proven to have therapeutic potential in the treatment of
hematological malignancies (40, 54–57). For example, the
glutaminase inhibitor CB-839 inhibits glutathione (GSH)
production, induces mitochondrial reactive oxygen species
(mitoROS) and causes apoptosis in AML and ALL (57).
Knockdown of the glutamine transporter SLC1A5 inhibits
glutamine uptake, induces apoptosis and suppresses tumor
formation in a mouse AML xenotransplantation model (58).
Stable SLC1A5 downregulation by a lentiviral approach inhibited
human myeloma cell line growth in vitro and in a murine model
(59). Activating mutations in NOTCH1 are common in T-ALL,
and inhibition of NOTCH1 signaling in T-ALL drives a
metabolic crisis, with prominent inhibition of glutaminolysis
and promotes autophagy (60).

In addition, AML and ALL show dependence on arginine,
and most AML and ALL cells lack arginine succinate synthase-1
(ASS1) and/or ornithine transcarbamylase (OTC), relying on
extracellular arginine availability (61–63). AML constitutively
expresses the cationic amino acid transporters CAT-1 and CAT-
2B for arginine uptake, while ALL expresses CAT-1 in the
absence of CAT-2A or CAT-2B (62, 63). BCT-100, a pegylated
human recombinant arginase, leads to a rapid arginine depletion
and could serve as a novel therapeutic agent for AML and ALL
cells (62, 63). Arginine metabolism is significantly enriched in
MM patients, promoting the urea cycle, and the elevated levels of
urea, creatinine, and uric acid in plasma may be related to
impaired renal function and damaged toxin excretion during
the progression of MM (64, 65).

Indoleamine 2,3-dioxygenase (IDO) is an immunomodulatory
enzyme that facilitates tryptophan catabolism into the
immunoregulatory metabolite kynurenine (Kyn) (66). IDO and Kyn
canmanipulate the immunosuppressive tumormicroenvironment by
affecting T-cell maturation and proliferation and inducing
differentiation into T regulatory cells (67). AML patients were shown
July 2022 | Volume 12 | Article 931393
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to express IDO, and high IDO expression and elevated levels of Kyn
were correlated with poor clinical outcomes in AML patients (68, 69).
Inhibitionof IDOexpressioncandisrupt immunetoleranceasanAML
treatment option (68). Although individual CML patients differed in
their rates of IDO production, the present data indicate that CML
should be added to malignancies with higher IDO activity (70). CLL
cells alsoexpressanactive IDOenzymeandproducehigh levelsofKyn,
which plays a role in the survival and drug resistance of leukemic cells
(71).Another studydemonstrates that the levels of serumKynandTrp
are useful for predicting the prognosis of individual HL patients (72).

Asparagine is essential for DNA synthesis, RNA synthesis,
protein metabolism, and survival of leukemic cells, however, ALL
cells lack asparagine synthetase (ASNS). ALL cells are auxotrophic
for asparagine and highly sensitive to asparaginase treatment (73,
74). Asparaginase depletes the source of asparagine for leukemic
cells, leading to the death of leukemic cells, and the antileukemia
effect has been shown in clinical treatment of ALL (75–77). Four
drugs asparaginase Erwinia chrysanthemi, asparaginase
Escherichia coli, calaspargase pegol, and pegaspargase, have been
approved by the FDA to treat ALL, whereas pegaspargase was also
feasible in higher-stage NHL (Figure 2).

Branched-chain amino acids (BCAAs) include leucine,
isoleucine and valine, and branched-chain amino acids
transaminases 1 (BCAT1) transfers a-amino groups from
BCAAs to a-ketoglutarate (aKG) to produce glutamate and
their respective branched chain ketoacids (BCKAs). BCAT1 is
significantly overexpressed in AML leukemia stem cells (LSCs),
resulting in enhanced a-KG amination and thus lowered
intracellular levels of a-KG (78). BCAT1 is also aberrantly
activated in CML, and blocking BCAT1 gene expression or
enzymatic activity induces cellular differentiation and impairs
the propagation of blast crisis CML (79).

