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Abstract

Diffuse optical tomography (DOT), as a functional near-infrared spectroscopy (fNIRS) technique, can estimate three-dimensional (3D)
images of the functional hemodynamic response in brain volume from measured optical signals. In this study, we applied DOT
algorithms to the fNIRS data recorded from the surface of macaque monkeys’ skulls when the animals performed food retrieval
tasks using either the left- or right-hand under head-free conditions. The hemodynamic response images, reconstructed by DOT with
a high sampling rate and fine voxel size, demonstrated significant activations at the upper limb regions of the primary motor area in
the central sulcus and premotor, and parietal areas contralateral to the hands used in the tasks. The results were also reliable in terms
of consistency across different recording dates. Time-series analyses of each brain area revealed preceding activity of premotor area
to primary motor area consistent with previous physiological studies. Therefore, the fNIRS–DOT protocol demonstrated in this study
provides reliable 3D functional brain images over a period of days under head-free conditions for region-of-interest–based time-series
analysis.
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Introduction
Functional near-infrared spectroscopy (fNIRS), a non-
invasive neuroimaging technique, optically measures
hemodynamic changes coupled with neural activity.
This technique estimates changes in oxygenated and
deoxygenated hemoglobin concentrations (HbO and
HbR, respectively) in cortical blood flow using changes
in absorbance of the near-infrared light emitted from
the source optode, passing through the head tissues and
recorded at the detector optode. The spatial resolution
of fNIRS is low (∼5–10 mm), and its imaging depth is
restricted to ∼20–30 mm from the human head surface
due to the limitation of light penetration in the diffusive
tissue (Haeussinger et al. 2011; Tremblay et al. 2018).
However, fNIRS has relatively high temporal resolution
in terms of signal recording and tolerance against motion
artifacts compared with other noninvasive neuroimaging
techniques used for estimating cerebral blood flow
dynamics, such as functional magnetic resonance
imaging (fMRI) and positron emission tomography (PET).
In fMRI and PET measurements, participants’ body and

head movements inside the scanner are severely
constrained. In contrast, fNIRS enables measuring par-
ticipants’ brain activities under fewer body movement
constraints. The recent development of portable fNIRS
systems should render neurological experiments easier
and less expensive than other methods and even make
it possible to record brain activities under naturally
behaving conditions.

Although fNIRS allows participants’ movements dur-
ing recording, it is necessary to remove artifacts originat-
ing from body movements. In cases where the fixation
of a holder that attaches the optode to the participant’s
head is insufficient, the optode fluctuation alters the
optode–scalp gap distance and causes motion artifacts
in fNIRS measurements (Umeyama and Yamada 2013).
Furthermore, physiological signal contamination other
than cortical blood flow changes is a major source of
fNIRS artifacts (Takahashi et al. 2011; Yamada et al.
2012; Scholkmann et al. 2014). When fNIRS signals are
measured from the scalp surface, the effect of blood flow
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changes in the scalp tissue is almost equivalent to that
in the cortical tissue.

Earlier, we proposed a novel experimental system
using nonhuman primates (macaque monkeys) (Yamada
et al. 2018). In our experimental system, fNIRS signals
were measured from the optodes directly affixed to
the skull surface for stable recording from the same
positions without the signal contamination from scalp.
We reported that the signal sensitivity measured in
our system is sufficiently high to capture significant
increases in HbO and decreases in HbR at the channels
close to the motor-related areas contralateral to the hand
movements. Nevertheless, the channel-wise analysis in
the previous study was limited to identifying changes
in brain activity within anatomically defined individual
brain regions. This was because the channel position
indicating the largest activation in such topographic
measurement does not necessarily indicate the foci in
the cortex. This is a common problem encountered in the
channel-wise analysis of both monkey and human fNIRS
data, so it should be overcome through a new analysis
protocol.

Diffuse optical tomography (DOT) (Bluestone et al.
2001) is an imaging method that determines three-
dimensional (3D) volumes of light absorption in diffusive
media, such as head tissues, by measuring the signals
of light propagated in the medium from its surface.
Recently, several DOT algorithms, as extensions of
multichannel fNIRS, have been proposed to provide
3D imaging of cortical hemodynamic changes with
improved spatial resolution and finer signal source
separation, especially in the depth direction (Shimokawa
et al. 2012; Yamashita et al. 2016; Tremblay et al.
2018). However, the choice of optimal DOT algorithms
and parameters depends on the experimental setup,
noise level, and other recording conditions. Hence,
it is essential to investigate the conditions required
for reliable DOT image reconstruction considering the
property of the measured experimental data.

In this study, we focused on cerebral DOT and exam-
ined how the 3D distribution of hemodynamic response
changes can be restored from the fNIRS data in which
major artifacts are substantially eliminated. In the Mate-
rials and Methods section, we briefly explain our fNIRS
experimental system. We then describe the framework
of DOT algorithms and the conditions we tested for
the comparison study. In the results section, we apply
the DOT algorithms to the measured fNIRS data and
report the reliability of DOT reconstruction over different
recording dates.

The contributions of our research are as follows: 1) we
applied DOT algorithms to the fNIRS data recorded from
a nonhuman primate for the first time; 2) the optimal
DOT algorithms and conditions were examined for the
experimental data without signal contamination due to
scalp blood flow, in which the elimination of such con-
tamination is a major issue in DOT algorithm studies; 3)
we demonstrated that DOT image reconstruction could

be stably calculated up to a finer scale close to a submil-
limeter voxel size (0.6-mm cubic voxel); 4) we observed
reliable significant activation at the motor-related areas,
including areas in the sulcus, contralateral to the hand
movements; and 5) we distinguished the peak latency
of hemodynamic response changes in individual brain
areas. These findings and results support the validity
of our fNIRS–DOT protocol, that is, the combination of
DOT and fNIRS measurements from the skull surface,
to reliably investigate 3D brain activity under head-free
conditions for region-of-interest (ROI)-based time-series
analysis.

