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ABSTRACT: The selective tagging of amino acids within a peptide
framework while using atom-economical C−H counterparts poses
an unmet challenge within peptide chemistry. Herein, we report a
novel Pd-catalyzed late-stage C−H acylation of a collection of Tyr-
containing peptides with alcohols. This water-compatible labeling
technique is distinguished by its reliable scalability and features the use of ethanol as a renewable feedstock for the assembly of a
variety of peptidomimetics.

S ince the definition of the “12 Principles of Green
Chemistry” by Anastas and Warner in 1998,1 sustainable

development represents a major global concern when design-
ing new chemical synthetic processes.2 As a result, the last
decades have witnessed the upsurge of a sheer number of
greener and safer procedures for the synthesis of fine and
commodity chemicals. In particular, the practical use of
abundant and renewable carbon feedstock in the realm of
organic chemistry has gained considerable attention.3 How-
ever, the use of ethanol as a valuable and cheap C2 feedstock is
still rare, and it is chiefly used as an organic solvent rather than
an actual coupling partner.4 In this communication, we unlock
its synthetic versatility and advantageous features within the
burgeoning field of bioconjugation.
Owing to their unique biological activities and improved

metabolic stability compared to their native compounds,
synthetically modified peptides are of utmost importance in
the field of proteomics, chemical biology, and drug discovery.5

Metal catalysis has recently emerged as an enabling tool for the
manipulation of typically unreactive C−H bonds embedded
within the amino acid backbone6 and the corresponding side
chains.7 Accordingly, metal-catalyzed C−H functionalization
techniques are becoming highly embraced by mainstream
synthetic chemists because they enable the straightforward
assembly of biomolecules in a sustainable fashion.8 Despite the
existing palette of reactivity, most of the protocols entail the
use of toxic halide counterparts and feature the modification of
highly reactive amino acid residues. Therefore, innovative
tactics are highly coveted to forge peptides beyond those found
in naturally occurring proteins, and the usage of new atom-
economical C−H coupling partners to label less reactive and
poorly nucleophilic handles represents an ideal strategy in
these endeavors. The modification of peptides housing
hydrophobic phenylalanine (Phe) and tyrosine (Tyr) residues
remains comparatively overlooked,9 which is clear evidence
that the direct translation of a given C(sp2)−H functionaliza-
tion reaction from a simple aryl system to a peptide framework

is not a trivial task as a result of the existing multiple chelating
sites and ubiquitous C−H bonds.10

Recent studies have demonstrated that the installation of an
acetyl group within an amino acid of a peptide sequence is
particularly useful to produce antibody−drug conjugates
through oxime ligation.11 Although acetylated proteins are
primarily prepared upon enzymatic processes with acetyl-
transferases or acetyl-CoA derivatives,12 the parent processes
in short-to-medium peptides remain elusive. The ortho-
acetylation of simple L-Tyr-OH can occur through a classical
Friedel−Crafts reaction with acetyl chloride.13 However, the
latter cannot be applied within a peptide setting. Partial
racemization is often observed (up to 15%), and stoichiometric
amounts of AlCl3 are required (Scheme 1). In connection with
our previous studies on the modification of peptides,14 we
sought to tackle the synthetic potential of EtOH as a novel
acetyl source under oxidative conditions, thereby providing a
sustainable yet late-stage acetylation of a number of Tyr-
containing compounds. While conceptually innovative, this
strategy may suffer from certain drawbacks, such as the lack of
selectivity or even an undesired ortho-alkoxylation reaction
could preferentially occur when using EtOH.15 Herein, we
present a complementary strategy to perform a chloride-free
acetylation of Tyr-containing peptides, which can take place in
a late-stage fashion featuring cheap and safe chemical reagents.
Inspired by the use of 2-pyridyl ether as an efficient directing

group (DG)16,17 in the Pd-catalyzed acylation of protected Tyr
derivatives with aldehydes recently reported by our group,10c

we first selected dipeptide 1a as the model substrate to test the
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feasibility of the acetylation reaction with EtOH, thereby
harnessing its oxidation toward the sustainable labeling of
peptides. After considerable experimentation,18 we eventually
found that the projected acetylation with EtOH was feasible,
and remarkably, neither diacetylation nor ortho-alkoxylation
upon a C−O bond-forming event was detected.15 The optimal
conditions involved the use of Pd(OAc)2 (10 mol %) and an
aqueous solution of inexpensive tert-butyl hydroperoxide
(TBHP) as the oxidant in toluene as the solvent at 120 °C,
which provided compound 2aa in 60% yield (entry 1 of Table
1). Notably, toluene was not activated to produce the
corresponding aroylated product, and EtOH was preferentially
oxidized within the reaction conditions.19 As expected, control
experiments in the absence of either catalyst (entry 2 of Table
1) or oxidant (entry 3 of Table 1) underpinned their critical
role in the acetylation process. The performance of the
reaction under air resulted in lower yields of compound 2aa,

