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Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-
related deaths worldwide. Currently, surgery is the treatment of choice for GC. However,
the associated expenses and post-surgical pain impose a huge burden on these patients.
Furthermore, disease recurrence is also very common in GC patients, thus necessitating
the discovery and development of other potential treatment options. A growing body of
knowledge about ferroptosis in different cancer types provides a new perspective in
cancer therapeutics. Ferroptosis is an iron-dependent form of cell death. It is characterized
by intracellular lipid peroxide accumulation and redox imbalance. In this review, we
summarized the current findings of ferroptosis regulation in GC. We also tackled on
the action of different potential drugs and genes in inducing ferroptosis for treating GC and
solving drug resistance. Furthermore, we also explored the relationship between
ferroptosis and the tumor microenvironment in GC. Finally, we discussed areas for
future studies on the role of ferroptosis in GC to accelerate the clinical utility of
ferroptosis induction as a treatment strategy for GC.
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INTRODUCTION

Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer-related
deaths worldwide (Smyth et al., 2020). Some of the risk factors for this disease include Helicobacter
pylori infection, age, high salt intake, and unhealthy diet (Chen et al., 2021a). GC is commonly
treated with surgery (Mihmanli et al., 2016). However, the associated expenses and post-surgical pain
impose a huge burden on GC patients. Several studies which focused on identifying molecular
signatures and genetic alterations in GC in order to improve treatment selection and aid drug
development have already been conducted (Lordick et al., 2017). However, the underlying
mechanisms in disease progression are still unclear. Thus, an in-depth understanding of the GC
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pathobiology will not only facilitate the identification of new drug
targets but also provide help in the development of new clinical
treatment strategies.

Ferroptosis is a relatively new form of programmed cell death,
which was first described in 2012 (Dixon et al., 2012). Several
studies have implicated the contribution of ferroptosis in the
progression of multiple diseases (Galluzzi et al., 2018; Stockwell
et al., 2020), including GC (Jiang et al., 2021a; Liu G. et al., 2021).
In this review, we summarized the relationship between
ferroptosis and gastric cancer. Furthermore, we suggested that
effective regulation of iron metabolism may provide a novel
strategy for treating gastric cancer.

IRON METABOLISM IN GASTRIC CANCER

Iron is an indispensable molecule in almost all living organisms.
Iron-containing enzymes are involved in many physiological
activities (Dixon and Stockwell, 2014), such as cellular
metabolism, oxygen transport, DNA synthesis, energy
production, and cellular respiration. Aside from its roles in
various life processes, the catalytic form of iron can also
catalyze the formation of reactive oxygen species (ROS) in
oxygen-rich environments. Interestingly, iron and ROS can
initiate and mediate cell death in several organisms and
disease states (Fischbacher et al., 2017). In addition, ROS can
also affect several processes, such as cell survival, proliferation,
and differentiation through multiple signaling pathways
(Lambeth and Neish, 2014). Although low cellular ROS levels
are beneficial to some extent, it has also been found to result in
base modification and DNA strand breaks (Inoue and Kawanishi,
1987; Dizdaroglu et al., 1991). These findings hint at the potential
contribution of free radical-induced DNA damage in the etiology
of numerous diseases, including cancer (Dizdaroglu and Jaruga,
2012). Consistent with this idea, extensive studies have shown
that poor regulation of iron metabolism is associated with many
diseases, including atherosclerosis, neurodegenerative disorders,
and cancer (Lambeth and Neish, 2014; Zhou et al., 2018; Vinchi
et al., 2019).

Iron levels and stomach health are closely interrelated. For
example, several iron-related conditions, such as unexplained
iron deficiency, idiopathic thrombocytopenic purpura, and
anemia, were found to be associated with H. pylori infection
(Hagymási and Tulassay, 2014; Durazzo et al., 2021). Iron
homeostasis has also been implicated in cancer development.
In one study, iron oxidation has been shown to contribute to
tumor formation and subsequent cancer development (Torti and
Torti, 2013). On the other hand, several studies reported that iron
deficiency may enhance the risk of developing cancer (Janssen
et al., 2020). Anemia, low serum ferritin levels, and autoimmune
gastritis–related ironmalabsorption were identified as risk factors
associated with gastrointestinal tumors and GC (Nomura et al.,
1992; Cover et al., 2013; Kamada et al., 2021). Consistent with
these studies, in vivo data from rodent models show that iron
deficiency may contribute to early progression of gastrointestinal
tumors (Prá et al., 2009). Taken together, these studies highlight
the significant role of iron in the development of various

gastrointestinal malignancies, and the potential value of iron
regulation as a treatment strategy (Palzer et al., 2021).