Materials and Methods
Animals and Care/Experimental Protocols
We originally reported the data from this study in the
previous papers (Yamada et al. 2018; Kato et al. 2020).
Briefly, we used two male Japanese macaque monkeys
that were older than 5 years. The protocol of the present
study was approved by the Institutional Animal Care and
Use Committee of National Institute of Advanced Indus-
trial Science and Technology (AIST) in accordance with
the guidelines within the “Guide for the Care and Use
of Laboratory animals” (Eighth ed., National Research
Council of the National Academies). We described the
details of the animal care protocols in the previous paper
(Kato et al. 2020).

Positioning of Optode Sockets Using MR Images
The positions of primary motor and premotor areas were
first determined using stereotaxic coordinates from the
magnetic resonance (MR) images of the monkey’s brain
using a 3.0T MR scanner (Philips Ingenia 3.0T, Philips
Healthcare, The Netherlands). We used a T1-weighted
turbo field echo sequence (repetition time/echo time,
7.3/3.2 ms; the number of excitations, 2; flip angle,
8◦; field of view, 134 × 134 mm; matrix, 224 × 224; slice
thickness, 0.6 mm; number of slices, 200) and a T2-
weighted turbo spin echo sequence (TR/TE, 1500/283 ms;
NEX, 2; fip angle, 90◦; field of view, 134 × 134 mm; matrix,
224 × 224; slice thickness, 0.6 mm) to obtain MR images
for identifying the anatomical structures of individual
animals. Under anesthesia and sterile condition, we
incised the scalp around the parietal region, including
the motor areas, and fixed optode sockets on the skull
surface using a mixture of acrylic resin and titanium
oxide, matching the optical scattering property to that
of the skull. We described the details of the surgical
procedures in the previous papers (Yamada et al. 2018;
Kato et al. 2020).

fNIRS Recording
We recorded fNIRS signals using a triangular bidirec-
tional optode arrangement (Yamada et al. 2018) that
covers the parietal regions of the monkey’s head as
schematically depicted in Figure 1. The source–detector
distance was fixed as 15 mm with a spatial interval
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Figure 1. The arrangements of the fNIRS optodes and recording channels for the two monkeys. We selected optode pairs at the nearest neighbor as
recording channels covering both hemispheres around the parietal regions, including the motor cortex. Black bars indicate the directions and
positions of optodes. The optode numbers are inside the green circles, and the channel numbers are in red letters between the source and detector
optodes. (a) The 30-channel arrangement in monkey A. (b) The 27-channel arrangement in monkey B. This figure is adopted and modified from
Figure 1 in the paper published by (Kato et al. 2020). Monkeys A and B correspond to monkeys 2 and 1 in the study of (Kato et al. 2020), respectively.
Refer to Supplementary Fig. 1 in the Supplemental Material for top, right, and left views of the optode positions.

among adjacent channels of 7.5 mm. We used the
OMM-3000 (Shimadzu Corporation, Japan) to switch
between illumination and detection in each optode. We
recorded the optical absorbance data at wavelengths
of 780, 805, and 830 nm for each channel and used 30
channels (monkey A) or 27 channels (monkey B) for
the measurements. The absorbance data bidirectionally
measured from the same optode pairs were averaged as
one sample with a time interval of 130 ms (sampling rate
of 7.69 Hz). The details about our recording system were
described in the previous papers (Yamada et al. 2018;
Kato et al. 2020).

Experimental Task
We trained the animals to retrieve a small spherical food
pellet (5 mm in diameter) from the Klüver board with a
cylindrical well (11 mm in diameter) (Yamada et al. 2018;
Kato et al. 2020). Each animal sat in a chair under head-
free conditions during the experiments and retrieved
the food pellets through a slit approximately every 20 s
using each hand alternately. The animals underwent
150 trials (75 left-hand trials and 75 right-hand trials)
in each daily session. The onset time of food retrieval
movement was detected using a Digital Laser Sensor
(LV-11SB with sensor head LV-S72, Keyence, Japan) and
recorded concurrently with the fNIRS signals for event-
related signal analyses. We recorded the fNIRS data for
4 days from monkey A and for 3 days from monkey B.
The total number of left-/right-hand trials was 300 for
monkey A and 225 for monkey B.

fNIRS Data Processing
We converted the raw voltage data into log-ratios using
a base-10 logarithm and applied digital low-pass (But-
terworth filter of order 7, cutoff 0.7 Hz) and high-pass

(Butterworth filter of order 3, cutoff 0.01 Hz) filters. We
further removed the mechanical artifacts using a pre-
viously proposed method (Umeyama and Yamada 2013)
that is based on the fact that changes in absorbance
caused by body motion or noise exhibit different spectro-
scopic properties from those related to tissue hemoglobin
absorption. Then, we segmented each run into trial data
starting 5 s before the hand movement onset and ending
20 s after the onset of the task. We defined the task onset
time as 0 and set the pretask period as [−5 0] s. The base-
line for each trial was adjusted to the average amplitude
during the pretask period and set as 0. We calculated
noise variances from the data during the pretask periods.

Diffuse Optical Tomography
Because the head tissue is a highly scattering medium,
the isotropic light propagation inside the head tissue
can be described by the diffusion approximation of the
radiative transfer equation (Tremblay et al. 2018). If the
absorption changes due to hemoglobin variation are
small relative to the absorption in tissues themselves,
the Rytov approximation leads to a linear relationship
between y (the log-ratio of the light intensity changes
measured from M pairs of source and detector probes)
and x (absorption changes in the N voxels of the dis-
cretized head tissue), as follows (Arridge 1999; Durduran
et al. 2010; Shimokawa et al. 2012; Yamashita et al. 2016):

y = Ax (1)

where A denotes the sensitivity matrix representing light
transmission from sources to detectors across the head
tissue.

