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Abstract

Hydropeaking is the rapid change in the water flow downstream of a hydropower plant,

driven by changes in daily electricity demand. These fluctuations may produce negative

effects in freshwater fish. To minimize these impacts, previous studies have proposed habi-

tat enhancement structures as potential mitigation measures for salmonids. However, the

recommendation of these mitigation measures for cyprinids remains scarce and their effects

unknown. In this study, the effects of potential habitat mitigation structures under simulated

hydropeaking and base-flow conditions are examined for Iberian barbel (Luciobarbus boca-

gei) in an indoor flume. Solid triangular pyramids and v-shaped structures were evaluated

as potential flow-refuging areas and compared with a configuration without structures. A

novel, interdisciplinary approach is applied to investigate individual and group responses to

rapidly changing flows, by assessing physiological (glucose and lactate), movement behav-

iour (structure use, sprints and drifts) and the pressure distribution using a fish-inspired artifi-

cial lateral line flow sensor. The major findings of this study are four-fold: 1) Under

hydropeaking conditions, the v-shaped structures triggered a lactate response and stimu-

lated individual structure use, whereas solid structures did not elicit physiological adjust-

ments and favoured individual and group structure use. Overall, both solid structures and

their absence stimulated sprints and drifts. 2) The hydrodynamic conditions created in

hydropeaking did not always reflect increased physiological responses or swimming activity.

3) Each event-structure combination resulted in unique hydrodynamic conditions which

were reflected in the different fish responses. 4) The most relevant flow variable measured

was the pressure asymmetry, which is caused by the vortex size and shedding frequency of

the structures. Considering the non-uniform nature of hydropeaking events, and the obser-

vation that the fish responded differently to specific flow event-structure combinations, a

diverse set of instream structures should be considered for habitat-based hydropeaking miti-

gation measures for Iberian barbel.
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Tuhtan JA, Pinheiro AN (2019) Fish under

pressure: Examining behavioural responses of

Iberian barbel under simulated hydropeaking with

instream structures. PLoS ONE 14(1): e0211115.

https://doi.org/10.1371/journal.pone.0211115

Editor: Dennis M. Higgs, University of Windsor,

CANADA

Received: July 17, 2018

Accepted: January 8, 2019

Published: January 23, 2019

Copyright: © 2019 Costa et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: MJC was funded by the FLUVIO – River

Restoration and Management Doctoral Programme

from the Fundação para a Ciência e Tecnologia,

https://www.fct.pt/, Portugal (grant No SFRH/BD/

52517/2014). IB was funded by Fundação para a

Ciência e Tecnologia, https://www.fct.pt/, Portugal

(grant No SFRH/BPD/90832/2012). This project

has received funding from the European Union’s

http://orcid.org/0000-0001-6395-6868
http://orcid.org/0000-0003-0832-7334
https://doi.org/10.1371/journal.pone.0211115
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211115&domain=pdf&date_stamp=2019-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211115&domain=pdf&date_stamp=2019-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211115&domain=pdf&date_stamp=2019-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211115&domain=pdf&date_stamp=2019-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211115&domain=pdf&date_stamp=2019-01-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0211115&domain=pdf&date_stamp=2019-01-23
https://doi.org/10.1371/journal.pone.0211115
http://creativecommons.org/licenses/by/4.0/
https://www.fct.pt/
https://www.fct.pt/


1. Introduction

Hydropower provides an immediate and renewable source of electricity capable of respond-

ing to rapid daily fluctuations in electricity network demand. Accordingly, the construction

of hydropower plants has continued worldwide [1,2]. Due to the high fluctuations in daily

electricity demand, the controlled discharge of water through the turbines creates hydro-

peaking, manifested as rapid flow fluctuations in the receiving water [3]. The rapid flow

fluctuations result from the distinct phases of hydropeaking: base-flow discharge (no elec-

tricity production), increasing discharge or up-ramping (rapid increase in electricity pro-

duction), continuous high peak discharge (peak energy demand), and decreasing discharge

or down-ramping (shutdown of the turbines) [4]. The range of flow alterations depends

highly on the operation scheme of the hydropower plant. In regulated rivers having hydro-

power plants with inter-annual storage capacity, the peak-flows can exceed the base-flow by

a factor of eight [5]. The effects of these changes can be particularly noticeable in Iberian

rivers affected by Mediterranean climate, where in summer there is low water availability in

comparison with winter, and the environmental flows cannot exceed those of the natural

flow regime [6]. For example, during summer periods the flow ratio can be eightfold, the

daily peak frequency twofold, and peak duration one to two hours [7]. These fluctuations

affect the ecological integrity of river ecosystems [8,9] by changing the downstream mor-

phological and hydrological processes [10–15]. Specifically addressing freshwater fish, those

changes will affect diel activities (e.g. predator avoidance, foraging or finding refuge) and

life-cycle events (e.g. reproductive migratory cues, survival or growth). These activities are

intrinsically associated with movement behaviour shifts which differ from those occurring

within natural flow conditions (for example, in magnitude and distance covered). Thus, fish

are forced to adapt, and the energetic resources necessary to complete those events may be

reduced [16]. Due to their high mobility in the river system, fish reflect the longitudinal gra-

dient of the river continuum. Thus, the biological impacts of hydropeaking have been

mainly studied considering fish as the indicator organism [10]. However, extreme macroin-

vertebrate drifts [17] and physiological and physical constraints in riparian plants [10] have

been documented.

Fish responses range from sub-organismal (e.g. neuroendocrine or metabolic adjustments)

[16,18,19], to changes in key-life events [20–23]. Sub-organismal responses follow a neuroen-

docrine pathway, initiated by the stimulation of the hypothalamic-pituitary-interrenal axis,

which aim to restore the homeostatic state [24]. Negative effects occur when the organism is

no longer capable of maintaining or recovering to the homeostatic state, with repercussions on

key life-cycle events, such as reproduction, growth, and survival [24,25]. To consider the broad

range of biological responses, several experimental approaches have been adopted to study the

effects of hydropeaking. Artificial channel [16,26–28] and in situ river experiments

[18,19,29,30] have been conducted to investigate hydropeaking flow pulses and study the

resulting fish behaviour. However, the direction and strength of specific flow-behaviour causal

pathways may be identified by constraining external environmental factors under laboratory

settings. Both in artificial channels and in natural conditions, transient cortisol elevations

[16,19], low lactate levels [18], and insignificant glucose changes [16,18] have been reported.