Lipid-Related Metabolism
Fatty acids (FAs) are key synthetic raw materials for cell
membranes and important energy reserves. The oxidation and
synthesis of FAs were shown to contribute to cancer growth. In
CLL, STAT3 is constitutively activated, which also activates LPL
transcription, resulting in elevated intracellular lipoprotein lipase
levels (80). STAT3 also activates the fatty acid translocase CD36
and facilitates FAs uptake in CLL cells (81). LPL induces cellular
uptake of lipoproteins, prompts the hydrolysis of triglycerides
into free fatty acids (FFAs) and shifts CLL cell metabolism
toward utilization of FFAs (82, 83). FFAs bind to proliferator-
activated receptor (PPAR)-a as ligands, and the FFA-PPARa
complex functions as a transcription factor to activate OXPHOS
genes (84). The B-cell receptor (BCR) inhibitor ibrutinib could
reduce LPL mRNA and protein levels and inhibit FFAs
metabolism in CLL cells (85). Perhexiline inhibits carnitine
palmitoyltransferases (CPT), thereby suppressing fatty acid
transport into mitochondria and leading to massive CLL cell
death (86).

Adipocytes could support cancer cells through the provision
of FAs. ALL cells stimulate adipocytes lipolysis and take up FFAs
released by adipocytes for OXPHOS (87). Adipocyte-derived
FFAs can alleviate the dependence of ALL cells on de novo
lipogenesis and reverse the cytotoxicity of pharmacological
Frontiers in Oncology | www.frontiersin.org 5
acetyl-CoA carboxylase (ACC) inhibition. In addition, the
unsaturated fatty acid oleic acid protects ALL cells from
modest concentrations of chemotherapy (87). Obesity was
associated with worse outcomes and increased relapse rates in
patients older than 10 years at ALL diagnosis (88). In addition to
promoting fatty acid metabolism, MM cells induce lipolysis in
bone marrow (BM) adipocytes and then take up the released
FFAs through fatty acid transporter proteins (FATP), leading to
growth (89). AML cells are also supplied free fatty acids from BM
adipocytes, and utilize fatty acid oxidation (FAO) to generate
energy (90).

Understanding the metabolic patterns of hematological
malignancies will help us to better develop treatment plans for
their metabolic changes. Metabolomics has rapidly begun to
expand the research scope of genomics, transcriptomics, and
proteomics. The comprehensive metabolic profiles offer a
functional readout of cellular state, which sits closest in
proximity to clinical phenotype. Interrogating metabolic
rewiring of hematological malignancies at the single-celll
resolution might help to elucidate the underlying causes of
metabolic dysregulation in hematologic malignancy.
TECHNICAL ADVANCES IN SINGLE-
CELL METABOLOMICS

Metabolomics has gradually exceeded the powers of genomics,
transcriptomics, and proteomics to facilitate an understanding and
assessment of the clinical phenotype. Numerous technologies and
strategies are available for metabolism research. To determine
what the individual cell is actually doing in nature, however,
requires single-cell metabolomics. A broad array of new
techniques allow researchers to catalog the chemical contents at
single-cell resolution.

Mass Spectrometry-Based Single-Cell
Metabolomics Approaches
Mass spectrometry has emerged as the most widely used
technique for single-cell metabolomics owing to its high
sensitivity, broad molecular coverage, and wide dynamic
ranges. MS is coupled with capillary electrophoresis (CE) and
nano liquid chromatography (nanoLC), allowing efficient
separation, sensitive detection, and identification of complex
cellular contents (91–93). These hyphenated MS techniques
enabled to identify hundreds to thousands of molecules with
attomole to zeptomole sensitivity (94, 95). However, the
application of these hyphenated MS techniques is limited by
the relatively low throughput of cell analysis. Cell pretreatment
inevitably causes strong cellular perturbation.

Mass spectrometry imaging (MSI) is an attractive approach to
simultaneously image different compounds in a high-throughput
manner, overcoming the limited number of molecules detected
in traditional optical imaging (96, 97). Specially, MSI allows for
visualization of the spatial distribution of biomolecules without
extraction, purification, separation or labeling, which is in stark
contrast to most label-based imaging methods.
July 2022 | Volume 12 | Article 931393
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The rapid development of single-cell metabolomics is
attributed to single-cell separation and injection techniques,
such as cell micro-array, single-cell droplet printing, and flow
cytometry (93), that can then spawn new single-cell
metabolomics technologies, such as high-density micro-arrays
for mass spectrometry (MAMS), droplet-based electrospray
ionization (ESI)-MS, and label-free mass cytometry (CyESI-
MS). MSI has been coupled with many typical ionization
techniques, such as matrix-assisted laser desorption ionization
(MALDI), ion beam ionization, electrospray ionization,
nanoelectrospray ionization (nESI), and matrix-free laser
desorption ionizat ion (LDI) . MSI-based single-cel l
metabolomics technologies have evolved as the best
suited platforms.

