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Abstract

Background

Accurately assessing the transmissibility and serial interval of a novel human pathogen is

public health priority so that the timing and required strength of interventions may be deter-

mined. Recent theoretical work has focused on making best use of data from the initial

exponential phase of growth of incidence in large populations.

Methods

Wemeasured generational transmissibility by the basic reproductive number R0 and the

serial interval by its mean Tg. First, we constructed a simulation algorithm for case data aris-

ing from a small population of known size with R0 and Tg also known. We then developed an

inferential model for the likelihood of these case data as a function of R0 and Tg. The model

was designed to capture a) any signal of the serial interval distribution in the initial stochastic

phase b) the growth rate of the exponential phase and c) the unique combination of R0 and

Tg that generates a specific shape of peak incidence when the susceptible portion of a

small population is depleted.

Findings

Extensive repeat simulation and parameter estimation revealed no bias in univariate esti-

mates of either R0 and Tg. We were also able to simultaneously estimate both R0 and Tg.
However, accurate final estimates could be obtained only much later in the outbreak. In par-

ticular, estimates of Tg were considerably less accurate in the bivariate case until the peak

of incidence had passed.

PLOS ONE | DOI:10.1371/journal.pone.0148061 February 5, 2016 1 / 12

a11111

OPEN ACCESS

Citation:Wu KM, Riley S (2016) Estimation of the
Basic Reproductive Number and Mean Serial Interval
of a Novel Pathogen in a Small, Well-Observed
Discrete Population. PLoS ONE 11(2): e0148061.
doi:10.1371/journal.pone.0148061

Editor: Edward Goldstein, Harvard School of Public
Health, UNITED STATES

Received: August 1, 2014

Accepted: January 12, 2016

Published: February 5, 2016

Copyright: © 2016 Wu, Riley. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All results in the paper
can be reproduced using R code available in the
github repository https://github.com/c97sr/
EpiInference.

Funding: KMW has received scholarships from
Swire Company and The University of Hong Kong as
well as funding from the LKS Faculty of Medicine of
The University of Hong Kong. SR has received
research funding from the Medical Research Council
(UK, Project MR/J008761/1), the Wellcome Trust
(UK, Project 093488/Z/10/Z), the Fogarty
International Centre (USA, R01 TW008246-01),
Fogarty International Centre with the Science &

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0148061&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/c97sr/EpiInference
https://github.com/c97sr/EpiInference


Conclusions

The basic reproductive number and mean serial interval can be estimated simultaneously in

real time during an outbreak of an emerging pathogen. Repeated application of these meth-

ods to small scale outbreaks at the start of an epidemic would permit accurate estimates of

key parameters.

Introduction
Uncertainty dominates important early policy decisions for emerging respiratory pathogens
such as Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), Middle East respiratory
syndrome coronavirus (MERS-CoV), and pandemic influenza A/H1N1. This uncertainty is
reduced greatly once the basic reproductive number and the serial interval of infection are
known. The basic reproductive number quantifies the transmissibility of a pathogen and is
defined as the average number of secondary infections generated by one typically infectious
individual in an otherwise susceptible population. The serial interval in each infector-infectee
pair is the time between disease onset in the infector and the onset in the infectee.

In this study, we present a temporal likelihood model that allows real-time simultaneous
estimation of R0 and the average of serial interval Tg in a small well-observed population, so
that it provides timely information for informed public health responses. We build on previous
inferential studies [1–4] by focusing on capturing unbiased parameter estimates as the epi-
demic leaves the exponential phase. Our two illustrative scenarios were designed to have simi-
lar exponential growth phases and are based loosely on pandemic influenza A/H1N1 and
SARS-CoV infections.

Methods
We first define the underlying stochastic process that simulates an epidemic, before describing
our calculation of the likelihood of data arising from this simulated process and the parameter
estimation based on this likelihood. The required inputs of the likelihood estimation are; the
number of infected people from outside the community who triggered the epidemic, the size of
susceptible in the community, and the case incidence time-series. Conversely, the primary out-
comes are estimates of the basic reproductive number, R0, and the mean serial interval, Tg.

Simulate epidemic process
In the analysis, we defined our simulation process to produce the random time series

X ¼ fX1; . . . ;Xj; . . . ;XTg

of new cases with onsets at time 1 to T. Specific realisations of X were defined to be
x = {x1, . . ., xj, . . ., xT}.