Reconstructing x, light absorption in a 3D volume,
from y, the boundary measurement of optical signals, is
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inherently an underdetermined inverse problem (Haber-
mehl et al. 2014). Specifically, countless distributions of
x within the volume can explain the same boundary
measurement y when N � M. Therefore, solving this
inverse problem requires a priori information to con-
strain possible solutions. One approach to solving the
ill-posed inverse problem of DOT is introducing a reg-
ularization term in a cost function and estimating the
optimal solution about absorption inside the head tissue
by minimizing the cost function. The solution estimated
in this manner explains the boundary measurements
while satisfying the a priori constraint described as a
regularization term. Another approach is Bayesian mod-
eling that uses probabilistic models of observations and
constraints, referred to as the likelihood function and
prior distribution, respectively, to calculate the posterior
distribution (Guven et al. 2005; Abdelnour et al. 2010).
The Bayesian modeling approach we used in this study
(Shimokawa et al. 2012; Yamashita et al. 2016) assumes
the hierarchical Bayesian model and uses the variational
Bayesian method to compute the approximated posterior
distribution by solving the maximization problem of the
“free energy” function.

Studies comparing different DOT algorithms have
demonstrated the advantage of the Bayesian model-
ing algorithm over the simple regularization method
in terms of less blurred signal source estimation
(Shimokawa et al. 2012; Yamashita et al. 2016; Tremblay
et al. 2018). This is because the Bayesian modeling algo-
rithm can implement more refined a priori information
about hemodynamic responses in the brain, such as
the sparseness constraint in which brain activity in
response to a certain task is usually localized to a specific
brain area.

The estimated absorption changes at multiple wave-
lengths are then converted into hemodynamic changes
(HbO and HbR) by applying the inverse transformation
of the formulation of the modified Beer–Lambert law as
follows:

⎡
⎢⎢⎣

xλ1
...

xλl

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

εHbO (λ1) εHbR (λ1)

...
...

εHbO (λl) εHbR (λl)

⎤
⎥⎥⎦

[
xHbO

xHbR

]
(2)

where xHbO and xHbR are the concentration variations
of HbO and HbR in the blood volume, respectively. The
parameter ε is the molar extinction coefficient for each
wavelength λ and each Hb species. l is the number of
wavelengths used for fNIRS measurement (in our study
l = 3). xλ1 · · · xλl

are the estimated absorption in the
head volume at multiple wavelengths. In this study, the
molar extinction coefficient values of each Hb species at
wavelengths of 780, 805, and 830 nm were taken from the
literature (Matcher et al. 1995).

Forward Model Construction for DOT
To solve the inverse problem for 3D image reconstruction,
we must establish forward modeling, that is, the com-
putation of the sensitivity matrix A in equation (1). The
forward modeling consists of 1) constructing a discrete
3D head model from anatomical image data, 2) coregis-
tration of fNIRS optodes with the head model, 3) photon
migration simulation, and 4) sensitivity computation of
all voxels in the head model.

In this study, we constructed individual animals’ head
models by segmenting their anatomical T1- and T2-
weighted MR images into six optical layers (i.e., air,
skull, cerebrospinal fluid, gray matter, white matter, and
other soft tissues) using custom-made codes on MATLAB
(MathWorks, USA). After the animals received a scalp
incision surgery to affix optode sockets on their skull,
we scanned the MR images again and generated the
scalp-incised head model by replacing the superficial
soft tissue layer into the air layer around the parietal
region. The fNIRS optode positions were also coregistered
to the scalp-incised head model.

The photon migration process inside the head tissue
was simulated based on finite element modeling for
discretized head models using the customized TOAST
software (Koyama et al. 2005; Oki et al. 2009; Schweiger
and Arridge 2014). In the photon migration simulation,
tissue optical parameters (the coefficients of absorption
and reduced scattering) for the wavelengths used in the
recording (780, 805, and 830 nm) were taken from the
literatures (Firbank et al. 1993; van der Zee et al. 1993;
Simpson et al. 1998; Okada and Delpy 2003). A refractive
index of n = 1.40 was used for all tissue layers. Then, we
assigned wavelength and tissue-specific optical proper-
ties to all the voxels in the head models, and light prop-
agation was simulated concerning the coregistered posi-
tions of optodes. Finally, the light transmission of each
source–detector pair in the head volume, that is, spatial
sensitivity profile of each optode pair, was obtained by
calculating the photon measurement density function
in each voxel and was normalized by the mean optical
path length (Arridge and Schweiger 1995; Okada et al.
1995; Kawaguchi et al. 2007). We computed the spatial
sensitivity profiles of all optode pairs to form sensitivity
matrix A using the head model composed of 0.6-mm
cubic voxels. As the sensitivity matrix A with low val-
ues renders the DOT calculation numerically unstable,
we eliminated the voxels whose sensitivity values were
smaller than a defined threshold (0.001 after normalizing
the sensitivity). The normalized sensitivity was defined
as the summation of sensitivity values across all chan-
nels divided by the maximum sensitivity value within
the whole brain (gray matter). Supplementary Figures 2
and 3 in the Supplementary Material depict estimated
spatial sensitivity profiles for each animal. The voxels
in gray matter tissues ranging from frontal to parietal
brain regions and from the brain surface to several mil-
limeters in depth were selected for the subsequent DOT
calculation.

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
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Image Reconstruction Algorithms
The Modified Minimum-Norm Method

We tested two algorithms for image reconstruction from
the measured fNIRS data.

The first algorithm is the modified minimum-norm
method (hereafter denoted as MN) (Hämäläinen and
Ilmoniemi 1994). MN is one of the standard DOT
methods formulated as an example of the regularization
approach. It uses a regularization term consisting in
the L2-norm of the solution under the assumption
that the best solution is the one with minimum overall
energy. The MN algorithm that we used minimizes a cost
function as follows:

x̂ = argminx

((
y − Ax

)T
�−1 (

y − Ax
) + α‖x‖2

)
(3)

where � is the observation noise covariance matrix,
computed from fNIRS data during pretask periods.
More specifically, we computed the regularized noise
covariance matrix using individual trial data to avoid
instability and inaccuracy in the calculation of its inverse
matrix as follows:

� = �̃ + βsIM (4)

�̃ = 1
| Tpre |

V∑
v=1

∑
t∈Tpre

ytvyT
tv (5)

s =
trace

(
�̃

)
M

(6)

where IM is the M × M identity matrix. ytv is the measured
fNIRS data of all channels at time t of trial v, Tpre is a
set of time points during the pretask period, and | Tpre |
denotes the number of time points. β is a regularization
parameter.