MALDI-MSI is one of the most popular techniques for single-
cell metabolic analysis. With its minimal sample preparation and
high throughput, MALDI–MS is well suited to analyzing large
populations of cells, and has been used successfully to reveal
cellular heterogeneity and to discover rare cell subtypes (98).
High spatial resolution MALDI-MSI can achieve high-precision
metabolite positioning at the cellular and subcellular levels in
situ, which advances our understanding of complex biological
processes by revealing unprecedented details of metabolic
biology (99).

The direct injection of single cells separated by microfluidic
devices or micropipettes into MS provides novel ways for highly
sensitive metabolite analysis in single cells (100). Zhang
et al. proposed a novel strategy integrating spiral inertial
microfluidics and ion mobility mass spectrometry (IM-MS) for
single-cell metabolite detection and identification, which
offered a simple and efficient method for single-cell lipid
profiling, with additional ion mobility separation of lipids
significantly improving the confidence toward identification of
metabolites (100).

Single-Cell Metabolic Profiling by Flow
Cytometry-Based Methods
With high sensitivity, broad molecular coverage, wide dynamic
range, and structural identification capabilities, flow cytometry
has become a widely used analytical tool for single-cell
metabolomics. Met-Flow, a flow cytometry-based method, is
capable of interrogating the network of metabolic pathways at
the single-cell level within a heterogeneous population. Using
Met-Flow, Patricia et al. captured the metabolic state of immune
cells by targeting key proteins and rate-limiting enzymes across
multiple pathways and discovered that glucose restriction and
metabolic rewiring drive the expansion of an inflammatory
central memory T cell subset (101).

Single-cell energetic metabolism by profiling translation
inhibition (SCENITH) is a simple method for complex
metabolic profiling samples ex vivo, that allows for the study of
metabolic responses in multiple cell types in parallel by flow
cytometry, particularly for rare cells. The ability of SCENITH to
reveal global metabolic functions and determine complex and
linked immune-phenotypes in rare cell subpopulations is helpful
for evaluating therapeutic responses or patient stratification (102).
Frontiers in Oncology | www.frontiersin.org 6
Single-Cell Spatial Metabolomics
Dissection of spatiotemporal differences in metabolic activities of
singular immune cells in the tumor microenvironment (TME) is
the key to understanding their complex communication
networks and the immune landscape that exists within
compromised tissues. With its rapidly evolving methods,
single-cell metabolomics technology is expanding to high
spatio-temporal resolution, providing new platforms for spatial
cell atlases and in situ visualization of metabolic processes.

High-spatial resolution MALDI-MSI has been applied to map
and visualize the three-dimensional spatial distribution of
phospholipid classes (103). Alexandrov et al. developed
SpaceM, a method that integrates MALDI imaging with light
microscopy and digital image processing to precisely match up
the mass spectrometry data with the cells, which preserved the
spatial relationships between the cells without requiring special
preparation (104). The spatial single nuclear metabolomics
(SEAM) method is a flexible platform combining high-spatial-
resolution imaging mass spectrometry and a set of
computational algorithms that can display multi-scale and
multi-color tissue tomography together with the identification
and clustering of single nuclei by their in situ metabolic
fingerprints. SEAM is able to explore the spatial metabolic
profile and tissue histology at the single-cell level, leading to a
deeper understanding of tissue metabolic organization (105).

Metabolic Modeling at the Single-Cell Level
Metabolic measurements at the single-cell level bring new
insights into cellular function, which can often not be captured
on other omics layers. However, single-cell metabolomics is
limited by insufficient scalability and sensitivity, and is not yet
widely available due to resource intensiveness. Metabolic
modeling represents an interesting alternative strategy to infer
latent cellular metabolism states from widely available
information about reaction networks and other single-cell
omics. Three main classes of modeling approaches used for
prediction of metabolism on the single-cell level have been
recently well reviewed, including pathway-level analysis,
constraint-based modeling, and kinetic models (106). scMetNet
constructs a metabolic network based on pathway repositories
and then identifies metabolic rewiring across different cell
populations (107). Single-cell flux estimation analysis (scFEA)
infers the cell-wise fluxome from single-cell RNA-sequencing
data by modeling the metabolic map with a graph neural
network (108).