We defined serial interval by assuming the probability that an individual with symptom
onset on day i generates a new infection on day i + τ is

fsðt;TgÞ /
Tgtexpð�TgÞ

t!
ð1Þ

where the right-hand side is the probability mass τ for a Poisson distribution with mean Tg.
Implicitly, this assumption about the serial interval implies that infectiousness was not
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constant for individuals in the days following their infection. The value of k, where k� Tg, was
always sufficiently high that the probability of a secondary case was negligible after k relative to
the infector’s onset time i. The offspring distribution [5] also assumed to be Poisson distributed
with mean R0.

To initiate the simulation we assumed that there were n initially infectious individuals in a
population of size N. Those initially infectious were assumed to have onsets at time t1. The sim-
ulation algorithm kept track of the onsets of the total number of infected individuals at each
time unit t = {t1, . . ., tj, . . ., tT} during the observed period. Symbolically, the total number of

infected individuals having onsets prior to and at time j was denoted as Ij, where Ij ¼
Pj

t¼1 Xt .

For example I1 = n.
For an arbitrary infector of onset time i, we first simulated the number of secondary cases it

had infected from the offspring distribution of mean R0, fO(R0), without considering the deple-
tion of the susceptible population. For each of these secondary cases, we then drew the delay
from the onset of the infector i to the onset of each secondary case from the serial interval dis-
tribution. The onsets fall between {i + 1, . . ., i + k} with mean i + Tg. This process yielded the
secondary case time-series x for a specific infector that had an onset time i.

When the number of infectees becomes significant relative to the susceptible population
size, saturation effects must be accounted for. The effects are two-fold [6, 7]: first, through sus-
ceptible depletion, the number of secondary cases per primary case is reduced until there are
no longer any susceptible people in the homogeneous population, which is when the number
of secondary cases per primary case is reduced. Second, when there are many infectious cases,
competition to infect the remaining susceptible shortens the serial interval. In this manuscript,
we took the serial interval distribution to mean the distribution in the absence of competing
sources of infection. The mean Tg was the average over of this distribution in the absence of
competition.

In order to represent the finite pool of susceptible individuals, we defined the actual number
of new cases with onsets at time j that accounted for the depletion of the susceptible population
as ~zj , and they were drawn from the as-yet uninfected pool using a binomial distribution, with

probability of infection equal to the ratio of zj and N:

~zj � B N � Ij�1;
zj
N

� �
: ð2Þ

We repeated this process for each infector at time i and added up the secondary cases
between {i + 1, . . ., i + k}. It should be noted that each infector produced different numbers of
secondary cases and each of these infector-infectee pairs had different serial intervals. Each of
these secondary cases were assumed to be infectious and were considered subsequent infectors
if i> j. We repeated this process for all infectors with onset time between 1 and T. The overall
case time-series X was the sum of each of the realization of secondary case time-series x of each
infector.

Likelihood
We defined Yj to be the expected number of secondary cases of infectors Xi from {j − k, . . ., j − 1}
with onsets at time j that could be expressed as,

Yj ¼
Xj�1

i¼j�k

YiR0fSðj� i;TgÞ: ð3Þ

where fs was the Poisson density of serial interval.
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We note that the formulation used above may not be correct for offspring and serial interval
distributions that are not Poisson.

Therefore, the likelihood of a whole times series of observations could then be expressed in
terms of the expected numbers of secondary cases in each time unit and the parameters of the
model, when accounting to the finite pool of susceptible, as such:

Lð ~YÞ ¼
YT
j¼2

pB ~Yj jN � Ij�1;
Yj

N

� �
ð4Þ

where pB was the probability mass function of a binomial distribution, and Yj is defined in Eq (3).
Standard maximum likelihood were used to obtain point estimates and confidence intervals.

We used the optim function in R [8] to find point estimates and the optimise function to find
univariate confidence regions.

To initiate an epidemic and ensure that it would form a chain of transmission to establish
an exponential phase of growth without early extinction, we decided to seed fifty infectious
individuals on day 1 in each of our simulated epidemics. The subsequent number of incidences
were then generated by the stochastic process described in the Simulate epidemic process.

All results in the paper can be reproduced using R code available in the github repository
c97sr/EpiInference.