The analytical solution of the optimization in equation
(3) is

x̂ = (
AT�−1A + αIN

)−1
AT�−1y (7)

where IN is the N × N identity matrix. For computing
the MN solution, we obtained the optimal regularization
parameter α by maximizing the marginal likelihood using
100 values in a logarithmic range, as implemented in
our custom-made software (refer to the Supplemental
Material for the details of this parameter search).

In the main experiments, we tested 6 different con-
ditions of the MN algorithm as shown in Table 1. We
controlled 1) the type of noise covariance matrix (full
matrix or diagonal matrix), that is, whether to consider
noise correlation between different channels or not, and
2) the regularization parameter β of the noise covariance
matrix, whose values were {1, 10−2, 10−4}. A larger β

indicates a larger modeling error in noise covariance esti-
mation (refer to the Supplemental Material for how we
set this parameter range). We hereafter designate each
MN method of different conditions as MN201, MN202,
and so on, respectively.

Table 1. The list of conditions tested for DOT image
reconstruction using the MN algorithm

MN201 MN202 MN203 MN204 MN205 MN206

Type of noise
covariance matrix

Full Full Full Diagonal Diagonal Diagonal

Regularization
parameter β

1 10−2 10−4 1 10−2 10−4

Notes: We controlled 1) the type of noise covariance matrix (full or diagonal
matrix) and 2) the regularization parameter β of the noise covariance matrix.

The Hierarchical Variational Bayesian Method

The second DOT algorithm is the hierarchical variational
Bayesian method (denoted as VB) that refines the solu-
tion of the MN algorithm using more detailed a priori
information about brain activity. The VB algorithm that
we tested (Shimokawa et al. 2012; Yamashita et al. 2016)
is designed to separate explicit absorption changes in the
scalp and those in the cortex with the combination of
high-density measurements of fNIRS signals. However,
because the signal contamination from scalp was elimi-
nated in our data, we primarily focused on the parame-
ters and conditions related to noise estimation and brain
activity.

As a prior constraint about the cortical absorption
changes x, we assume that locally extended hemody-
namic activation is represented by the sparse absorption
changes z convolved with the spatial smoothing operator
W as follows:

x = Wz (8)

The smoothing radius parameter is the half-width of the
Gaussian distribution of the spatial smoothing operator
W that determines the minimal spread of brain activa-
tion.

Concerning the prior distribution P(z), the VB algo-
rithm incorporates the relevance parameters at each
voxel that control the amplitude range of absorption
changes in the corresponding voxels, that is, the prior
belief in the spatial patterns of P(z) (the initial value is
given by an MN solution). The prior distribution of the
relevance parameters is described as gamma distribution
with shape parameter (γ0 in equation (8) in the study
of (Yamashita et al. 2016)). As the shape parameter γ0

regulates the confidence about the prior belief given as
a form of relevance parameters, we hereafter refer γ0 as
“prior confidence.”

In the main experiment, we tested 48 different con-
ditions by changing 1) the initial value, chosen from
the 6 solutions of different MN methods in Table 1; 2)
the smoothing radius parameter, either {0 or 2} mm;
and 3) the prior confidence γ0, whose values were {0,
10−3, 10−2, 10−1}. The estimated activation is expected to
spread wider for larger smoothing radiuses. Additionally,
higher γ0 values lead to higher prior confidence. As γ0

increases, VB estimation relies more on the initial esti-
mation by the MN method. The type of noise covariance

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data


6 | Cerebral Cortex Communications, 2022, Vol. 3, No. 1

Table 2. The lists of hyperparameters and conditions examined for DOT image reconstruction using the VB algorithm

(a)
VB201 ∼ 208 VB209 ∼ 216 VB217 ∼ 224 VB225 ∼ 232 VB233 ∼ 240 VB241 ∼ 248

Initial value MN201 MN202 MN203 MN204 MN205 MN206

(b)
i = [0,1,2,3,4,5] VB201 + 8i VB202 + 8i VB203 + 8i VB204 + 8i VB205 + 8i VB206 + 8i VB207 + 8i VB208 + 8i

Smoothing radius (mm) 0 0 0 0 2 2 2 2
Prior confidence (γ0) 0 10−3 10−2 10−1 0 10−3 10−2 10−1

Notes: We controlled 1) six initial values, 2) two smoothing radius values, and 3) four prior confidence values. (a) The list of initial values used by each VB method.
VB201–VB208 uses the solution of MN201 as their initial values but differ by their smoothing radius value and prior confidence value as listed in b. (b) The list of
smoothing radius and prior confidence values used in each VB method. VB201 + 8i denotes the set of the methods of [VB201, VB209, VB217, VB225, VB233, and
VB241] and VB202 + 8i denotes [VB202, VB210, VB218, VB226, VB234, and VB242], and so on. Methods in the same set differ by their initial values listed in (a).

matrix and the regularization parameter (β) were set
as the same as those of the MN method used as the
initial value. Table 2 describes the conditions that we
tested using the VB algorithm. We hereafter refer to
each VB method of different conditions as VB201, VB202,
and so on. We iterated the calculation for maximizing
free energy until its relative change with iteration was
lower than 1e−10 (minimum iteration time was set as
500 times). We restricted the estimation of brain activ-
ity only within the voxels corresponding to gray matter
tissues whose normalized sensitivity was >0.001. We
updated the observation noise variance in the iteration
process. We tested only two values as smoothing radius
because much difference as far as the values of {2, 4, 8}
mm was not observed in a pilot study (Supplementary
Fig. 4 and Supplementary Tables 1–3 in the Supplemen-
tary Material).