MECHANISM OF FERROPTOSIS

Ferroptosis is a unique form of cell death (Kerr et al., 1972;
Jacobson and Raff, 1995; Christofferson and Yuan, 2010; Shimada
et al., 2016). Some protein modulators, such as p53, can exert
their physiologic functions either through apoptosis or
ferroptosis (Jiang et al., 2015). Similarly, several small
molecules can initiate cell death via specific molecular events
related to either ferroptosis, apoptosis, or necrosis (Kerr et al.,
1972; Schweichel and Merker, 1973; Yang and Stockwell, 2008;
Dixon et al., 2012; Shimada et al., 2016). The activation of distinct
pathways suggests that the molecular mechanism involved in
ferroptosis differs from those of apoptosis and necrosis (Dixon
et al., 2012; Dong et al., 2015; Shimada et al., 2016; Torii et al.,
2016).

Iron accumulation is the first step in ferroptosis (Galluzzi et al.,
2015). Free ferric iron (Fe3+) in the blood conjugates with
transferrin proteins. The iron-bound transferrin molecules are
then captured by the transferrin receptors present on the cell
membrane and enter the cell through endocytosis (Gao et al.,
2019). Reducing proteins, such as six transmembrane proteins of
prostate 3 (STEAP3), reduces Fe3+ to its highly reactive ferrous
ion (Fe2+) form. Upon conversion, Fe2+ is transported from the
endosomes to the cytoplasm and is included to the labile iron
pool. To protect the cells and tissues from iron-mediated damage,
excess Fe2+ in the iron pool is stored in ferritin, while the
remaining Fe2+ can be pumped out of the cell through
ferroportin molecules on the cell membrane (Yang et al., 2016;
Hassannia et al., 2019). Under normal conditions, intracellular
iron concentrations remain stable (Yamaguchi et al., 2021).
However, in cases of iron overload, excessive Fe2+ is produced
within the cell. The accumulation of intracellular Fe2+ further
leads to the production of Fe3+ and ROS through the Fenton
chemical reaction (Talvenmäki et al., 2019). In addition, excess
Fe3+ can also be reduced to Fe2+ through the Haber–Weiss
reaction (Kehrer, 2000). Furthermore, under stress conditions,
ferritin can self-degrade into Fe2+ through iron autophagy
(Talvenmäki et al., 2019). Collectively, these processes can lead
to ferroptosis, which in turn induces the formation of more ROS.
Excessive ROS can damage biofilms, proteins, and nucleic acids
eventually leading to cell death (Kehrer, 2000).

The high intracellular ROS and free radical levels are usually
controlled by cells through the actions of antioxidants such as
glutathione (GSH) and glutathione peroxidase 4 (GPX4) (Aldini
et al., 2018). However, in some cases, glutathione and GPX4 are
used up by the cells in other processes, such as in regulating
amino acid metabolism. The intracellular levels of glutathione are
also affected by amino acid availability. Increased glutamine
decomposition may affect the synthesis of glutathione and
cause a cell death event similar to a GSH
consumption–induced ferroptosis (Linkermann et al., 2014a;
Yang et al., 2014). Furthermore, since GPX4 converts the
potentially toxic lipid hydroperoxides (L-OOH) to non-toxic
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lipid alcohols (L-OH) (Ursini et al., 1982), the inactivation of
GPX4 can ultimately cause cell death (Linkermann et al., 2014b)
(Figure 1).