In artificial channels, the cortisol changes were attributed to the induced flow fluctuations [16]

whereas in natural conditions they were attributed to routine physiological processes, rather

than to hydropeaking [19]. In most cases, it has been difficult to establish a causal relation

between flow variability and potential stress responses. Reported explanations for this diffi-

culty include the time from stimulus perception to sample collection, the effects of other envi-

ronmental and biological factors, and the experimental conditions (laboratory vs. field
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experiments) [31]. These studies suggest that hydropeaking can trigger elevations in physiolog-

ical responses. However, the direction and range of responses is difficult to determine. None-

theless, it is expected that the physiological responses under hydropeaking conditions will be

higher than those in base-flow conditions.

Changes in locomotor activity are detectable as immediate responses to rapid flow fluctua-

tions. In rivers affected by hydropeaking, these changes can be manifested as local [18,30,32–

34] or large-scale spatial scale-movements [20,35–38]. However, no changes in the movement

behaviour [39], as well as changes which were difficult to interpret [40] have also been

reported. The diversity of movement behaviour responses has been largely attributed to physi-

cal and biological factors that were not possible to control, such as the presence of velocity ref-

uges, and inter and intra-individual variability [18,30]. In addition to these, other physical (e.g.

water quality, substrate, sediment dynamics, and hyporheic flow) and biological factors (e.g.

species interactions) also affect fish movement behaviour and are difficult to reproduce in

experimental flumes [41]. It is also important to note that laboratory studies cannot reproduce

the full range of physical and biological factors driving fish behaviour as they exist in a river

system. Nevertheless, indoor experiments have demonstrated the ability to study small-scale

behavioural changes because of the possibility to control external confounding factors [42].

For example, simulated single peak events, consisting of an up-ramping stage followed by a

continuous high peak, caused movement behaviour changes ranging from downstream dis-

placement [28] to significant use of refuges [43]. This was in contrast to experiments with up-

and down-ramping events, which did not find significant movement behaviour alterations

[44,45]. Under controlled conditions it is possible to visualize the behavioural diversity found

in nature, however it is challenging to find ecological consequences for such behaviours [46].

Only a handful of studies have investigated habitat enhancement structures based on fish

behavioural changes to simulated rapidly changing flows. Lateral refuges were effectively used

by Iberian barbels for flow-refuging in simulated hydropeaking conditions [27]. T-shaped

structures [47] and lateral refuges [43] were suggested as potential flow-refuging areas for

brown trout subjected to simulated hydropeaking. Although [48] demonstrated that brown

trout used the lateral refuges for flow-refuging, [47] reported high site fidelity of juveniles of

this species, rather than using the refuge areas to compensate for the fluctuating flows. Similar

behaviour was also described by [49] for Atlantic salmon parr subjected to increased dis-

charges in experimental flumes. The authors suggested that the short duration of the simulated

flow events and the low habitat heterogeneity offered by artificial flumes effectively reduced

the possibility of salmonid species to exhibit their full potential of movement behaviour pat-

terns [47,49]. Previous studies on the effects of hydropeaking are focused mainly on salmonid

species, whereas behavioural changes of cyprinids have been scarcely studied.

A major challenge of all studies addressing rapid flow fluctuations and their impact on fish

behaviour is the difficulty to attribute a behavioural response to a specific flow fluctuation.

This mechanistic link is also difficult to find because the current methods to measure the flow

field are based on point values or spatial distributions of flow variables which do not take into

account the inherent fluid-body interaction between a fish and the surrounding flow field.

Fish experience the surrounding flow via their octavolateralis afferent system, consisting of the

lateral line and inner ear sense organs [50]. The lateral line consists of a linear array of mecha-

noreceptors located along the body, allowing fish to sense the spatial gradients of the flow field

[51]. For the majority of freshwater fish species, sensory cues correspond to near-body fluctua-

tions ranging from 1–150 Hz [52,53]. This range covers natural hydrodynamic variability and

enables fish to perceive the different spatiotemporal scales of flow, its alterations, and its inter-

action to the hydrodynamic environment. In this work, we attempt to characterize the hydro-

dynamic conditions resulting from a continuous peak flow and the presence of structures, by

Behavioural responses of Iberian barbel under simulated hydropeaking with instream structures

PLOS ONE | https://doi.org/10.1371/journal.pone.0211115 January 23, 2019 3 / 25

https://doi.org/10.1371/journal.pone.0211115


using the principles of the mechanosensory system of fish, through an artificial lateral line

probe (LLP). To date, the assessment of fish behaviour according to the changes in the hydrau-

lic environment has relied solely on conventional point flow measurements [54–56]. Such

measurements only consider a single point in space, and rely on the velocity and correspond-

ing turbulence metrics measured using an acoustic Doppler velocimeter or propeller. Point-

based metrics neglect the fluid-body interactions which fish actually use to sense the flow, and

the frequency range of velocity measurements most commonly spans 1–50 Hz, which at best

covers the lower third of the sensory range of biological lateral lines [57]. Artificial lateral lines

probes (LLPs) have emerged as a potential solution to fill this measurement gap. These devices

consist of streamlined bodies with electromechanical sensor arrays. In this work, we investi-

gate the potential utility of pressure sensor based LLPs. The LLP measures the rapid flow

changes (up to 200 Hz) around its body using six differential pressure sensors. The motivation

of using a LLP is that it more closely mimics the spatial and temporal sensing capacity of fish

in contrast with low-frequency, point measurement devices [58,59]. In this study, the flow

metrics derived from the LLP were based on previous work comparing the sensor data to fish

behaviour in a vertical slot fishway, where the most significant variables were the mean pres-

sure, the mean front fluctuations, and the mean pressure asymmetry [60].

The aim of this study is to assess the physiological and behavioural responses of Iberian

barbel (Luciobarbus bocagei Steindachner, 1864) (hereafter L. bocagei) associated with simu-

lated hydropeaking in the presence or absence of instream structures in an indoor flume.

Three hypotheses were investigated: 1) Rapid flow changes trigger physiological responses

in L. bocagei. 2) Movement behaviour is affected by, and differs between simulated rapid

flow changes and constant flow events with instream structures. 3) Critical thresholds of

local hydrodynamic variables exist for L. bocagei, and are associated with distinct beha-

vioural responses.