Statistical Analysis
We calculated the concentration changes of HbO and
HbR in gray matter tissues using several DOT methods
with different algorithms (MN and VB), and different
hyperparameters and conditions. Then, we calculated
the mean hemodynamic response change after the onset
of the task ([0 10] s) of each voxel and statistically tested
the difference between left-hand trials and right-hand
trials using an unpaired two-sample t-test. In this man-
ner, we obtained the 3D distributions of the t-values in
gray matter tissues for each animal, Hb species, recording
date and DOT method (“t-value images”). We calculated
the t-values based on the left-hand trials relative to
the right-hand trials. Thus, voxels showing positive t-
values indicate that the voxels are activated more by
left-hand trials than by right-hand trials (L > R), and
voxels showing negative t-values indicate vice versa
(L < R). We adopted the max t method to determine
significantly activated voxels to correct the family-wise
error rate in multiple comparison tests (Nichols and
Hayasaka 2003); we randomly assigned data of individual
trials as one of two labels, and t-values were calculated

for each voxel using the randomly assigned labels 2000
times. The threshold of t-values was determined as
the top 0.5% highest t-value of this permutation test.
Finally, the voxels whose t-values exceeded the threshold
were extracted as the areas significantly activated at a
significance level of 0.5% by left-hand or right-hand tasks
(“activated-area map”).

Reliability Evaluation of DOT Reconstruction
We quantitatively evaluated the reliability of DOT
reconstruction using several metrics. First, we classified
all voxels into “significant (L > R) activation,” “significant
(L < R) activation,” or “No significant activation,” based
on the t-values calculated from single-day data. We then
quantified the consistency of the classification across
dates by calculating Fleiss’s kappa (Fleiss 1971) and
Gwet’s AC1 coefficient (Gwet 2008a, 2008b); we assumed
the 3-class classification results for N voxels from D
dates, as the 3-class rating results for N samples by D
raters and calculated the agreement of rating results
across raters as Fleiss’s kappa. Gwet’s AC1 coefficient
is a similar agreement index as Fleiss’s kappa, while
mitigating the vulnerability to a certain imbalance in the
rating results (Wongpakaran et al. 2013). We calculated
the mean Dice coefficient as the third measure; we
extracted the voxels of “L > R” label and “L < R” label
and calculated the similarity of classification results
between all pairs of different dates. We also calculated
the mean detection rate (the rate of voxels showing
significant task modulation of all interested voxels)
based on the single-day data to evaluate the constancy
of DOT reconstruction across dates. Regarding other
metrics, we segmented t-value images into several
ROIs (see next section for the details) and calculated
intraclass correlation coefficient (1,1) (McGraw and Wong
1996). Specifically, we evaluated the difference between
the mean t-values from two ROIs with respect to the
variance across different dates as a way to assess the
reproducibility of DOT image reconstruction.

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data


DOT Using fNIRS Signals from the Macaque Monkey Hayashi et al. | 7

Time-Series Plot of HbO and HbR Changes in
Individual Brain Areas
We performed regional parcellation by applying the non-
linear alignment of a digital anatomical atlas (D99 atlas
(Reveley et al. 2017)) to the brain images of individual
animals using the AFNI analysis package (Cox and Jes-
manowicz 1999). Next, we manually merged areas, espe-
cially small areas, based on coarser anatomical taxon-
omy. However, the primary motor area (F1) was manually
parcellated into the hand area (the medial bank of the
central sulcus and the neighboring gyrus at the rostro-
caudal levels through the superior genu of the central
sulcus) and the other area. Finally, we selected 44 brain
areas whose area size was larger than 50 voxels in both
animals for further ROI-based analysis.

We averaged the HbO/HbR changes within the voxels
of each brain area after DOT reconstruction. We then
calculated the trial-averaged HbO/HbR changes for left-
hand and right-hand tasks. To visualize the bilateral
difference in the time plot of HbO and HbR changes in
individual brain areas, we subtracted the time series data
of HbO/HbR changes for right-hand tasks from those for
left-hand tasks and calculated the confidence interval of
these L-R time-series data using a bootstrap procedure
(repeat time = 1000). We interpreted the increase in HbO
changes and the decrease in HbR changes in the brain
areas contralateral to the hand movement as “contralat-
eral hand modulation.” The peaks of the contralateral
hand modulation were defined by maximum or mini-
mum of the L-R time-series data within the time window
of [0 10] s. The brain areas whose modulation peak was
10 times smaller than the maximum modulation peak in
the animal were eliminated from the analysis after peak
detection. We also eliminated the frontal areas in the left
hemisphere from the analysis because no contralateral
hand modulation was observed.

Results
3D Activated-Area Map
We investigated two different DOT algorithms (MN and
VB) by systematically manipulating hyperparameters
and conditions to reconstruct the 3D images of HbO
and HbR changes in the brain volume from the fNIRS
signals recorded from the skull surfaces of monkeys. We
observed that the DOT algorithms stably calculated the
images and the value of algorithm’s objective function
(free energy) monotonically converged within several
iterations. We obtained the reconstructed 3D images
of HbO and HbR changes with the voxel size of 0.6-
mm cubic voxels (refer to Supplementary Figs 5 and 6
in the Supplementary Material). The resolution of DOT
images reported in this study was higher than that of
our previous human DOT study; the voxel size of the
reconstructed images using the same DOT algorithm
was 4-mm cubic voxels in the previous study (Yamashita
et al. 2016), in which the optical signals were recorded

from the scalp surfaces of human subjects with a probe
interval of 13 mm.

We next statistically analyzed the hemodynamic
response changes between left-hand and right-hand
trials to identify the voxels that demonstrated significant
modulation depending on the side of the hand used
in the task. We merged the fNIRS data recorded on
different days within each animal and applied a t-test
to the reconstructed images of HbO and HbR changes,
respectively. Positive t-values indicated that the voxels
demonstrated larger Hb change in the left-hand task
than in the right-hand task, and negative t-values
indicated vice versa. Figure 2 depicts the color maps of
t-values for HbO, overlaid on the head model sectioned in
coronal planes (for HbR, refer to Supplementary Fig. 7 in
the Supplementary Material). The voxels whose t-values
exceeded 0.5% significance level are shown in the figure.
The results revealed significant cerebral hemodynamic
modulation around the upper limb regions of the
primary motor area, especially in the anterior bank of
the central sulcus (white arrows in Fig. 2), as well as the
premotor (black arrowheads) and parietal areas (white
double arrowheads) contralateral to the hand movement
in both animals.