While an array of approaches for modeling cellular metabolic
state have been proposed, a set of limitations restrict larger
applicability. As experimental, technical, and biological
reasons, intrinsic heterogeneity between different single-cell
omics places a barrier to single-cell metabolic modeling from
single-cell RNA-seq data. Single-cell proteomics measurements
provide a promising alternative as they are more informative for
prediction of enzyme activity. Modeling single-cell metabolism
depends on well-established metabolic network models, which
are basic to feasible metabolic conversions. Unpredictable
metabolite exchanges between different cells and between
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individual cells and the environment pose additional challenges
to modeling metabolism at the single-cell level. New metabolic
modeling paradigms based on advanced computational
approaches, such as deep learning, may enable efficient
modeling at the single-cell and multi-omics levels.

Single-Cell Multi-Omics
Single-cell multi-omics provides multiple biomolecular
profilings of phenotypically heterogeneous cells on different
biological layers. Multi-omics profiling of single-interacting
cells in the native TME is essential for deeper understanding of
the complex communication networks and the immune
landscape that exist within compromised tissues. Tian et al.
developed a new methodology called high-energy gas cluster
ion beam-secondary ion mass spectrometry (GCIB–SIMS),
which combined the chemical specificity of mass spectrometry
with imaging resolution approaching 1 micron, small enough to
image a single cell (109). GCIB–SIMS can comprehensively
identify lipidomic and metabolomic profiling in different cell
types, leading to new insights into the role of lipid
reprogramming and metabolic response in normal regulation
or pathogenic discoordination of cell-cell interactions in a variety
of tissue microenvironments. Xiong et al. created a single-
lysosome mass spectrometry (SLMS) platform that combined
lysosomal patch-clamp recording with induced nanoelectrospray
ionization mass spectrometry, which allowed the simultaneous
detection of the electrophysiological properties and metabolome
of the lysosome. These multimodal approaches open the door to
much richer investigations into the interactions between cancer
cells and immune cells, as well as cell–cell interactions in other
systems (110).
APPLICATION AND POTENTIAL OF
SINGLE-CELL METABOLOMICS IN
HEMATOPOIESIS AND HEMATOLOGICAL
MALIGNANCIES

Tumor Biology
Metabolic reprogramming is one of the hallmarks of malignant
tumors, which provides energy and material basis for tumor
proliferation, invasion, metastasis as well as immune escape.
Therefore, identifying the key metabolic factors that regulate cell
cancerous changes and immune responses has become a major
challenge. In recent years, single-cell metabolomics has emerged
as a breakthrough technique that enable to directly measure
metabolic states and defines unique cell types at unparalleled
high resolution. Patricia et al. used Met-Flow to simultaneously
measure divergent metabolic profiles and dynamic remodeling in
human peripheral blood mononuclear cells and discovered that
glucose restriction and metabolic remodeling drive the
expansion of an inflammatory central memory T cell subset
(101). Met-Flow is able to capture the complex metabolic state of
individual hematopoietic cells, which will lead to a greater
understanding of the role of metabolic reprogramming in
hematopoiesis and hematological malignancies.
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Cellular Heterogeneity
Compositional heterogeneity is an inherent property of cell
populations, presenting a major challenge in understanding the
function of specific cellular subpopulations. Blocking the energy
and material supply of tumor cells is one of the strategies for
tumor treatment, however, metabolic heterogeneity of tumor
cells hinders metabolic-based anti-tumor treatment. Metabolic
differences can provide additional information to accurately
identify cell state heterogeneity. To characterize cellular
heterogeneity and discern specific subpopulations, molecular
analysis at the single-cell level is necessary. Single-cell
metabolomics analysis has revealed tremendous heterogeneity,
conflicting with the classical view of hematopoiesis.

High-resolution mass spectrometry (HRMS) technology is an
attractive approach to ultrasensitively detect proteins, peptides,
and metabolites in limited amounts of samples, even single cells.
Using single-cell capillary electrophoresis HRMS, Nemes et al.
documented the differences in metabolite composition between
left and right dorsal-animal blastomeres from the eight-cell frog
embryo, indicating that metabolites trigger the differentiation of
the stem cells into organ-specific lineages, and metabolite
changes can alter cell fate (111). To extract trace-level signals
from metabolic datasets with low abundances, the Trace
framework was adopted, which incorporated machine learning
(ML) to automate feature selection and optimization (112).