2. Methods

2.1 Ethics statement

All procedures involving animal manipulation, from capture in their natural environment to

holding in the laboratory, were carried out in strict accordance with European standards [46]

and Portuguese protocols [47] that assure animal welfare. Fish capture, handling, transporta-

tion and holding permits were issued by the Institute for Conservation of Nature and Forests

(ICNF) (permit numbers 290/2016/CAPT and 291/2016/CAPT). These permits also autho-

rized the Laboratory of Hydraulics and Environment to hold L. bocagei in captivity for no lon-

ger than 10 days in accordance with the methodology described for this study. The

experiments were conducted according to strict recommendations for the ‘‘protection of ani-

mal use for experimental and scientific work” (n˚ 5, article n˚ 31, Decree-Law 113/2013, 7th of

August, transposing the European Directive n.˚ 2010/63/UE). In accordance with this Decree-

Law, specific permits were issued by the nominated competent authority, the Direção-Geral de

Alimentação e Veterinária (DGAV) (point a), article n˚ 3), which authorized IB and MJC to

perform animal manipulation and procedures that involved animal health and welfare, and

the conceptualization of projects that involved animal manipulation (n˚ 2, article n˚ 31). After

revising the above-mentioned documents, the Ethics Committee of Instituto Superior Técnico

(EC-IST) has given approval to carry out the experiments in the Laboratory of Hydraulics

(Ref. n˚6/2018 (CE-IST)). Thus, all the necessary procedures to complete this study were

authorized and performed with minimum handling stress. No fish were sacrificed for the pur-

pose of this study.
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2.2 Fish sampling and handling

The Iberian barbel (Luciobarbus bocagei Steindachner, 1864) was selected to study the physio-

logical and behavioural responses to simulated hydropeaking. Little is known about the physi-

ological responses to flow variability by L. bocagei. However, recent studies have reported

increased in glucose levels when L. bocagei was subjected to simulated hydropeaking [27,61],

as well as differences in lactate levels associated with successful fishway passage between sea-

sons [62]. This endemic cyprinid of the Iberian Peninsula is widely distributed in the river

basins of northern and central Portugal [63] (IUCN status: least concern). L. bocagei is a bot-

tom-oriented, potamodromous cyprinid [64,65], feeding continuously during the day on ben-

thic invertebrates and plant material, and adapting its diet according to the available food

resources [66,67]. Fingerlings and juveniles are predominantly rheophilic [68,69], as are the

spawning adults, which prefer fast-moving currents during upstream migrations [70]. Outside

the reproductive season, the adults of L. bocagei tend to be limnophilic. In this study, young

adults of L. bocagei were used because they are adapted to fast-moving flow conditions Their

habitat preferences change with ontogeny; juveniles prefer sand-gravel substrates and shal-

lower areas, whereas adults prefer deeper areas with available refuges [68].

Fish were obtained at the Sorraia River (39.011376 ˚ N, -8.357126 ˚ W), a tributary of the

Tagus River (central Portugal). The selected site is not affected by hydropeaking, which makes

it a suitable source of unconditioned fish to study the impacts of hydropeaking. Fish were cap-

tured once a week in non-consecutive weeks between the 14th of October and the 18th of

November of 2016 using a low-voltage (400 V) electrofishing unit (Hans Grassl IG-200),

according to European norms [71] and national guidelines [72]. No more than 80 fish were

captured per sampling occasion. In total, 150 fish were captured (mean total

length ± SD = 14.7 ± 1.6 cm). After electrofishing, fish were transported (50 minutes) in an

aerated fish transport tank (Linn Thermoport 190 l) to the laboratory.

In the laboratory, the fish were distributed between two 900 l continuously aerated and bio-

logically filtered holding tanks, and acclimated to ambient temperature and natural photope-

riod for a 48–72 h period. Each holding tank was covered with a sunshade mesh, and clay roof

tiles were placed in the bottom of the tanks to provide refuge areas. Water quality parameters

(mean ± SD) were measured and adjusted in a daily basis using a multi parameter probe (YSI

556 MPS) for temperature (21.4 ± 1.7˚C), pH (6.79 ± 0.28), dissolved oxygen (87.3 ± 5.8%)

and conductivity (304.2 ± 38.6 μS.cm-1), and on a weekly basis using photometry (WTW-

Spectroflex 6600) for nitrites (0.021 ± 0.004 mg.l-1) and ammonia (0.001 ± 0.001 mg.l-1). Partial

water changes (15%) were performed every other day. The flume water temperature

(24.0 ± 1.7˚C) and dissolved oxygen (87.6 ± 6.4%) were monitored twice a day. The water qual-

ity parameters were in accordance with the national legislation for water quality standards to

protect and improve the aquatic environment according to water use [73]. Fish were fed with a

commercial diet for benthic species every night to avoid additional stress caused by food depri-

vation. Feeding took place only after the acclimation period.

2.3 Experimental facilities

The experiments were conducted between the 17th of October and the 23rd of November 2016

in an indoor flume located at the Laboratory of Hydraulics, at the University of Lisbon, Portu-

gal (Fig 1). The flume has a rectangular cross-section, and is constructed on a steel frame with

glass panels on both sides. The flume length was shortened to 6.5 m using two perforated

metallic panels, and the flume width was 0.7 m (Fig 1). The discharge and the water level were

controlled by a sluice gate upstream and by a flap gate downstream. The maximum discharge

was 60 l.s-1. Two plywood instream structures were designed as potential refuges: solid
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triangular pyramids (R1) and v-shaped structures (R2), and compared with a configuration

that did not have any instream structures (R0) (Fig 1).

Preferable substrate sizes should be at least in the same range as the fish length [74,75].

Thus, the refuge shape and dimensions of this study were chosen to have at least the same

order of magnitude as the fish´s body length (~ 20 cm) [56]. The triangular shape creates a low

velocity refuge immediately downstream of the structure and induces local flow areas in the

wake with reduced vorticity [76]. Likewise, the total number of structures was based on the

spatial density of refuges according to experimental results in fish passages [56]. The instream

structures were placed in an alternating pattern, assuring that they were permanently wetted

during base-flow conditions. This spatial arrangement intended to mimic a semi-natural

Fig 1. Summary of the experimental setup. A) Top view of the flume and test configurations (R0, R1 and R2). B) Plan of the setup with dimensions, grid of

hydrodynamic measurements, and observation zones (C1 to C5). C) Depth and discharge of the studied hydrodynamic events.

https://doi.org/10.1371/journal.pone.0211115.g001
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displacement of substrate in the main river channel that may be exploited by fish for flow-

refuging.