FERROPTOSIS IN GASTRIC CANCER

Proliferation, Invasion, and Metastasis of
Gastric Cancer
The proliferation, invasion, and metastasis of tumor cells are
crucial events in the occurrence and development of
malignant tumors. These cell activities lead to varying
degrees of clinical responses (Machlowska et al., 2018).
Like in other cancer types, GC develops from preneoplastic
and early neoplastic precursor lesions (Song et al., 2015).
These lesions may develop into tumors when the rate of cell
proliferation is faster than cell death (Ginsberg et al., 1996; Li
et al., 2018). Early stages of GC are characterized by good
prognosis with 5-year survival rates reaching >90%; however,
most patients are already in the advanced stages of the disease
upon initial diagnosis (Tan, 2019). To date, curative surgical
resection procedure is the only available treatment for GC
(Santoro et al., 2014). Unfortunately, the metastasis of
malignant tumors often causes treatment failure (Coburn
et al., 2018; Hatta et al., 2020). Tumor invasion and
metastasis refer to cellular events when malignant tumor

cells continue to grow from the primary site into other
sites through lymphatic, vascular, or the body cavity
routes. The origin of tumor cells, genetic variations,
circulatory mode, and the physiological structure of the
metastatic organ determine the specific sites for distant
metastasis (Jin et al., 2014).

Several studies try to identify other potential candidates
for GC treatment (Table 1). One of these substances,
Tanshinone IIA, can inhibit tumor proliferation and
metastasis by increasing the level of lipid peroxides and
decreasing that of glutathione in the GC cells (Ni et al.,
2021a). Another extract, Actinidia chinensis (Planch) exerts
anti-proliferation and anti-migration effects on GC cells.
Additionally, it can significantly downregulate the
expression of GPX4 in a dose-dependent manner (Gao
et al., 2020). On the other hand, physcion 8-O-β-
glucopyranoside displays antitumor effects in several
cancer types, and it induces ferroptosis by regulating the
miR-103a-3p/GLS2 axis in GC (Niu et al., 2019).

Consistent with the studies on the relationship of iron and GC,
ferroptosis has also been found to be closely related to the
proliferation, invasion, and metastasis in GC (Chen et al.,
2021a; Huang et al., 2021). However, the predictive role of
ferroptosis in GC remains elusive (Shao et al., 2021). Thus,
understanding the processes underlying ferroptosis is
promising for the development of cancer treatment strategies.

FIGURE 1 |Mechanisms of ferroptosis. Excess iron is related to lipid peroxidation and abnormal iron metabolism of mercaptan, which induces the production of
ROS. On the one hand, circulating iron in the form of Fe3+ binds to the transferrin receptor and enters the cell. Iron oxide reductase, STEAP3, reduces Fe3+ to Fe2 +, which
is transported to the iron pool through DMT1 to induce the formation of ROS. Finally, it promotes lipid peroxidation and causes ferroptosis. On the other hand, the Xc
system transports intracellular Glu to the extracellular space and extracellular cystine simultaneously into the cells, which is then transformed into cysteine for GSH
synthesis. GPX4 converts -OOH to -OH in polyunsaturated fatty acid (PUFA) to reduce ROS accumulation.
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TUMOR MICROENVIRONMENT IN
GASTRIC CANCER

A tumor is closely connected with where it arises and develops in
the organism (Chen et al., 2015). Tumor cells in tumor
microenvironment (TME) play an active role in the disease
progression (Bubnovskaya and Osinsky, 2020; Jiang et al.,
2020). The TME favors the growth and expansion of cancer
cells (Oya et al., 2020; Rojas et al., 2020). Interestingly, tumor cells
and their surrounding microenvironment can be shaped by
varying degrees of ferroptosis activation (Zavros, 2017; Xiao
et al., 2021). It has been found that ferroptosis serves as an
important factor in the formation of the TME in GC (Jiang et al.,
2021b; Wang F. et al., 2021; Chen et al., 2021b). In addition,
numerous studies have demonstrated that dying cells, including
ferroptotic cancer cells, communicate with the immune cells in
the TME via a series of signals (Friedmann Angeli et al., 2019).
These signals produced during cell death allow the recruitment
and activation of immune cells, such as macrophages, regulatory
T cell, and neutrophils (Matsushita et al., 2015; Klöditz and
Fadeel, 2019; Li et al., 2019), which regulate the growth and
expansion of other cancer cells.