Precise discrimination of leukocyte subsets is very helpful for
the clinical diagnosis of many diseases, especially for
hematological malignancies. In order to rapidly discriminate
various leukocyte subsets with specific functions, CyESI-MS
was proposed to reveal leukocyte heterogeneity at the single-
cell level. The single-cell metabolic fingerprints acquired by
CyESI-MS as well as metabolite biomarkers can be used to
distinguish different subtypes of leukemia cells from normal
leukocytes, reflecting the application potential in clinical
research (113).
Immunometabolism
Metabolic reprogramming is vital for immune cell differentiation,
function and fate (114, 115). The capacity of immune cells to
respond to changing environments by metabolic reprogramming is
crucial to their effector function. Single-cell metabolomics analysis
offers robust solutions for profiling metabolites in a high-
throughput manner and has substantially deepened our
understanding of metabolic networks in immune cells.
Cytometry by time of flight (CyTOF) platform uses metal-tagged
antibodies to estimate the metabolic configurations within single
cells and has largely expanded its capability in single-cell omics by
combining additional markers, such as acetylation marks,
metabolic signaling, and lineage markers. Levine et al. reported a
CyTOF-based approach to define the metabolic features of CD8+ T
cells in response to pathogen challenge at the single-cell level (116).
This approach identified a transition state during an earlier stage of
T-cell activation, characterized by high glycolytic and oxidative
activity. Interestingly, analogous metabolic dynamics were
observed in chimeric antigen receptor (CAR) T cells interrogated
longitudinally in advanced lymphoma patients (116).
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Therapeutic Resistance
During tumor therapy, some patients develop therapeutic
resistance, resulting in treatment failure and tumor recurrence.
Metabolic rewiring is an effective way to evade immune cell
antitumor activity, which is favored by cancer cells. Metabolic
competition between tumor and immune cells limits nutrient
availability and leads to microenvironmental acidosis in the
tumor ecosystem, which hinders immune cell antitumor
activity. By analyzing the genetic and metabolite information
of individual cells, we can distinguish genes and regulatory
pathways driving drug resistance development.

A wide multitude of research activities have been focused on
immune evasion and drug resistance to overcome therapeutic
resistance. Chen et al. utilized the single-probe mass spectrometry
technique to analyze live irinotecan-resistant (IRI) cells under
different treatment conditions, demonstrating a metformin-IRI
synergistic effect overcoming drug resistance (117). Inhibition of
fatty acid synthase (FASN) is a potential mechanism related to
metformin treatment of drug-resistant cancer cells, which results
in the downregulation of lipids and fatty acids. Liu et al. reported
an analytical approach that combines single-cell mass
spectrometry (SCMS)-based metabolomics with machine
learning (ML) models to monitor the degree of drug resistance
in early chemotherapeutic stage from single cells in their native
microenvironment (118). This method can be potentially
employed to evaluate chemotherapeutic efficacy in the clinic.

Drug Development and Discovery
In recent decades, single-cell metabolomics has demonstrated
enormous potential in many fields, including drug research and
development. Current data suggest distinctive metabolic
aberrations in hematological malignancies. Thus, molecular
hallmarks of cancer cell metabolism provide opportunities for
novel therapeutic interventions that will be complementary to
existing diagnostic and treatment options. Preclinical or clinical
trial studies using metabolic agents alone or in combination with
other remedies have demonstrated promising outcomes.
Numerous medications targeting cell metabolism are used in
the care of patients with hematological malignancies (Figure 2),
representing a promising endeavour in the search for effective
treatment of hematological diseases.

Single-cell metabolomics promises to characterize metabolic
reprogramming of cells in cancer, and shed light on metabolic
effects of drugs (119). The application of single-cell metabolomics
in drug discovery requires high throughput. Alexandrov et al.
explored the potential of the recently developed method SpaceM
for integration with high-content imaging and high-throughput
applications in drug discovery, and successfully scaled up SpaceM
to tens of samples (120).

Even though most of the findings on tumor metabolism
derive from metabolomics analysis at the bulk level, single-cell
metabolomics holds promise to further advance research on
hematopoiesis and hematological malignancies. Given the ease
of accessibility of liquid tumor biopsies in hematology,
embedding single-cell techniques in routine laboratory
diagnostics is feasible. Leveraging single-cell metabolomics to
Frontiers in Oncology | www.frontiersin.org 8
evaluate serial patient samples through diagnosis and the course
of therapy provides a powerful means to stratify disease, evaluate
tumor evolution, inform prognostication, and assist with
treatment decisions. From this perspective, we foresee that
single-cell metabolomics will boost the molecular diagnosis of
hematological diseases, and open a new door to personalized
medicine and the development of more effective therapies.
CHALLENGES AND PERSPECTIVES OF
SINGLE-CELL METABOLOMICS