In contrast, weak but significant activity was also
observed at the frontal areas in the ipsilateral hemi-
sphere (L > R in monkey A and L < R in monkey B).
When we defined the “core activated areas” as voxels
whose t-values exceeded the criteria of the top 5%
highest and lowest t-values (Supplementary Fig. 8 in the
Supplementary Material), the areas were limited more to
the contralateral hemisphere (refer to Supplementary
Figs 9 and 10 in the Supplementary Material for the
detailed inspection of core activated areas).

Evaluation of the DOT Reconstruction
It is considered that the increase in regional cerebral
blood flow in response to neural activity produces an
increase in HbO and a decrease in HbR. Therefore, reli-
able DOT reconstruction should yield a negative corre-
lation between the t-value images for HbO and HbR. It
is important to note that the activated-area maps for
HbO and HbR were nearly identical with a sign reversal,
thereby supporting the reliability of DOT reconstruction
(Fig. 2 and Supplementary Fig. 7). Figure 3a shows that
the correlation coefficients between the t-value images
for HbO and HbR are close to −1, except for the VB meth-
ods using the diagonal noise covariance matrix (VB225–
VB248). We also calculated the overlap rate between the
core activated-area maps for HbO and HbR (maps in Sup-
plementary Figs 9 and 10 in the Supplementary Material),
as shown in Figure 3b. Again, all DOT methods, except
for the VB methods using the diagonal noise covariance
matrix, demonstrated a high overlap rate.

To evaluate the reliability of different DOT methods in
another manner, we next calculated the consistency of
the reconstruction results across recording dates using
several metrics as described in methods. Figure 4a–d

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
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Figure 2. Color map of t-values (activated-area map) for HbO that exceeded the significance level of 0.5%. Plots are based on the reconstruction results
using the MN201 method after merging data across dates. T-value map was overlaid on the coronal sections of the head model images. The numbers
indicate the distance of each coronal section from the auditory canal in the anterior–posterior axis (all sections are anterior). (a) T-value map for
monkey A. (b) T-value map for monkey B. Upper panels in (a) and (b) depict the brain areas that are significantly more activated by left-hand tasks
than by right-hand tasks (L > R), and the lower panels depict vice versa (L < R). Significant cortical hemodynamic modulation was revealed around the
upper limb regions of the primary motor area, especially in the anterior bank of the central sulcus (white arrows), as well as the premotor (black
arrowheads) and parietal areas (white double arrowheads) contralateral to the hand movement in both animals.

shows the results of reliability evaluation using Gwet’s
AC1 coefficient, Fleiss’s kappa, Dice coefficient, and
detection rate. MN201 and the VB methods that used
the MN201 solution as the initial values (VB201–208)
provided relatively high reliability scores and detection
rates compared with other methods in all measures.
Three-way ANOVA conducted on the results of the VB
methods for these four metrics revealed significant main
effect of “initial value” (=choice of hyperparameters
related to the MN algorithm) for all four measures

(Supplementary Table 4 in the Supplementary Material).
These results indicate that appropriate regularization
parameter (β = 1) and noise covariance calculation,
including interchannel noise correlation, are critical for
obtaining reliable DOT reconstruction for consistency
across dates. Fleiss’ kappa is >0.6 in our best MN and
VB methods, indicating that the agreement of the task-
dependent activation pattern across dates is substantial.
To investigate the effect of additional prior informa-
tion dedicated to the VB algorithm, we conducted a

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
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Figure 3. Comparison between image reconstruction results from different DOT methods. X-axis labels indicate the DOT methods used. Error bars
indicate the SE. T-value images were calculated from the data merged across different recording dates in this analysis. (a) Mean correlation coefficient
between t-value images for HbO and HbR. Data were averaged over two animals. (b) Overlap rate between core activated-area maps for HbO and HbR.
Core activated areas were defined by voxels that exceeded the criteria of the top 5% highest and lowest t-values as depicted in Supplementary Fig. 8 in
the Supplementary Material. Data were averaged over the two animals, Hb species (HbO and HbR), and tasks (L > R and L < R).

many-to-one comparison using Dennett’s test between
MN201 and the VB methods using the MN201 solution
as the initial value. The test result did not reveal any
significant difference, except for the detection rate
measure (Supplementary Table 5 in the Supplementary
Material), indicating that the VB algorithm did not
overcome the MN algorithm in our experiment.

ROI-Based Analysis
The ROI-based analysis (analysis based on individual
brain areas) of the HbO images reconstructed using the
MN201 method showed a core in the task-modulated
activation (top 5% voxels, Supplementary Fig. 9 in

the Supplementary Material) at intraparietal areas
(VIP, LIPv, LIPd, and area 7a), area 7b, area 5, primary
somatosensory area (areas 1–2), area 3a/b, primary motor
area (F1), dorsal premotor area (F2), and ventral premotor
area (F4) in the hemisphere contralateral to the hand
used in the tasks commonly in both animals. Monkey
B additionally showed significant core activation of
L > R at right AIP. Most of the above-listed areas were
constantly identified as core activated areas using the
MN and VB201–VB208 methods. We also calculated the
maximum and minimum t-values of 44 brain areas as
an intensity measure of task modulation in individual
brain areas. The average correlation coefficients between

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
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Figure 4. Reliability measures and detection rate of different DOT methods (voxel-based single-date analysis). X-axis labels indicate the DOT methods
used. Mean values were calculated across the two animals and Hb species for all metrics. Error bars indicate the SE. (a) Gwet’s AC1 coefficient. (b)
Fleiss’s kappa. (c) Dice coefficient. (d) Detection rate.

ROI-wised task modulation measures of every different
2 days were high (correlation coefficient > 0.9) for
MN201 and VB201–V208 (Supplementary Fig. 11 in the
Supplementary Material). Figure 5 shows the intraclass

correlation coefficients (1,1) from t-value images seg-
mented into ROIs. The reproducibility of DOT recon-
struction defined by this measure also produced a
high correlation coefficient when using MN201 and

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
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Figure 5. Intraclass correlation coefficients (1,1) between t-value images from different DOT methods (ROI-based single-date analysis). X-axis labels
indicate the DOT methods used. Mean values were calculated across the two animals and Hb species. Error bars indicate the SE.