Tumor-associated macrophages are emerging as key players
in the development of GC (Gambardella et al., 2020). Aside from
its role in phagocytosis of foreign antigens, another
physiological function of macrophages is to maintain the iron

balance in human tissues. Iron homeostasis should be tightly
maintained since excess labile iron is toxic (Henle and Linn,
1997; Muckenthaler et al., 2017). Surprisingly, malignant cells
can evade the deleterious effect of excessive iron and require
high amounts of these reactive ions for their proliferation
(Pfeifhofer-Obermair et al., 2018). Depending on the
circumstances, increased iron traffic by tumor-associated
macrophages either promotes tumor progression or tumor
protraction (Soares and Hamza, 2016). Therefore, the
detection of macrophages and iron levels in the TME may
provide a basis for predicting tumor progression (Liu S.
J. et al., 2021; Xiang et al., 2021) (Figure 2). To better
understand the functional role of ferroptosis and immune
cells in TME, a comprehensive investigation of ferroptosis-
related signals and the immune responses they trigger is
warranted.

Despite of reduction in the incidence of GC and the
development of novel therapeutic strategies, the prognosis of
GC remains poor (Lazăr et al., 2018). Biomarkers for the
characterization of the tumor immune microenvironment may
add to the predictive value of the current staging system (Jiang
et al., 2019). In recent decades, large-scale clinical trans-omics
studies allowed the identification of some crucial ferroptosis-
related genes as reliable biomarkers to describe the tumor
immune microenvironment landscape and predict response to
antitumor therapy (Liu S. J. et al., 2021; Shao et al., 2021).

FIGURE 2 | Contribution of iron and macrophages in the tumor microenvironment of gastric cancer. Macrophages maintain iron balance in human tissues. The
proliferation of GC cells requires a large amount of iron, and the increased iron flow from tumor-associated macrophages promotes tumor progression or tumor
protraction.
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Drug Resistance in Gastric Cancer
Resistance to cisplatin and paclitaxel has become increasingly
severe in GC patients (Shao et al., 2019; Zhai et al., 2019). This
proves to be a major hurdle in clinical oncology and leads to poor
prognosis (Chen Z. et al., 2020; Wei et al., 2020). Resistance to
chemotherapy is usually related to mutations in genes regulating
cell apoptosis and increased levels of glutathione (Silva et al.,
2019). Interestingly, ferroptosis inducers may help in overcoming
drug resistance and warrants further investigation (Shin et al.,
2018).

Owing to genetic alterations and abnormal growth, cancer
cells have higher oxidative tolerance from ROS than non-
malignant cells. This ability is attributed to the maintenance of

high levels of the antioxidant GSH, which is essential for cell
survival and proliferation (Cramer et al., 2017). Studies show that
blocking CAF-exosomes–mediated lipid-ROS inhibition leads to
increased levels of ferroptosis in cancer cells, which in turn
enhances cell sensitivity towards chemotherapy (Zhang et al.,
2020). Another potential target for GC therapy is through the
blockage of the ROS-activated GCN2-eIF2α-ATF4-xCT pathway,
a signaling cascade leading to mitochondrial dysfunction-
enhanced cisplatin resistance (Wang et al., 2016). In addition,
regulating ROS levels may serve as another novel therapeutic
strategy, since ROS can disturb the cellular oxidative
environment and induce cell death (Dharmaraja, 2017). In line
with this, studies have shown that the antioxidant enzyme,

FIGURE 3 | Drug resistance and ferroptosis in gastric cancer. (A) Exosomal mir-522 secreted from cancer-associated fibroblasts (CAFs) enter the GC cells and
bind to ALOX15 mRNA, resulting in ALOX15 inhibition and reduction in lipid-ROS accumulation in cancer cells. It inhibits ferroptosis in GC cells, and finally reduces
chemosensitivity (Namee and O’Driscoll, 2018). (B) Exosomal lnc-ENDOG-1:1 from GC cells can promote the expression of SCD1 by directly interacting with the SCD1
mRNA in GC cells and recruiting heterogenous ribonucleoprotein A1 (hnRNPA1), thereby leading to the inhibition of ferroptosis in GC cells.