albeit the process still occurred in a synthetically relevant yield
(entry 4 of Table 1). Whereas the yield slightly dropped down
to 40% when using 10 equiv of EtOH (entry 5 of Table 1), the
process was entirely inhibited in EtOH as the solvent (entry 6
of Table 1). Accordingly, the optimal amount of EtOH was
found to be 25 equiv in combination with toluene as the
solvent; the use of other related solvents ushered compound
2aa in lower yields.18 Given that multiple oxidation events
simultaneously occur, the yield reasonably decreased when
lowering the amount of TBHP (entries 7 and 8 of Table 1).
However, its use in high excess does not pose a major
shortcoming because it is a very cheap oxidant and renders the
reaction water-compatible. In fact, an aqueous solution of
TBHP afforded better results than other peroxides or
persulfates (entries 9 and 10 of Table 1), and Pd(OAc)2
clearly outperformed other palladium catalysts18 (entries 11
and 12 of Table 1). Finally, we confirmed that subtle
modifications on the DG had a determinant impact on the
reaction outcome, and the OPy motif was the most active DG
toward the target acetylation reaction (Table S3 of the
Supporting Information).16,18

Although we primarily focused on the unprecedented use of
EtOH to acetylate peptides in a site-selective manner, we also
evaluated the parent acylation process of dipeptide 1a using
other related aliphatic alcohols. For instance, inexpensive n-
BuOH, 4-methyl-1-pentanol, and even biologically relevant
palmityl alcohol derived from the corresponding fatty acid

Scheme 1. ortho-Acetylation of Tyr Derivatives

Table 1. Pd-Catalyzed C−H Acetylation of Compound 1a
with Ethanola

entry change from standard conditions 2aa (%)b

1 none 60
2 without Pd(OAc)2 0
3 without T-hydro 0
4 under air 53
5 with EtOH (10 equiv) 40
6 with EtOH as the solvent 0
7 T-hydro (5.0 equiv) 59
8 T-hydro (4.0 equiv) 25
9 K2S2O8 instead of T-hydro 0
10 DCP instead of T-hydro 0
11 Pd(OPiv)2 instead of Pd(OAc)2 44
12 PdCl2(MeCN)2 instead of Pd(OAc)2 46

aReaction conditions: compound 1a (0.15 mmol), EtOH (3.75
mmol, 0.2 mL), Pd(OAc)2 (10 mol %), and T-hydro (6.0 equiv) in
PhMe (1 mL) at 120 °C for 16 h under Ar. T-hydro = tert-butyl
hydroperoxide solution, 70 wt % in water; DCP = dicumyl peroxide.
bYield of isolated product after column chromatography.

Scheme 2. Pd-Catalyzed C−H Acylation of Compound 1a
with Alcoholsa,b

aReaction conditions: compound 1a (0.15 mmol), RCH2OH (0.75
mmol), Pd(OAc)2 (10 mol %), and T-hydro (6.0 equiv) in PhMe (1
mL) at 120 °C for 16 h under Ar. bYield of isolated product after
column chromatography, with the average of at least two independent
runs. cReaction conditions: compound 1a (0.15 mmol), RCH2OH
(0.45 mmol), Pd(OAc)2 (10 mol %), and T-hydro (4.0 equiv) in
PhMe (1 mL) at 120 °C for 16 h under Ar.
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resulted in the exclusive monoacylated products 2ab−2ad in
high yields (Scheme 2).
Noteworthy, in those cases, the amount of alcohol could be

significantly reduced to 5.0 equiv. Likewise, activated benzyl
alcohols20,21 could also be employed to produce the
corresponding aroylated dipeptides in 59−63% yields. Owing
to their higher tendency toward oxidation, the reaction
conditions were slightly modified to avoid the formation of
the diaroylated compound; thus, lower amounts of both
oxidant and alcohol were required. These experiments revealed
that benzyl alcohols could be practical surrogates of

benzaldehydes to perform the ortho-acylation of Tyr
compounds,10c thereby providing exclusively the monofunc-
tionalized products.
We next explored the synthetic scope of the acetylation

manifold featuring EtOH in the challenging setting of short-to-
medium-size peptides (Scheme 3). Notably, peptides bearing
Val (1c), Phe (1d), Lys (1e), Ala (1f), Pro (1g), Gly (1h), Ser
(1i), Asp (1j), Glu (1k), Ile (1l), Tyr (1m), and even Arg
(1p) were found compatible with the reaction conditions and
provided the corresponding acetylated peptides in moderate to
good yields. Note that the N terminus and other oxidizable