Single-cell metabolomics is hitting its stride and is beginning to
be widely employed to profile cellular metabolism. As we have
shown in this review, single-cell metabolomics has many
applications and enormous potentials, however, several
limitations and challenges need to be further addressed. Firstly,
sample preparation is a foundation for taking an accurate and
complete snapshot of the metabolome. Due to rapid metabolic
changes, sample preparation can alter the metabolome from its
native state. Freeze-drying and chemical fixation are common
methods for quenching metabolism, which allow some
metabolites to diffuse away from the cell and eventually cause
the loss of biological information. Different strategies, such as
frozen hydration and capillary extraction, can be used to prepare
samples for single-cell metabolomics analysis. Frozen hydration
preserved the integrity and compartmentalization of the pristine
molecular constituents of cells, reflecting a near-natural state of
the metabolome (109). Capillary extraction efficiently separates
the sample molecules with less damage to biological specimens
than traditional dissection methods (111). Its resampling ability
enables the combination of metabolomics with other omics
techniques within the same cell, laying a foundation for
obtaining single-cell multimodal profiles.

Secondly, the magnitudes of metabolite abundances vary
wildly, emphasizing the need for single-cell metabolomics
(SCM) techniques with ultrahigh sensitivity. Thus, heightening
sensitivity is a common objective to maximize the chemical
information obtained in single-cell metabolomics. For MS-based
single-cell metabolomics, many efforts have been made to improve
metabolite extraction, ionization techniques, and proprietary
algorithms. A suitable extraction procedure is a prerequisite for
detecting and identifying metabolites, especially for a tiny quantity
of metabolites. Onjiko et al. employed capillary electrophoresis
coupled with single-cell high-resolution mass spectrometry (CE-
MS) to uncover small molecules (111). Then, Trace was used to
extract trace-level signals to enhance sensitivity for metabolomics
analysis (111). To achieve adequate sensitivity for metabolomics
analysis, Takayuki et al. developed a “nanoCESI” emitter that
allowed up to sub-nM detectability by establishing a reproducible
fabrication process (95). Compared with a conventional sheathless
emitter, the nanoCESI emitter improved the sensitivity by 3.5-fold,
and by coupling with large-volume dual preconcentration by
isotachophoresis and stacking (LDIS), further achieved up to
800-fold enhanced sensitivity. As new technologies and
algorithms for single-cell metabolomics continue to develop and
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improve, researchers will be able to catalog the chemical contents
of individual cells with high sensitivity.

The extreme complexity of the metabolome poses another
challenge for single-cell metabolomics (121). The mass, charge,
shape, and modification of metabolites must be considered in
metabolite identification. Unpredictable new products generated
by side reactions exacerbated this complexity. Another thorny
issue is how to distinguish various isomers of large biomolecules.
Definitively identifying and measuring the full and complete
chemical contents from the cell is tricky. Spatial single-cell
metabolomics allows hundreds of metabolites to be detected in
situ. It is important to accurately match up metabolome data with
the physical characteristics and neighborhood of the cell in the
native context. The complexity of this analysis is sure to create new
computational challenges. The integration of multidimensional
data from single-cell omics is computationally challenging because
of the intrinsic heterogeneity of these data (122). Fortunately, the
recent explosion in molecular biology techniques and
computational approaches makes it possible to overcome the
above problems. Artificial intelligence (AI)-based methods have
been successfully applied to several tasks of single-cell omics,
representing powerful and promising tools for biological discovery
(123). The power of single-cell metabolomics can be improved by
combining artificial intelligence-based algorithms. New
algorithms for metabolite identification and open-platforms will
allow neophytes and seasoned investigators alike to make sense of
the jumble peaks in the spectra, such as Trace (112) and
METASPACE (124).

Finally, with respect to clinical applications, the clinical
translation of single-cell metabolomics techniques is another
Frontiers in Oncology | www.frontiersin.org 9
key challenge in this field. Considering the complexity and
sensitivity of SCM, the results derived from SCM must be
interpreted with caution in clinical decisions. Additionally, the
high cost of single-cell metabolomics creates a barrier to its
widespread implementation in routine testing. With the advent
of increasingly faster and cheaper high-throughput technologies,
the integration of single-cell omics across modalities will expand
our horizons and deepen our understanding of the interactions
among the different biological layers. It is easy to imagine that
single-cell methodologies will be applied routinely in clinical
diagnostics, prognosis prediction as well as disease monitoring,
which will revolutionize the diagnosis and therapy of patients.
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