2.4 Hydrodynamic events

The flow ratio was 8.6, defined as the peak discharge (60 l.s-1) divided by the base-flow dis-

charge (7 l.s-1) [77]. A flow ratio of this value is considered high for fish species according to

the literature [41,77]. Two flow events were simulated; hydropeaking (HP) and base-flow

events (BF) (Fig 1C). Before each event, L. bocagei acclimated in the flume for 30 minutes with

a flow rate of 7 l.s-1 (Fig 1C). During this period, the flume upstream gate was left open at a 10˚

angle. The downstream gate was fixed at a 76˚ angle during all experiments. The HP event con-

sisted of a single up-ramping event where L. bocagei were subjected to the peak discharge for

40 minutes after the acclimation period. To create this event, the upstream gate was shut

completely while filling the flume reservoir. The discharge was manually controlled until

attaining a flow rate of 60 l.s-1. Afterwards, the upstream gate was rapidly opened to 10˚ to

release the peak flow and reach the constant flow regime. The mean time (± SD) for this proce-

dure (up-ramping) was 28.12 ± 1.86 seconds, corresponding to an up-ramping rate of 0.55 cm.

s-1 corresponding to a total increase of 15.7 cm in the water depth (rate of change) until reach-

ing the constant flow regime. The BF event consisted of a continuous 7 l.s-1 discharge stimulus

for 40 minutes corresponding to the absence of hydropeaking conditions. The combination of

instream structures (i.e. R0, R1, and R2) with flow events (i.e. HP and BF) resulted in five dif-

ferent sets of experiments, as follows: R0HP, R1HP, R1BF, R2HP and R2BF.

For each event, a school of five fish was tested and replicated five times. Each fish was tested

only once. It should be noted that larger groups of L. bocagei occur in nature, particularly dur-

ing the reproductive season. A school size of five fish was selected to optimize the observation

of fish movement behaviour in the flume. This was done in order to reproduce representative

group behaviour and to reduce the number of captured fish.

2.5 Fish responses

2.5.1 Physiological responses. To evaluate the potential physiological responses to hydro-

peaking between instream structure configurations (R0 vs. R1 and R2), the levels of blood glu-

cose and lactate were quantified. These physiological parameters were chosen since glucose

and lactate level increases are usually directly associated with primary responses to stress [24].

Additionally, changes in glucose and lactate levels have been widely used as secondary physio-

logical indicators of stress to flow variability [31]. Lactate increases have been associated with

prolonged anaerobic swimming when the organism can no longer maintain aerobic sustained

swimming, resulting in exhaustion [78]. Hence, both physiological responses may represent

reliable surrogates of a stress response to flow variability. After each flow event, each fish was

dip-netted from the flume and transferred to a recipient with continuously oxygenated water

and immediately placed in a v-shaped plastic trough in a supine position. Blood samples (0.1–

0.5 ml) were collected via caudal puncture using 23 G or 25 G pre-heparinized needles. It has

been demonstrated that three minutes is not long enough to have a significant influence on

primary stress responses (e.g. cortisol) [79]. The glucose and lactate levels were immediately

measured using the portable meters Accu-check Aviva (Roche) and Lactate Plus (Nova Bio-

medical UK) respectively. These lactate and glucose portable meters have been successfully

tested and validated for fish research [80–82].

2.5.2 Movement behaviour. To examine the effects of instream structure type and flow

event on L. bocagei, the behaviour metrics were selected based on fish body motion directed

towards the structure and to changes in motion corresponding to the occurrence of a peak
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event. Afterwards, the behaviour metrics were divided into two categories: 1) structure use,

and 2) swimming activity in the flume (Fig 2). The frequency of each behaviour was defined as

the number of occurrences, in absolute frequency, over the duration of the flow event (i.e. 40

minutes). Each metric was attributed to a single fish (I) or to a group of two to five fish (G).

Successful structure use was considered when a single fish (Iref, Fig 2A) or a group of fish

(Gref, Fig 2B) were observed in the immediate downstream area of the structure (Fig 2A and

2B). Considering the position of each structure in the flume, there were two possibilities for L.

bocagei to pass by them and move upstream: by using the shortest (0.10 m) or the longest (0.29

m) distances between the structures and the correspondent flume wall (Fig 2C–2E). This posi-

tive rheotactic movement was registered when a single or a group of fish used either the short-

est (Iwall, Fig 2E; Gwall, Fig 2F) or the longest (Imiddle; Fig 2C; Gmiddle, Fig 2D) distances

respectively.

All swimming activity metrics were selected to represent movement responses which may be

associated with the severity of a peak event. They were separated into two types; fish sprints,

defined as a swimming activity lasting a few seconds and characterized by several tail beats

(Isprint, Fig 2I, and Gsprint, Fig 2J), and fish drifts, defined as downstream fish displacements

driven by passive advection of the body in the flow direction (Idrift, Fig 2G, and Gdrift, Fig 2H).

Activity metrics were counted considering the total flume usable area (observation zones

C1 to C5, Fig 1B). A behaviour occurrence was only assigned to a specific observation zone

Fig 2. Classification of the behaviour metrics. (A and B)—Individual (Iref) and group (Gref) structure use; (C and D)–Individual (Imiddle) and group (Gmiddle)

passage by the structures using longest distance between the structure and the flume wall; (E and F)–Individual (Iwall) and group (Gwall) passage by the structures using

the shortest distance between the wall and the structure. (G and H) Individual (Idrift) and group (Gdrift) drifts. (I and J) Individual (Isprint) and group (Gsprint) sprints.

Plus (+) and minus (-) signs represent the swimming direction of L. bocagei, as positive and negative rheotaxis respectively. These metrics were used for all

configurations.

https://doi.org/10.1371/journal.pone.0211115.g002
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only if it began at that location. Each individual or group were considered a sampling unit and

any individual behaviour was registered if performed by one fish independently of the group.

2.6 Hydrodynamic characterization using an artificial lateral line

An artificial lateral line probe (LLP) was used to measure the local flow field properties during

the different flow events and quantify the effects of instream structures. LLPs are streamlined

bodies with a pressure sensitive sensor array. The devices allow for a characterization of the

fluid-body interactions, and are capable of measuring at the same rates as the natural sensing

frequencies of fish, from 10s to 100s Hz [83]. The LLP used in this study consisted of a 0.22 m

length NACA025 body which measures pressure gradients over the body using six differential

pressure sensors (±2000 Pa MPXV7002). All measurements with the LLP were conducted

using a 200 Hz sampling rate. In addition, the water depth was measured by the probe using

an absolute pressure sensor (0 to 10000 Pa—MPX5010GP) (Fig 3).

The selected variables were: mean front pressure, mean front fluctuations and mean pres-

sure asymmetry (Table 1).

The mean front pressure (�p12) is quadratically related to the velocity of the flow, following

the conservation of energy [84]. This variable is also directly correlated with the free stream

flow velocity experienced by the fish body. Higher mean front pressure magnitudes also imply

an increase in the hydrodynamic drag, thus upstream movements may be reduced and

increase the fish energy consumption during station holding [85]. The mean front pressure

fluctuations (�p 0
12

) represent the magnitude of the rapid changes of pressure gradients on the

body of the LLP, and therefore, they are correlated with the turbulence experienced by the

probe [86]. They represent the changes in pressure magnitudes over time at a given location.