Illustrative parameter regimes
We constructed two illustrative scenarios to investigate the properties of our model and likeli-
hood function. Scenario 1: R0 = 1.8, Tg = 2.5 when using Poisson-distributed serial interval dis-
tribution; and Scenario 2: R0 = 3.0, Tg = 6.25 when using Poisson-distributed serial interval
distribution. We chose these scenarios because they cover the range of SARS in hospitals
(R0 = 2.7 [9]), pandemic A/H1N1 influenza in the community (R0 = 1.5 [10, 11]) and pandemic
A/H1N1 in schools (R0 = 2.4 [12]). Then we compute Tg so that they had growth rate during

the exponential phase was 0.32 according to r ¼ R0�1

Tg
[13]. Unless stated otherwise, we seeded

day 1 with fifty individuals to avoid the epidemic prematurely died out. In each scenario, 1,000
people were assumed to be living in this community, where all but fifty were assumed to be sus-
ceptible initially. This population size was chosen to be consistent with a small town or large
village in many social settings.

When using Poisson-distributed serial interval, we set k = 10 in Scenario 1 to simulate influ-
enza infections [14] and k = 25 in Scenario 2 to loosely mimic SARS infections [15, 16]. They
were chosen so that these values were at least four times greater than Tg and the probability of a
secondary case after k, relative to the onset time i of the infector, was negligible. The effect of
the truncation of the distribution was subsequently pushed to the right-hand tail of the esti-
mate time-series when (i + k)> T.

Results
The different stages of an epidemic pass quickly in an outbreak of respiratory infections in a
small population (Fig 1). In our simulated population of 1,000 people for an influenza-like
pathogen (Scenario 1) there was an average delay of only 16.5 days (median, 95% prediction
interval: 8.4, 26.2) from the introduction of 10 infectious individuals to peak incidence. The
more transmissible, but slower Scenario 2 still achieved a peak of incidence after 23 days (18.1,
29.2). In addition to an early peak of incidence, partial saturation occurred very quickly in this
population. An initial exponential increase in incidence can be seen on the log y-axes in Fig 1
(as a straight line). However, this exponential phase ends quickly in such a small population. In
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Fig 1. Simulated epidemics. Part A shows Scenario 1 with R0 = 1.8, Tg = 2.5. Part B shows Scenario 2 with
R0 = 3.0, Tg = 6.25. Offspring and the serial interval assumed to follow Poisson distribution. In both scenarios,
1,000 individuals were initially susceptible and 10 people were infectious on day 1. Grey lines trace 5 single
example realisations. Black lines show average case incidence, and the green dotted lines are the 5% and
95% prediction intervals from 30 realisations.

doi:10.1371/journal.pone.0148061.g001
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Scenario 1, incidence appears to be occurring sub-exponentially as early as 10 days after the ini-
tial seed.

The speedy transition from exponential growth to partial depletion of susceptible individu-
als and then peak incidence permitted rapid and accurate univariate parameter estimation. We
attempted to recover either R0 or Tg (but not both at this stage) from simulated data similar to
those described above. As would be expected, for both Scenario 1 (Fig 2a and 2b showed 8 arbi-
trary epidemics and prediction intervals of 100 epidemics) and Scenario 2 (Fig 3a and 3b
showed 8 arbitrary epidemics and prediction intervals of 100 epidemics), we were able to
obtain accurate values of R0 prior to the peak of the epidemics when Tg was known, even dur-
ing the earliest exponential phase of incidence. Estimates of R0 did not become any more accu-
rate once the peak of incidence had passed. Although the pattern of univariate inference for Tg

was similar to that for R0, the final confidence intervals were wider (in relative terms) than
for R0.

We extended our analysis of the univariate parameter estimation routines to test the model’s
performance (Fig 4 for Scenario 1). For a day 50 in the simulated epidemic of 50 realizations,
we held R0 and Tg constant in the simulated epidemics while varying the values of a) R0 esti-

mates, denoted as R̂0 , or b) Tg estimates, denoted as T̂g , by ±1.5 in the likelihood function.

Next, we repeated the process by c) varying R0 from 1.0 to 3.0 and d) varying Tg from 1.1 to

10.0 in the simulated epidemics, then computed the residuals of c) R̂0 and d) T̂g from the likeli-

hood function respectively as previously done.
Nevertheless, it was possible to jointly estimate both R0 and Tg in this small population. We

assumed that neither Tg nor R0 were known for an emerging pathogen and attempted to esti-
mate them jointly for Scenario 1 (Fig 2c and 2d showed 8 arbitrary epidemics and prediction
intervals of 100 epidemics) and Scenario 2 (Fig 3c and 3d showed 8 arbitrary epidemics and
prediction intervals of 100 epidemics). Compared to the univariate cases, for both scenarios,
reliable information was obtained on both R0 and Tg. However, prediction intervals were
wider. Once the peak had been reached, the convergence of estimates of Tg in bivariate case
were achieved, but in relative terms, the accuracy was considerably lower.