VB201–V208 (refer to Supplementary Fig. 12 in the
Supplementary Material for the voxel-based intraclass
correlation coefficient (Shou et al. 2013) between left-
hand and right-hand trials using the original DOT
images). These findings indicated the constancy of
DOT reconstruction across dates in terms of ROI-based
analysis as well as voxel-based analysis.

Figure 6 depicts how HbO and HbR concentrations
changed over time in each brain area for each animal.
We subtracted the mean HbO/HbR signals of right-hand
trials from those of left-hand trials (L-R changes) and
plotted them as red/blue lines, respectively. The areas
in the right hemisphere show increment in the L-R HbO
changes and decrement in the L-R HbR changes. In con-
trast, the areas in the left hemisphere show vice versa,
indicating how contralateral hand modulations changed
over time. Cross-correlation analysis between the time-
series of HbO/HbR changes in the listed 44 areas (Supple-
mentary Fig. 13 in the Supplementary Material) indicated
that the cortical areas were roughly divided into three
regions in terms of activation timing, viz., 1) frontal
areas (around area 8, area 9, and area 46), 2) premotor
(F2 and F4) and primary motor (F1 hand area) areas,
and 3) primary somatosensory (1–2) and parietal areas
(area 3, AIP, area 5, area 7). The peak latencies of con-
tralateral hand modulation were earliest in the right
frontal areas (2.89 ±0.989 s (mean ± standard deviation,
SD)), followed by premotor and primary motor areas
(4.17 ±0.833 s), and then somatosensory and parietal
areas (4.78 ±0.389 s) in both hemispheres. The main
effect of regional difference on peak latency was signif-
icant (one-way ANOVA: F = 50.13, df = 81, P � 0.001), and

multiple comparisons showed that the peak latencies
of the three regions were significantly different from
each other. We also compared the peak latency for trial-
averaged HbO/HbR changes of individual voxels within
the dorsal premotor area (F2) and primary motor hand
area (F1 hand area). The mean peak latencies of top 300
voxels of largest modulation in HbO change in the dorsal
premotor area and those in the primary motor hand
area were 3.76 ±0.437 s (mean ± SD) and 3.94 ±0.410 s,
respectively (the mean peak latencies for changes in HbR
were 4.30 ±0.612 and 4.32 ±0.546 s, respectively). Figure 7
shows histograms of individual voxels’ peak latencies
for HbO and HbR. The nonparametric Wilcoxon rank-
sum test showed that the difference in HbO peak latency
was significant (z value = −10.9565, rank-sum = 1 256 082,
P � 0.001). Although some voxels in F2 showed an earlier
HbR peak latency than what was observed for any voxel
in the F1 hand area, we did not find any significant
differences in overall HbR peak latency between the two
areas.

We also observed the overall contralateral hand mod-
ulation even in the time plot of single-trial data (Supple-
mentary Fig. 14 in the Supplementary Material). These
results demonstrate the potential of our fNIRS–DOT pro-
tocol to analyze the brain activity changes in each corti-
cal area at a sampling rate as high as 7.69 Hz.

Discussion
Our study demonstrated that oxygenated and deoxy-
genated Hb changes in the cortical blood volume could
be reconstructed as 3D images by DOT with a relatively

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgab064#supplementary-data
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Figure 6. Trial-averaged time plot of HbO/HbR changes in each brain area estimated using the MN201 method. Red lines indicate the mean L-R HbO
changes (left-hand trials minus right-hand trials), and blue lines indicate the mean L-R HbR changes. Shaded areas represent a 95% confidence
interval estimated by permutation test (repeat time = 1000). The areas in the right hemisphere show increment in L-R HbO changes and decrement in
L-R HbR changes, whereas the areas in the left hemisphere show vice versa. (a) Time plots for monkey A. (b) Time plots for monkey B.
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Figure 7. Histogram of peak latency of top 300 voxels in the dorsal premotor area (F2) and the primary motor hand area (F1 hand area). Blue bars
indicate the frequency distribution of peak latencies in the F2, and red bars indicate those in the F1 hand area. (a) Histogram from HbO responses. (b)
Histogram from HbR responses.

high sampling rate and fine voxel size. In contrast to our
previous monkey fNIRS studies, the present study local-
ized the activity changes in gray matter tissues along
the central sulcus. According to the previous histologi-
cal study, the primary motor area has two subdivisions.
One is an evolutionarily old rostral region that lacks
corticomotoneuronal cells. The other is a caudal region
located along the anterior bank of the central sulcus.
The latter is present only in some higher primates and
humans and contains shoulder, elbow, and finger cor-
ticomotoneuronal cells (Rathelot and Strick 2009). An
fNIRS–DOT technology that can identify activation pro-
files within the sulcus could reveal a more detailed pic-
ture of brain activity related to dexterous hand move-
ments than can be obtained using conventional fNIRS
topography.

Our study results showed that contralateral hand
modulation appeared first in frontal areas, followed by
premotor to primary motor areas, and then in parietal
areas. We also found that the peak latency for HbO
changes in the voxels within the dorsal premotor area
preceded those within the primary motor area. This
finding is consistent with previous physiological studies
showing that the single-unit activity recorded in the
dorsal premotor area precedes the unit activity in the
primary motor area (Cisek et al. 2003; Umilta et al.
2007). Therefore, the fNIRS–DOT protocol demonstrated
in our study is a promising approach to explore the
dynamics of networks through ROI-based time-series
analysis while the animal behaves freely, a situation
where other imaging technologies, such as fMRI and PET,
cannot be used. A method that enables the recording of
hemodynamic response signals at a high sampling rate
will be useful for causality analysis or other time-series
analyses.

We note several explanations for why we achieved
good DOT reconstruction results. In our experimental
system, optodes were directly affixed to the skull, which
likely reduced any motion artifacts. Additionally, fNIRS
signals in our system are not contaminated by scalp
blood flow, which is a serious problem for usual DOT
reconstruction. Furthermore, we benefited from using
monkeys who have smaller heads than humans, which
led to a better SNR than has been possible in previous
human studies.