In general, lower pressure magnitudes correspond to regions of uniform and stable flow condi-

tions. Fish, and in particular L. bocagei, have shown preferences for low turbulence areas

[60,87]. The mean pressure asymmetry (D�p1� 6) offers an instant comparison of the pressure

gradient differences in each side of the LLP. This allows the identification of cyclic flow pat-

terns (e.g. repeating patterns of vortices) and their magnitude [88]. It is also worth noting that

Fig 3. Lateral line probe (LPP). NACA025 body shape, showing the locations of the differential pressure sensors (1–6), and the absolute pressure sensor (7).

https://doi.org/10.1371/journal.pone.0211115.g003
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vortices of a scale in the same order of magnitude as a fish’s body length may also be utilized to

reduce swimming cost and can even be leveraged to enhance upstream movements [89].

The selected measurement grid (Fig 1), covered the regions most affected by the rapid flow

changes as well as the peak discharge for R1 and R2. The grid was broken into volume ele-

ments whose lateral and streamwise dimensions closely match the body length of young adults

of L. bocagei as well as the LLP.

2.7 Data analysis

A Kruskal-Wallis analysis was performed to verify whether the hydrodynamic event and struc-

ture type/presence triggered physiological responses in L. bocagei. The analysis determined if

there were statistical differences in the levels of blood glucose and lactate among replicates of

each event. As there was not any statistical evidence that supported that hypothesis, the lactate

and glucose levels of each L. bocagei were considered as true replicates. Afterwards, to verify if

there were any significant differences in the levels of blood glucose and lactate of L. bocagei
among events, a Kruskal-Wallis test was applied with a Nemenyi post-hoc test for pairwise

contrasts [90]. Post-hoc tests for pairwise contrasts between events were made using the R-

package PMCMR [90].

To provide a visual representation of the main trends for instream structure use (i.e. Iref,

Gref, Imiddle, Gmiddle, Iwall, Gwall) and swimming activity (Isprint, Gsprint, Idrift, Gdrift)

of L. bocagei according to the hydrodynamic events, a correspondence analysis (CA) was con-

ducted. This method preserves the χ2 distance among objects, does not require data normali-

zation, and it is suitable for frequency-like data [91]. CA is adequate for this study due to the

nature of the behaviour response metrics (absolute frequency) and its reduced number (i.e.,

six for instream structure use, and four for swimming activity) [91]. This analysis was con-

ducted using the R-package vegan [92]. To test if the event was affecting 1) the frequency of

instream structure use and 2) the swimming activity of L. bocagei the two-way distance-based

multivariate analysis of variance was applied (using Euclidean distance and 999 permutations)

[93]. This method does not require the assumptions of parametric tests [94], is suitable for

small sample sizes [95] as well as continuous and factor predictors [93]. The analysis was con-

ducted using the R-package vegan [92]. If an effect was detected, a detailed analysis per metric

of refuge use and flume swimming activity was conducted by Kruskal-Wallis analysis with a

Table 1. Pressure-based variables form LLP measurements used in this study. Definition of mean pressure and mean pressure fluctuations are included to clarify the

mathematical definition of the variables used for this study. n: number of data points in a measurement; i: index of the sensor.

Variables Equation

Mean pressure

�pi ¼

Xn

j¼1

pi;j

n

Mean pressure fluctuations

p 0i ¼

Xn

j¼1

jpi;j � �pij

n

Mean front pressure (�p12)

�p12 ¼

Xn

j¼1

p1;j þ p2;j

2

n

Mean front pressure fluctuations (�p 0
12

) �p 0
12
¼

�p 0
1
þ�p 0

2

2

Mean pressure asymmetry (D�p1� 6)

D�p1� 6 ¼

Xm

k¼1

Xn

j¼1

ðp2k� 1;j � p2k;jÞ
2

n
3

https://doi.org/10.1371/journal.pone.0211115.t001

Behavioural responses of Iberian barbel under simulated hydropeaking with instream structures

PLOS ONE | https://doi.org/10.1371/journal.pone.0211115 January 23, 2019 10 / 25

https://doi.org/10.1371/journal.pone.0211115.t001
https://doi.org/10.1371/journal.pone.0211115


post-hoc Nemenyi test for pairwise contrasts between events [90]. This analysis was conducted

using the R-package PMCMR [90]. All statistical analyses were performed using R version

3.3.2 [96].

The variables measured with the LLP were plotted onto the grid to illustrate and compare

the differences among the studied events. A summary of the measured minimum values of the

pressure variables in the area affected by the structures and the mean ± SD values in the flume

area were considered. This was performed to simplify the discussion of the LLP results, com-

pare relationships to the fish movement responses, and define local flow preferences for this

fish species. The area affected by the structure consisted of 3 grid rectangles measured down-

stream and near the structure (3 rectangles behind each structure, n = 9), and the flume area

consisted of the remaining grid rectangles (n = 45–9 = 36). All data analysis, plots, and calcula-

tions concerning LLP were performed using MATLAB release R2017a.

3. Results

3.1 Physiological responses

Glucose levels differed significantly among events (χ2 (4) = 10.870, p = 0.028) and were higher

in L. bocagei subjected to R1BF when compared to R0HP (χ2 = 4.331, p = 0.019) (Fig 4A). The

lactate levels differed significantly among events (χ2 (4) = 17.141, p = 0.002) and were higher

in R2HP compared to R0HP (χ2 = 5.117, p = 0.003) and R1HP (χ2 = 4.161, p = 0.027) (Fig 4B).

3.2 Movement behaviour

The CA orthogonal axes represent the main trends observed for the frequency of instream

structure use and swimming activity in the flume according to the hydrodynamic events (Fig

5). The first two axes for the frequency of structure use explain 88.7% of the variation among

events (Fig 5A). BF opposes HP on the first CA axis, whereas R1 opposes R2 on the second CA

axis (Fig 5A). A clear trend can be observed considering group structure use in BF in

Fig 4. Boxplots of the variation of (A) blood glucose (mg.dl-1) and (B) lactate (mM) levels for L. bocagei. R1BF and R2BF–Base-flow event in the presence

of solid triangular pyramids and v-shaped structures respectively; R0HP, R1HP and R2HP–Hydropeaking event in the absence of structures, presence of solid

triangular pyramids and the presence of v-shaped structures, respectively. The letters correspond to the post-hoc test results. The circles correspond to the

mean value of the physiological response for each treatment.

https://doi.org/10.1371/journal.pone.0211115.g004
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opposition to individual structure use in HP (Fig 5A). The spatial organization and the struc-

ture use scores, indicated that L. bocagei individuals more frequently make use of R1, particu-

larly in R1HP. The path chosen to cross the structures was more evident in the R2HP,

particularly for individuals as well (Fig 5A). The first two axes for the swimming activity

account for 87.9% of the variation among events (Fig 5B). R1BF opposes to R2HP in the first

CA axis for group vs. individual behaviour respectively (Fig 5B). Gsprint was the most frequent

behaviour in R1BF, whereas Idrift was the most frequent behaviour in R2HP (Fig 5B). In the

absence of instream structures, i.e. in R0HP, there was a more evenly distributed swimming

activity pattern.