Scheme 3. Pd-Catalyzed C−H Acylation of Tyr-Containing Oligopeptides with EtOH and Other Alcoholsa,b

aThe same as for entry 1 of Table 1. bYield of isolated product after column chromatography, with the average of at least two independent runs
with a variable yield by no more than 5% between runs. cUsing PhCl instead of PhMe as the solvent. dCompound 1 (0.15 mmol), alcohol (0.45
mmol), Pd(OAc)2 (10 mol %), and T-hydro (4.0 equiv) in PhMe (1 mL) at 120 °C for 16 h under Ar. eCompound 1 (0.15 mmol), alcohol (0.75
mmol) Pd(OAc)2 (10 mol %), and T-hydro (6.0 equiv) in PhMe (1 mL) at 120 °C for 16 h under Ar.
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amino acid residues housing a free amino, an alcohol, a
carboxylic acid, or a guanidine motif (Lys, Ser, Asp, Glu, and
Arg, respectively) were equipped with protecting groups to
achieve chemoselectivity. Notably, this labeling technique was
applicable to Tyr residues located at the N and C terminals as
well as inner positions. Importantly, tetrapeptide 1n and
hexapeptide 1o having the sequence of biologically relevant
endomorphin-2 and neuromedin N, respectively, were also
acetylated with EtOH, hence showcasing the high utility of this
method toward the site-selective tagging of complex
biomolecules. As previously anticipated, other alcohols could
also be selectively installed at the ortho position of the Tyr unit
within di-, tri-, and tetrapeptide derivatives (2db, 2kb, and 2q
and 2r). In general, the reactions were very clean, and side
products were not observed, albeit full conversion was not
always achieved and sometimes PhMe was replaced by more
oxidizing PhCl. Besides, unlike classical Friedel−Crafts
acetylation, our method features the use of EtOH as a
sustainable C2 source to accomplish a synthetically meaningful
transformation, wherein a high number of C−H bonds are
activated. In this respect, the acylation of compound 1a could
be performed in gram scale when using EtOH and BuOH with
a remarkable 62 and 74% yield, respectively (Scheme 4). In
these cases, the amount of EtOH and oxidant could be slightly
reduced without affecting the reaction outcome, which
represents a promising starting point for applied research.
To gain some insights into the reaction mechanism, we

conducted some control experiments. We found that the
acetylation of compound 1a was suppressed in the presence of
2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), which indi-
cated that a radical pathway may be operative.18 Furthermore,
assuming that EtOH could be oxidized to acetaldehyde within
the course of the reaction, we performed some tests with
MeCHO as the coupling partner.18 When using acetaldehyde
under the acylation conditions previously developed by our
group involving water as the solvent,10c traces of compound
2aa were obtained, which reveals the subtleties of installing a
simple acetyl group. Notably, the use of PhMe as the solvent
resulted in mixtures of mono- and diacetylated products, and
the use of a high excess of MeCHO ushered in the exclusive
formation of diacetylated compound 2aa′ in 62% yield (Table
S4 of the Supporting Information).18 Accordingly, if EtOH is
in situ transformed into MeCHO in the presence of TBHP,22

the reaction mechanism should be akin to those of related
acylations with aldehydes described in the literature.18,21 The
high selectivity toward the monoacetylation could be due to
the lower reactivity of EtOH in comparison to the
corresponding aldehyde.
In summary, we have demonstrated the high versatility of

EtOH as a sustainable feedstock to tag Tyr-containing peptides
in a late-stage fashion. This reliably scalable platform

represents an innovative avenue for the diversification of
Tyr-containing compounds. Salient features of this method are
the widespread availability and low cost of EtOH and other
related alcohols, the compatibility with an aqueous environ-
ment, and the site-selectivity toward the monofunctionalization
of the Tyr unit within a peptide setting. Accordingly, this Pd-
catalyzed acetylation manifold represents a useful tool for the
facile modification of a virtually unlimited number of
biologically relevant peptides.

■ ASSOCIATED CONTENT
*sı Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.orglett.1c02764.

Experimental procedures, syntheses and characterization
of all new compounds, and tables with details of several
optimization studies (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Arkaitz Correa − Department of Organic Chemistry I,
University of the Basque Country (UPV/EHU), 20018
Donostia-San Sebastián, Spain; orcid.org/0000-0002-
9004-3842; Email: arkaitz.correa@ehu.eus

Authors
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