The estimates of different values of k were tabulated on Table 1 for the model using Pois-
son-distributed serial interval for the estimates on the last day of observation using different
numbers of iterations: (i) 10, (ii) 20, (iii) 100, along with different k values.

Discussion
We have described a quantitative method that allows the rapid joint estimation of the basic
reproductive number, and mean and variance of serial interval for an emerging pathogen
based only on case data from an outbreak in a small population. These estimates show no signs
of bias and could be available quickly for small populations. In essence, this approach is able to
tease apart the two parameters from case data because it extracts key information from the
transmission dynamics of different phases of a respiratory epidemic: the initial stochastic
period of growth, the deterministic period of exponential growth, the sub-exponential period
of growth prior to peak incidence, and the peak itself. Previous similar work [1, 2, 4] has incor-
porated either the initial stochastic phase or one or more of the deterministic phases, but not
all phases together.

The serial interval distribution plays a crucial role in the estimation accuracy. It is because
when the variance was large, the estimator had more difficulty to tease apart the two parame-
ters from the observed incidence data, especially during phase II and beyond. In this model,
the serial intervals are assumed to follow a Poisson distribution. When it has large variance and
thus less distinguishable between generations of infection comparing to a shape Gamma
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Fig 2. Univariate and bivariate parameter estimation from simulated daily data for Scenario 1. Part a shows real-time univariate estimates of R0 in
which the true value of Tg was assumed known. Part b shows real-time univariate estimates of Tg with R0 assumed known. The results of jointly estimating R0

and Tg are shown in parts c (R0) and d (Tg). Scenario 1 is as per Fig 1A with R0 = 1.8, Tg = 2.5. The epidemic was simulated in a population of 1,000 people all
of whom were initially susceptible, other than 50 who were infectious on day 1. Grey lines trace the corresponding estimates of 8 arbitrary epidemics. Black
lines represent the average of 100 estimates at that time point, red lines represent the median, and the green dotted lines are the 5% and 95% prediction
intervals for 100 epidemics. The dark blue solid horizontal lines show the true parameter values.

doi:10.1371/journal.pone.0148061.g002
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Fig 3. Univariate and bivariate parameter estimation from simulated daily data for Scenario 2. Part a shows real-time univariate estimates of R0 in
which the true value of Tg was assumed known. Part b shows real-time univariate estimates of Tg with R0 assumed known. The results of jointly estimating R0

and Tg are shown in parts c (R0) and d (Tg). Scenario 2 is as per Fig 1B with R0 = 3.0, Tg = 6.25. The epidemic was simulated in a population of 1,000 people
all of whom were initially susceptible, other than 100 who were infectious on day 1. Grey lines trace the corresponding estimates of 8 arbitrary epidemics.
Black lines represent the average of 100 estimates at that time point, red lines represent the median, and the green dotted lines are the 5% and 95%
prediction intervals for 100 epidemics. The dark blue solid horizontal lines show the true parameter values.

doi:10.1371/journal.pone.0148061.g003
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distribution, the joint estimations have poorer performance, although they remain reasonably

accurate in infinite population [3]. In finite population, the estimations of T̂g showed no bias

(Table 1) if it had sufficiently large seed size.
By seeding fifty and a hundred infectious people on day 1 in each epidemic, the number of

incidences at the early stage of the outbreaks would likely be higher and plausibly reached the
exponential phase of growth earlier than if there were smaller number of infectious individuals

Fig 4. Extended assessment of univariate inference for Scenario 1. Sensitivity analysis using univariate estimations at single time point and assumed
poission-distributed serial interval. a and b show the distribution of the marginals for estimation of R0 and Tg of 50 realisations respectively. All estimates were
made at day 50. c shows the mean and confidence intervals for the marginals for estimates for R0 across a wide range of known values for Tg. Similarly, d
shows the mean and confidence intervals for Tg across a wide range of value for R0. Scenario 1 is as per Fig 1A with R0 = 1.8, Tg = 2.5, and k = 10.

doi:10.1371/journal.pone.0148061.g004
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seeded. However, with the same transmissibility and speed of transmission, higher number of
incidences and large seed size appear to have no impact to the accuracy of estimates aside from
avoiding outbreaks prematurely died out.