The ordination results were supported by the multivariate analysis, where a significant

effect of flow event on the structure use (F = 5.156, p = 0.001) and swimming activity

(F = 7.839, p = 0.001) of L. bocagei was found. There were significant differences in the mean

frequency of individual (Iref; χ2 (3) = 11.271, p = 0.010) and group structure use (Gref; χ2 (3) =

12.233, p = 0.007) among flow events. Rank comparisons showed that Iref was higher for L.

bocagei that were subjected to R1HP and R2HP in comparison with R2BF (p = 0.038 and

p = 0.033 respectively) (Fig 6A). Groups of L. bocagei used the downstream area of solid trian-

gular pyramids more frequently in the base-flow (R1BF) and in the hydropeaking events

(R1HP) in comparison with the base-flow in the presence of v-shaped structures (R2BF)

(p = 0.008 and p = 0.044 respectively) (Fig 6A).

There were also significant differences in the path that fish selected to cross the structures

for individual behaviour (Imiddle; χ2 (3) = 9.398, p = 0.024; Iwall; χ2 (3) = 8.504, p = 0.037),

but not for group behaviour (Gmiddle: (χ2 (3) = 5.597, p = 0.133; Gwall: (χ2 (3) = 7.563,

Fig 5. Correspondence analysis (CA) biplots for the instream structure use (A) and swimming activity in the flume (B). The biplots illustrate the spatial

distribution of behaviour according to each flow event. The axes labels indicate the proportion (%) attributed to the spatial distribution of the events. R1BF and

R2BF–Base-flow event in the presence of solid triangular pyramids and v-shaped structures respectively; R0HP, R1HP and R2HP–Hydropeaking event in the

absence of structures, presence of solid triangular pyramids and presence of v-shaped structures respectively.

https://doi.org/10.1371/journal.pone.0211115.g005
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p = 0.056). The mean frequency of Imiddle was significantly higher for R2HP in comparison

with R2BF (F = 3.817; p = 0.035) (Fig 6A).

The mean frequency of flume swimming activity differed significantly among flow events

and structure configurations for Isprint (χ2 (4) = 16.525, p = 0.002), Gsprint (χ2 (4) = 13.374,

p = 0.010), Idrift (χ2 (4) = 18.49, p = 0.001) and Grift (χ2 (4) = 15.403, p = 0.004). The mean fre-

quency of Isprint was significantly higher in R0HP (F = 4.375; p = 0.017) and R1HP (F = 4.010;

p = 0.037) in comparison with R2BF (Fig 6B).The mean frequency of Idrift was significantly

higher in R0HP (F = 4.466, p = 0.013) and R1HP (F = 3.859, p = 0.049) in comparison with

R1BF, and in R0HP (F = 4.618, p = 0.010) and R1HP (F = 4.010, p = 0.037) in comparison with

R2BF (Fig 6B). The mean frequency of Gdrift was significantly higher in R0HP (F = 4.739,

p = 0.007) and R1HP (F = 4.618, p = 0.010) in comparison with R2BF (Fig 6B).

Three major trends were apparent after integrating the physiological and movement behav-

iour metrics: 1) Lower levels of glucose in R1BF were associated with an increased group struc-

ture use; 2) Higher lactate levels in R2HP where associated with increased individual attempts

to cross the structures and move upstream; 3) The absence of significant differences in the lev-

els of both glucose and lactate in R1HP and R0HP was associated with an increased structure

use in R1HP, and in the drift frequency in R1HP and R0HP (Table 2).

3.3 Hydrodynamic characterization using an artificial lateral line

The distribution of mean front pressure represents the total mean pressure difference experi-

enced by the LLP in the front of its body (�p12, Fig 7). Figs 7, 8 and 9 provide a representation of

the measured pressure-based variables considered in this study:�p12, �p0
12

and D�p1� 6. It was

found that for all configurations (R0, R1 and R2) that an increase in discharge leads to higher

values of �p12. In the absence of structures, the discharge distributed nearly uniformly over the

cross-section and �p12 increased solely as a function of discharge (R0, Fig 7). However, the pres-

ence of structures (R1 and R2) will generate a low �p12 area immediately behind the structure

(refuge effect), and areas of higher �p12 occur due to a local flow acceleration adjacent to the

Fig 6. Mean frequency (n) of each behaviour metric for each event. A) Structure use (Iref and Gref), path chosen to cross the structures

(Imiddle, Gmiddle, Iwall, Gwall). B) Flume swimming activity (Isprint, Gsprint, Idrift and Gdrift). R1BF and R2BF–Base-flow event in the

presence of solid triangular pyramids and v-shaped structures respectively; R0HP, R1HP and R2HP–Hydropeaking event in the absence of

structures, presence of solid triangular pyramids and presence of v-shaped structures respectively.

https://doi.org/10.1371/journal.pone.0211115.g006
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Table 2. Summary of the comparisons of the physiological and behavioural responses of L. bocagei between events

tested. The direction of physiological responses is indicated (" higher, # lower). The frequency of the shown move-

ment behaviour metrics was higher in that event in comparison to those indicated (number).

Event L. bocagei responses

Physiology Movement behaviour

Structure use Swimming activity

R1BF #Glucose1 Gref3

R1HP Gref3; Iref3 Isprint3; Idrift4; Gdrift3

R0HP N/A Isprint3; Idrift4; Gdrift3

R2BF

R2HP "Lactate2 Iref3; Imiddle3

1 In comparison with R0HP;
2 in comparison with R1HP and R0HP;
3 in comparison with R2BF;
4 in comparison with R1BF and R2BF; N/A not applicable

https://doi.org/10.1371/journal.pone.0211115.t002

Fig 7. Distribution of mean front pressure (�p12) for all configurations and both discharge scenarios considered (7 and 60 l.s-1). The reader

is referred to supporting information (S1 Fig) to look at the contour representation of this figure.

https://doi.org/10.1371/journal.pone.0211115.g007
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structure (Fig 7 and Table 3). The distribution of these flow-refuging areas downstream the

structure is driven by the flow direction.

The mean front pressure fluctuations quantify the change of the pressure magnitude over

time, with lower values indicating more stable zones (�p0
12

, Fig 8). In the absence of structures

�p0
12

presented a uniform distribution driven only by the discharge and flume geometry (Fig 8).