Developing better brain imaging techniques for animal
experiments has its own significance because the
techniques can be used together with other invasive
experimental techniques such as electrode recording,
drug/virus injection, and/or cortical lesioning. In fact,
we demonstrated that our fNIRS system was valuable
to investigate the brain function changes after the
surgically introduced lesion of the primary motor cortex,
which revealed the cortical areas that were newly
recruited for the recovery of hand movements after
the legion (Kato et al. 2020). Studies using fNIRS on
animals combined with other invasive techniques would
also be critical to clarify the relationship between the
hemodynamic responses and the underlying neural
mechanism, whose relationship is not yet completely
uncovered (Logothetis et al. 2001; Sheth et al. 2004). We
can also expect to accelerate translational research from
invasive monkey fNIRS studies to noninvasive human
fNIRS studies.

Nonhuman primate research is critical in examining
the neural substrate of complex cognitive and/or motor
functions as human functions (Courtine et al. 2007). We
selected macaque monkeys as an animal model for our
research on hand movement control because these mon-
keys have a highly developed dexterous hand function
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that is similar to that in humans (Isa et al. 2007; Lemon
2008). The homology between humans and macaques
is also observed in the visual system (Kiani et al. 2007;
Kriegeskorte et al. 2008). Hence, the significance of our
proposed fNIRS–DOT protocol is not limited to the study
of motor function alone. It also applies to visual func-
tion and the multimodal interaction between them. We
confirmed that fNIRS recording from the skull surface
above the visual cortex, where we electrophysiologically
measured the unit activity in response to visual object
images (Hayashi and Kawata 2018), can provide visually
evoked signals with a high signal-to-noise ratio as well.

Our results demonstrated that reconstructed HbO
images negatively correlated with HbR images, and
the maps of statistically significant HbO/HbR changes
corresponded very well with each other. The strong
negative correlation between HbO and HbR changes was
observed only in previous animal experiments conducted
using skull-exposed rodents (Berwick et al. 2002; Sheth
et al. 2004; Dunn et al. 2005). Our results provide further
support for the negative coupling of HbO and HbR in the
cortex, on which coupling some hemodynamic signal
separation methods for noise reduction (Yamada et al.
2012; Cui et al. 2010) relies.

Our study also provided several insights into the opti-
mal configuration of DOT algorithm using real exper-
imental data without major signal contaminations or
artifacts. After systematically exploring the hyperparam-
eters and conditions in the DOT process, we confirmed
that the reconstruction results are more reliable when
using individual trial data than trial-averaged data (Sup-
plementary Fig. 4 in the Supplementary Material) proba-
bly because animal behavior and hemodynamic change
fluctuate trial by trail. In addition, the trial data could
allow for more reliable noise covariance estimation than
trial-averaged data, as the number of data samples is
much larger. It is also very critical to optimize the regu-
larization parameter of the noise covariance matrix, and
the covariance calculation should include interchannel
noise correlation. However, the VB methods provided reli-
able results irrespective of hyperparameters about the
minimal spread of brain activity (smoothing radius) and
the prior confidence parameter when DOT calculation
started from a near-optimal solution provided by an MN
method. We did not observe any clear advantage of the
VB algorithm over the MN algorithm in the present study.
The VB algorithm would provide finer source separation
if we measured dense fNIRS signals with more opti-
cal path overlaps to make available spatial information
about the underling brain activity redundant for the
source estimation (Shimokawa et al. 2012; Yamashita
et al. 2016).

Although the voxel size of the reconstructed image
was as fine as 0.6-mm cubic-voxel in our study, it does
not mean that the activation foci can be distinguished
with as high spatial resolution as the image resolution.
Nevertheless, image reconstruction with a fine voxel
size is critical for accurate ROI-based analysis. It is the

future study to examine whether we can distinguish
different functional brain areas such as the hand or
the elbow area within the same hemisphere using our
protocol.

If fNIRS recording were phase-locked at a fixed period,
then the signal would be affected by underlying low-
frequency oscillations (e.g., Mayer waves around every
10 s). Although we provided the food pellets approx-
imately every 20 s, fNIRS data were taken when the
monkeys were voluntarily moving their hands. In addi-
tion, the Mayer wave component in the fNIRS signal
is supposed to originate from the myogenic activity of
vessels and is generally observed from all channels only
in HbO. In contrast, our experimental data showed clear
negative coupling between HbO and HbR in the brain
areas contralateral to the hand used in the reaching task.
Therefore, we concluded that the contribution of Mayer
waves to our observations was minor.

The proposed fNIRS–DOT protocol requires an invasive
operation that is currently inapplicable to human
studies. However, the fNIRS optodes were assembled
with LEDs and photodetectors aligned on a flexi-
ble substrate (Yamakawa et al. 2019) and the chips
of LEDs and photodetectors can be technologically
miniaturized to a submillimeter scale. Therefore, it
would be feasible to implant such miniaturized probes
under the scalp in a relatively less invasive manner
in future and to use our fNIRS–DOT protocol for
obtaining high-resolution 3D functional brain imaging
data from human participants under naturally behav-
ing situations. The critical factors for reliable DOT
image reconstruction and the methodology used to
evaluate the reliability of the reconstruction results
demonstrated in our study would be informative even
in such a future human fNIRS study considering the
homology between human and nonhuman primates
in terms of anatomical and functional brain struc-
tures.

In summary, we demonstrated for the first time that
DOT could provide reliable 3D functional brain images
with a fine voxel size when using the fNIRS signals
recorded directly from the monkey’s skull surface. We
also showed that significant activation was constantly
observed at the motor-related areas, including areas in
the central sulcus, contralateral to the hand movement,
although fNIRS data were recorded under head-free con-
ditions. In contrast to fMRI and PET, our fNIRS–DOT
protocol allowed us to investigate the timing of hemody-
namic response changes in individual brain areas at high
sampling rate (>7.69 Hz).
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