Our study is intended as an initial theoretical illustration of the potential for this approach
to be applied more widely. As such, it suffers from a number of limitations caused directly by
the restrictive assumptions we have made. For example, we have assumed that all cases in this
small population were observed. However, despite the possibility of intense surveillance in a
small population, it is unlikely that even all symptomatic cases will be detected. Also, most
pathogens generate some mild or entirely asymptomatic cases that would evade even the most
intense surveillance efforts. Although we doubt, based on related previous study [17] that the
reporting of only a proportion of cases would bias results (if that proportion is constant), it
would most likely increase the delay from the start of the epidemic to the acquisition of robust
parameter estimates.

We have also assumed throughout that offspring distribution and serial interval distribution
follow a Poisson density. These are convenient assumptions that allow very rapid likelihood

Table 1. Univariate and bivariate estimates of the model using Poisson distributed serial interval, different k values, and number of simulation iter-
ations. The following parameters were used: (a) R0 = 1.8, Tg = 2.5, k = 10; (b) R0 = 1.8, Tg = 2.5, k = 25; (c) R0 = 3.0, Tg = 6.25, k = 10; (d) R0 = 3.0, Tg = 6.25,
k = 25. PI: prediction interval.

Univariate estimations

Parameters Iterations R0 estimates Tg estimates

Mean Median (5%, 95%) Mean Median (5%, 95%)

a 10 1.74 1.74 (1.58, 1.90) 2.55 2.50 (2.15, 2.97)

20 1.79 1.81 (1.66, 1.90) 2.50 2.44 (2.06, 2.91)

100 1.79 1.79 (1.63, 1.93) 2.48 2.48 (2.01, 2.96)

b 10 1.80 1.77 (1.73, 1.90) 2.50 2.53 (2.12, 2.79)

20 1.81 1.80 (1.66, 2.00) 2.48 2.41 (2.17, 3.04)

100 1.82 1.81 (1.70, 1.96) 2.46 2.47 (2.07, 2.82)

c 10 2.99 3.01 (2.76, 3.16) 6.27 6.22 (6.06, 6.65)

20 2.99 3.02 (2.82, 3.14) 6.31 6.28 (5.89, 6.63)

100 2.99 2.99 (2.82, 3.18) 6.31 6.31 (5.95, 6.68)

d 10 2.93 2.94 (2.75, 3.06) 6.33 6.38 (6.01, 6.57)

20 2.92 2.91 (2.80, 3.07) 6.40 6.45 (6.02, 6.68)

100 2.99 2.99 (2.77, 3.22) 6.28 6.24 (5.91, 6.72)

Bivariate estimations

Mean Median (5%, 95%) Mean Median (5%, 95%)

a 10 1.74 1.73 (1.58, 1.91) 2.50 2.41 (2.18, 2.89)

20 1.78 1.80 (1.64, 1.89) 2.48 2.47 (2.01, 2.97)

100 1.79 1.78 (1.64, 1.91) 2.47 2.46 (1.99, 2.98)

b 10 1.80 1.80 (1.71, 1.94) 2.50 2.47 (2.09, 2.90)

20 1.81 1.79 (1.69, 1.98) 2.48 2.48 (2.19, 2.92)

100 1.81 1.81 (1.71, 1.95) 2.48 2.48 (2.09, 2.92)

c 10 2.99 3.00 (2.75, 3.18) 6.26 6.26 (5.97, 6.64)

20 3.01 2.99 (2.79, 3.18) 6.32 6.32 (6.04, 6.68)

100 3.01 2.99 (2.81, 3.24) 6.32 6.29 (5.99, 6.78)

d 10 2.92 2.94 (2.71, 3.09) 6.23 6.18 (5.89, 6.61)

20 2.96 2.92 (2.75, 3.18) 6.31 6.31 (5.80, 6.74)

100 3.00 2.97 (2.77, 3.27) 6.27 6.24 (5.88, 6.70)

doi:10.1371/journal.pone.0148061.t001
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calculations for it is a single-parameter defining function. We anticipate few theoretical issues
in the extension of these approaches to include distributions with more than one parameter
(other than careful modification of Eq (3) as indicated above). However, the ability of these
methods to independently estimate both means and variances of the offspring distribution and
serial interval distribution remains to be described. We would anticipate that the estimation of
variance for the serial interval distribution would be challenging [18] for cases other than
where there are very high volumes of data for the first few generations (which could arise from
a large seeding event) or when the true distribution has a low variance.

There are likely substantial opportunities to gain valuable insights into outbreak dynamics if
we relax our assumption that transmissibility is constant over time and thus consider an infer-
ential framework that accounts for both changes in transmissibility and depletion of suscepti-
ble individuals. The reproduction number would vary over time because of both effects. This
approach might be especially useful for severe infections that affect small populations, such as
Ebola.
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