The presence of the structure generated a region of high-pressure fluctuations, �p 0
12

(area of

high turbulence) (R1 and R2, Fig 8 and Table 3). The distance to this highly fluctuating area

depended on the discharge. Lower fluctuations were found near, inside and immediately

behind the structure (refuge effect), and between structure and walls due to the coherence cre-

ated by converging streamlines.

The mean pressure asymmetry represents the instantaneous pressure differences between

both sides of the probe, detecting and quantifying the vorticity experienced (D�p1� 6, Fig 9).

Similar to the other variables, its distribution shows that in the absence of structures, the asym-

metry remains uniform and with low magnitude. This is primarily due to the absence of planar

vortices shed by the structures (R0, Fig 9). In general, it was observed that D�p1� 6 had a larger

in R2 than R1, and increased slightly as a function of discharge.

Fig 8. Distribution of mean front fluctuations (�p 0
12

) for all configurations and both discharges scenarios considered (7 and 60 l.s-1). The

reader is referred to supporting information (S2 Fig) to look at the contour representation of this figure.

https://doi.org/10.1371/journal.pone.0211115.g008
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4. Discussion

The effects of simulated hydropeaking events including instream structures as flow refuges for

L. bocagei were investigated. A novel, interdisciplinary approach combined physiological and

Fig 9. Distribution of mean pressure asymmetry (D�p1� 6) for all configurations and both discharges scenarios considered (7 and 60 l.s-1).

The reader is referred to supporting information (S3 Fig) to look at the contour representation of this figure.

https://doi.org/10.1371/journal.pone.0211115.g009

Table 3. Minimum (Pa) and mean ± SD (Pa) LLP derived pressure variables. The minimum pressure values (Pa) for mean front pressure (�p12), mean front pressure

fluctuations (�p 0
12

) and mean pressure asymmetry (D�p1� 6) refer to the results observed in the three rectangles measured behind the structure, Mean ± SD (Pa) refer to the

pressure values observed in the flume (excluding structure area) for events R1BF, R1HP, R0HP, R2BF and R2HP.

Tested event LLP derived pressure variables

Structure area (minimum) Flume (mean ± SD)

Front pressure (Velocity)

(Pa)

Front fluctuations

(Turbulence)

(Pa)

Asymmetry

(log Pa)

Front pressure (Velocity)

(Pa)

Front fluctuations

(Turbulence)

(Pa)

Asymmetry

(log Pa)

R1BF 5.70 1.72 8.39 23.33±14.17 9.04±6.19 9.27±0.19

R1HP 11.18 6.52 9.17 80.32±24.78 30.62±11.55 9.55±0.38

R0HP - - - 87.21±9.92 18.13±1.92 2.08±0.01

R2BF 30.35 1.51 9.54 44.15±12.13 9.66±7.02 9.86±0.14

R2HP -4.88 31.16 10.00 84.39±18.29 30.80±10.18 10.14±0.19

https://doi.org/10.1371/journal.pone.0211115.t003
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behavioural responses with fluid-body interactions measured with a fish-inspired artificial lat-

eral line. The combinations of hydrodynamic events and instream structures altered the spa-

tio-temporal distribution and magnitude of velocity, turbulence fields and pressure

fluctuations (Figs 7–9), and were found to correspond to distinct physiological and beha-

vioural responses (Figs 4–6 and Table 2).

The physiological and behavioural responses differed between hydropeaking and base-flow

conditions as well as with instream structure configuration. An interesting finding was that

although flow and behaviour were indeed linked, the extreme hydrodynamic changes did not

always result in higher physiological levels or frequencies in movement behaviour (Fig 6 and

Table 2). Similarly, in rivers affected by hydropeaking, there were no significant physiological

increments in salmonids possibly explained by flow-refuging, feeding and social interactions

[19]. Although higher swimming costs are associated to high flows, fish can use these as migra-

tory and spawning cues [42], and use the low flows to optimize foraging behaviour [97]. As an

example, glucose and lactate levels were not systematically higher considering HP events. The

results indicate that L. bocagei responses may be related to the combination of flow event

severity and structure configuration, rather than solely to the severity of the flow event itself.

Given this evidence, the lowered physiological responses and frequencies of movement behav-

iour observed in R2BF (particularly in comparison with R1BF) and the increased structure use

and drift frequency (as a means to recover from the peak-flow conditions) in R1HP indicate

that these event-configuration combinations can be favourable for L. bocagei.
The highest lactate levels were observed in R2HP. This can be explained by the higher fre-

quency of passages observed in R2 (Fig 6A) together with the lower frequency of drifts (Fig

6B). An increase in observed swimming velocities corresponds to higher swimming costs

[98,99], indicating that the fish had difficulty maintaining their focal position while crossing

the structures, which may explain the higher lactate levels. In addition, the lower frequency of

drifts observed in R2HP when comparing with R0HP and R1HP (Fig 6B), and the higher lac-

tate levels (Fig 4B) may indicate that the thresholds of pressure variables during this event, and

in particular asymmetry (Fig 9), may have acted to hinder fish drifts. Although drifts are typi-

cally associated with the inability to hold position, the lactate elevations denote increasing

swimming effort. These results suggest that the hydrodynamics shed by the v-shaped struc-

tures could have hindered the use of these structures as flow-refuging areas. Furthermore, the

observed drifting behaviour may provide a means to recover from the additional swimming

effort. This possibility is also supported by the lower levels of lactate and the identical frequen-

cies of drifts and sprints in R0HP and R1HP (Fig 6B). Still, when subjected to R2HP, L. bocagei
were attracted to the side of the structures near the flume wall (Fig 6A), which may correspond

to areas of reduced locomotion effort. It is well-established that fish can take advantage of the

velocity, turbulence, size and periodicity of vortices (Figs 7–9) [100–102]. This is because as

undulatory swimmers, fish are able to take advantage of the interactions between their body

and the local hydrodynamic environment [101]. In nature, these individual interactions result

from the existing physical properties such as flow fluctuations present in geometrically hetero-

geneous habitats. For habitat mitigation purposes, heterogeneity should be considered as a

crucial design parameter, while carefully considering the local hydrodynamic conditions, oth-

erwise it may produce the opposite effect [103]. Indeed, it is established that fish require a wide

range of structures for refuge. Fish have been observed avoiding rapid flow conditions by

choosing low flow areas for flow-refuging [16,18,19,26,47], hiding in available rocky substrates

[44], and using lateral refuge [43].