TABLE 1 | Candidate substances and genes for inducing ferroptosis in gastric cancer.

Substances and Genes Target/Function Mechanism

Actinidia chinensis Planch (Gao et al.,
2020)

GPx4, SLC7A11 Induces ROS accumulation

Tanshinone IIA (Guan et al., 2020) Ptgs2, Chac1, p53, xCT Tanshinone IIA upregulates p53 expression and downregulates xCT expression; Tan
IIA decreases intracellular glutathione and cysteine levels and increases the levels of
intracellular ROS.

Tanshinone IIA (Ni et al., 2021a) SLC7A11 Induces ROS accumulation
Physcion 8-O-β-glucopyranoside (Niu
et al., 2019)

GLS2 Induces ROS accumulation

Erastin (Sun et al., 2020) Mitochondrial dysfunction Induces ROS accumulation
Erastin (Chen L. et al., 2020; Mao et al.,
2021)

SLC7A11 Induces ROS accumulation

Cysteine Dioxygenase 1 GPX4, maintains stability of mitochondrial
morphology

Mediates erastin (Hao et al., 2017); induces ROS accumulation

Exosomes miR-522 (Zhang et al., 2020) ALOX15 Leads to ALOX15 suppression, decreased lipid-ROS accumulation in cancer cells,
and ultimately results in decreased chemosensitivity

SIRT6 (Cai et al., 2021) GPX4 Inhibits GPX4 activity, induces ROS accumulation
CPEB1 (Wang J. et al., 2021) Gpx4 Induces ROS accumulation
MiR-375 (Ni et al., 2021b) SLC7A11 Induces ROS accumulation
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peroxiredoxin 2, significantly sensitizes the AGS and SNU-1 cells
towards cisplatin treatment by regulating the level of ROS (Wang
et al., 2020). As chronic and exorbitant ROS levels instigate drug
resistance (Liao et al., 2019; Xu et al., 2020; Zhu et al., 2020),
regulating ferroptosis may be a useful strategy for targeting the
drug-resistant tumor cells (Yang et al., 2017; Huang et al., 2019;
Choi et al., 2020; Zhang et al., 2021). A possible relevant
mechanism is presented in Figure 3.

CONCLUSION

Gastric adenocarcinoma is a common disease worldwide. Currently,
surgery is the only considered effective treatment strategy. However,
disease recurrence is very common even after complete resection
(Johnston and Beckman, 2019). Interestingly, ferroptosis has been
found to have a very vital role in several cancer types, especially in
GC (Lee et al., 2020). As a relatively new discovered mode of cell
death, the field of ferroptosis is a research hotspot. Although
numerous studies have examined the biological mechanisms
underlying ferroptosis, its relationship to tumor progression
remains to be poorly understood.

In this review, we have highlighted the importance of iron
metabolism and ferroptosis in GC. Iron is an important nutrient
in humans (Tan et al., 1997; Goddard et al., 2011). However, iron
oxidation also contributes to tumor formation and development
of cancer (Doll et al., 2019). In addition, iron in macrophages of
the tumor microenvironment is an important index for
predicting and detecting GC as well as for evaluating the
clinical utility of the related gene signature. Meanwhile,

ferroptosis is an iron-dependent form of cell death, which is
often characterized by the accumulation of lipid peroxidation
products in a cellular-iron–dependent manner (Stockwell et al.,
2017; Tang et al., 2021). It functions through two main pathways:
ironmetabolism and Xc system–induced ROS production (Zheng
and Conrad, 2020). Different inducers can affect different steps in
ferroptosis to regulate GC proliferation, invasion, and metastasis.
Furthermore, the development of drug resistance in GC cells
poses a major hurdle. As chronic and exorbitant ROS levels
instigate drug resistance, ROS homeostasis may provide a useful
treatment strategy for targeting the drug-resistant tumor cells.

Taken together, this review tries to elucidate the relationship
between ferroptosis and GC, based on available research findings.
We summarized the known ferroptosis processes mediated by
gastric cancer-related biomolecules and discussed the actions of
some drugs in the different pathways involved in ferroptosis.
Lastly, this may serve as a reference for future studies on the
mechanism of ferroptosis and the treatment of GC.
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