Despite the higher lactate levels observed in R2HP, there was no visible indication that L.

bocagei were exhausted, as the fish were able to maintain the burst swimming during the total

duration of the event. Mean lactate levels found in a fish passage study, where L. bocagei was
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subjected to a 110 l.s-1 for 90 minutes, were higher (6.69±1.95 mM) than those registered in

this study (5.06±0.49 mM)[62]. Thus, the results from this study may reflect physiological

adjustments for L. bocagei to cope with the created hydrodynamic changes. Considering glu-

cose, previous studies have shown increased levels for L. bocagei subjected to the most extreme

hydrodynamic changes [27]. In this study, no clear association was found.

The lowest movement behaviour frequency observed in R2BF suggests that this event-con-

figuration is the most beneficial for L. bocagei. The lower frequency of drifts observed for indi-

viduals and groups suggests that this combination favoured both L. bocagei to hold station

without significant energy expenditure (Fig 6B and Table 3). On the other hand, the reduced

frequency of structure use may indicate that the hydrodynamic conditions created in the

flume area were not adverse enough to induce refuge use (Fig 6A and Table 3). For all studied

configurations under HP, the observed drifts were most commonly associated to a higher fre-

quency of sprints (Fig 6B and Table 3). This could be motivated by an exploratory behaviour

to find suitable flow areas. For example, when brown trout were exposed to fluctuating flows

(repeated up- and down-ramping events) the possibility to hide in available substrate denoted

a compensatory behaviour, where after being subjected to repeated stimuli brown trout was

able to adjust both physiologically (return of cortisol to pre-stress levels) and behaviourally

(hiding in substrate) to avoid negative effects [16]. This compensatory behaviour suggests an

adaptive mechanism for juvenile brown trout to re-establish homeostasis [16,104]. In this

study, it was found that the absence of such suitable areas motivated upstream sprinting, by

crossing the structures or sprinting upstream to negotiate with the created flow conditions.

Sprinting behaviour was more evident for L. bocagei during R2HP. These results may indicate

that the severity of the flow event together with the presence of R2 may have not provided suf-

ficient low flow areas to recover, forcing individual behaviour. Conversely, the hydrodynamic

conditions in R0 and R1 seemed to induce drifting (Fig 6B and Table 3). This could reflect an

adaptive behaviour to recover from the effort of sprinting as a means to conserve energy and

may explain the lower lactate levels observed for R1HP and R0HP (Fig 4A and 4B).

The differences observed in individual and group behaviour between HP and BF (Fig 5A

and 5B) show that the changing flow conditions were not always favourable to maintain

schooling. Although fish in groups usually benefit from the increased tail beat frequency of the

leading fish [101] the existing flow conditions under HP were not always favourable. Group

dynamics were particularly marked under R1BF indicating that the lower discharge and pres-

sure magnitudes favoured group stability. The advantages of schooling behaviour have been

demonstrated to reduce the total swimming costs under turbulent flows [105] and during

reproductive migrations [106,107].

From the analyses of the physiological and behavioural results together with the artificial

lateral line probe measurements, the asymmetry was the most related with behavioural obser-

vations. This was particularly evident in the two extremes R2BF and R2HP. Asymmetry, when

used as a local flow variable enabled a comparison of the cycles of large-scale vorticity among

events, which fish may use to reduce the costs for swimming [101]. Considering the different

flow event and structure trials, a “favourable asymmetry window” was observed in R2BF for L.

bocagei (Fig 9 and Table 2). This critical threshold for asymmetry corroborates the third

hypothesis, that local hydrodynamic variables exist generating unique movement behaviour

patterns. This was particularly evident for R2BF and R2HP (Fig 9). The thresholds for the pres-

sure variables observed in R1HP and R0HP (Table 3) resulted in similar frequencies of sprints

and drifts (Fig 6B). These results may denote drifting as a compensatory behaviour to the effort

required to sprint. It has been suggested that in rivers affected by hydropeaking fish may

change their position by moving backwards and forward between areas with suitable velocity

and depth to avoid the negative effects of flow fluctuations [16].
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Each event, HP and BF, combined with R1 or R2, generated unique local flow conditions

which were more or less favourable for fish. Considering this, a geometrically heterogeneous

configuration of instream structures (i.e. different shapes and sizes) could increase the proba-

bility for fish to find suitable refuge areas. As demonstrated, in the absence of suitable flow

areas or under hydropeaking conditions, fish benefit from the presence of instream structures

for flow-refuging. Nonetheless, complex habitats may also create unfavourable hydraulic con-

ditions for fish [28,55]. Experimental concepts and engineering design of instream mitigation

structures, should therefore take into account the interaction between channel morphology

and water level changes [12].

5. Conclusions

This study provides experimental evidence that rapidly changing flow events in the presence

of instream structures can trigger differentiated physiological and behavioural responses in L.

bocagei. The LLP results further demonstrated that the combination of flow events with

instream structures resulted in unique flow conditions, characterized by distinct velocity, tur-

bulence and vorticity distributions in the flume, and particularly near the structure area. As

these hydrodynamic features were unique to each combination, and specific behavioural

responses were found, critical thresholds of local hydrodynamic variables for L. bocagei were

defined accordingly (Table 3). In summary, under HP conditions lower velocities and higher

turbulence and vorticity promote individual structure use, whereas higher velocities and

milder turbulence and vorticity were found to promote sprints and drifts. Under BF condi-

tions, the more frequent group behaviour and the lower refuge use, indicate that milder veloci-

ties in the structure area and lower mean turbulence and vorticity in the remaining flume area

create favourable flow conditions for L. bocagei.
Finally, lower discharge magnitudes, and milder flow-ratios (< 8.6), are advantageous for

this species and have the potential to reduce the energetic costs associated with rapid flow fluc-

tuations. However, the simultaneous absence of a glucose response and exhaustion signs when

L. bocagei were subjected to 60 l.s-1 encourage further investigation to understand the extent to

which flow event-configurations combinations in rapid flow fluctuations trigger physiological

responses in L. bocagei. Additionally, combined effects which consider the range of environ-

mental factors that fish experience in situ, such as thermopeaking, are worthy of further inves-

tigation. To benefit from the individual interactions with the velocity, turbulence and vorticity

of the hydrodynamic environment, diverse sets of instream structures should be preferred as

potential flow-refuging areas for L. bocagei subjected to hydropeaking. Further research is

encouraged to establish a mechanistic and quantifiable link between the derived pressure vari-

ables and specific fish responses, particularly the ability of fish to demonstrate adaptive mecha-

nisms (e.g. compensation by searching favourable pressure thresholds) to avoid the negative

effects of rapid flow fluctuations.
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Funding acquisition: I. Boavida, J. A. Tuhtan, A. N. Pinheiro.

Investigation: M. J. Costa, J. F. Fuentes-Pérez, I. Boavida.
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