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ABSTRACT

Introduction: Physicians are often required to
make treatment decisions for patients with
Crohn’s disease on the basis of limited objective
information about the state of the patient’s
gastrointestinal tissue while aiming to achieve
mucosal healing. Tools to predict changes in
mucosal health with treatment are needed. We
evaluated a computational approach integrat-
ing a mechanistic model of Crohn’s disease
with a responder classifier to predict temporal
changes in mucosal health.
Methods: A hybrid mechanistic–statistical
platform was developed to predict biomarker

and tissue health time courses in patients with
Crohn’s disease. Eligible patients from the
VERSIFY study (n = 69) were classified into
archetypical response cohorts using a decision
tree based on early treatment data and baseline
characteristics. A virtual patient matching
algorithm assigned a digital twin to each patient
from their corresponding response cohort. The
digital twin was used to forecast response to
treatment using the mechanistic model.
Results: The responder classifier predicted
endoscopic remission and mucosal healing for
treatment with vedolizumab over 26 weeks,
with overall sensitivities of 80% and 75% and
overall specificities of 69% and 70%, respec-
tively. Predictions for changes in tissue damage
over time in the validation set (n = 31), a mea-
sure of the overall performance of the platform,
were considered good (at least 70% of data
points matched), fair (at least 50%), and poor
(less than 50%) for 71%, 23%, and 6% of
patients, respectively.
Conclusion: Hybrid computational tools
including mechanistic components represent a
promising form of decision support that can
predict outcomes and patient progress in
Crohn’s disease.
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Key Summary Points

Why carry out this study?

The poor correlation in Crohn’s disease
(CD) between the presence of symptoms
and mucosal health makes it difficult for
patients to appreciate the need for
continued treatment.

Patient’s perception that no treatment
may be required is a key driver of
nonadherence.

What did the study ask?

Can a novel computational platform
predict the evolution of mucosal health in
patients with CD to provide treatment
milestones without the need of an
endoscopic evaluation and drive improved
physician–patient conversations?

What were the study
outcomes/conclusions?

The platform predicted endoscopic
remission and mucosal healing after
treatment with vedolizumab for 26 weeks
with an overall sensitivity of 80% and
75% and overall specificity of 69% and
70%, respectively.

What was learned from the study?

The computational platform developed
and validated in this study could be used to
predict the evolution of tissue damage in
response to treatment with vedolizumab.

With further clinical validation, the
platform could be used to predict the
progress of mucosal healing in patients
with CD undergoing treatment and
support shared decision-making.

DIGITAL FEATURES

This article is published with a video feature to
facilitate understanding of the article. To view
the video feature for this article go to https://
doi.org/10.6084/m9.figshare.19411058.

INTRODUCTION

Crohn’s disease (CD) is a chronic, relapsing
inflammatory disease of the gastrointestinal
(GI) tract. Current evidence points to the dis-
ease being caused by a combination of dysreg-
ulated immune response, altered microbiota
(dysbiosis), genetic susceptibility, and environ-
mental factors that contribute to the breakdown
of barrier function [1–5]. Disease onset often
occurs at a young age [6]. Untreated, a feedback
loop between tissue damage and inflammation
[7] drives progression of the disease, which can
result in complications, such as fistulae (perfo-
rations in the intestinal walls) and strictures
(narrowing of the lumen). Treatment for CD has
historically focused on controlling disease
activity to alleviate or eliminate symptoms,
often defined in subjective scales. More
recently, emphasis has shifted toward treat-
ments that promote tissue healing and restore
mucosal function [8–10]. Response is evaluated
in terms of objective metrics, such as ulcerated
area or ulceration patterns in the GI tract, which
are typically included in scores such as the
Crohn’s Disease Endoscopic Index of Severity
[11] and Simple Endoscopic Score for Crohn’s
Disease (SES-CD) [12]. Importantly, the pro-
gression of tissue damage often has a different
trajectory to the occurrence of symptoms. Loose
coupling between symptoms and the condition
of the mucosa, combined with the limited fre-
quency at which endoscopic evaluations can be
conducted, creates a significant challenge for
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physicians in communicating to patients with
CD the need for continued treatment. Lack of
perceived need for treatment by patients is one
of the primary causes for nonadherence in CD,
and better communication between physicians
and patients could improve patient adherence
[13]. Therefore, there is a critical need for tools
to help physicians forecast the temporal chan-
ges in mucosal health in patients with CD, to
bridge the gap between subjective and less fre-
quent objective assessments of disease severity.
Such tools would support the decision to start
or continue treatment and provide critical
milestone information to evaluate the progress
of mucosal healing in patients undergoing
treatment.

Computational tools for predicting specific
outcomes (e.g., surgery) in CD exist [14, 15].
However, they typically do not provide time-
resolved information on how patients will
evolve toward those outcomes or allow experi-
mentation with what-if treatment scenarios.
Recently, researchers have tried to understand
the dynamics of immune response and resultant
patient phenotypes by using computational
models of CD [16, 17]. Rogers and colleagues
have developed a mechanistic model of Crohn’s
disease to simulate the effect of treatments on
biomarkers; however, the existing models do
not predict objective measures of disease activ-
ity over time [18, 19]. Here, we address this gap
through a novel computational platform that
integrates statistical and mechanistic approa-
ches to predict the evolution of mucosal health
in patients with CD.

Hybrid approaches, which combine ele-
ments of machine learning with domain-speci-
fic physical models, are becoming increasingly
popular in many fields. In biomedicine, com-
posite models integrating machine learning and
mechanistic components reflecting known
biology have been proposed [20, 21]. Because
they capture the causal relationships between
biology and disease, mechanistic models func-
tion as guardrails to constrain the interpretation
of data during model training while at the same
time providing a natural way of incorporating
continuous time. This latter ability is critical in
generating a time-resolved picture of how
patients may respond to different treatment

scenarios [22, 23]. Anchoring machine-learning
models in physiology improves the inter-
pretability of predictions and mitigates the risks
associated with the need to relearn well-estab-
lished physiological relationships from poten-
tially noisy data [24]. The platform
demonstrated in this study aims to provide
decision-support tools to help physicians
understand how patients are reacting to a given
therapeutic approach, and eventually to help
them manage their treatment.

METHODS

Overview of the Computational Platform

We developed a computational platform for
simulating mucosal health and the level of
inflammation in patients with CD under dif-
ferent treatment scenarios. The platform esti-
mates changes in mucosal health and
inflammatory activity over a continuous time-
line of weeks to years. The platform has the
following three major components:

1. A machine learning-based responder classi-
fier.
The purpose of this classifier is to use
patient background and early response data
to predict longer-term responses in a qual-
itative sense, e.g., complete, partial, or no
response, using a simple decision tree. The
responder classifier decision tree was built
by analyzing treatment response data in
patients from the VERSIFY study [25]. The
responder classifier sets expectations for the
likely long-term response and helps
improve the precision of the quantitative
predictions generated in subsequent steps.

2. A mechanistic model of CD pathophysiol-
ogy.
The CD model allows quantitative simula-
tion of CD progression in continuous time.
The model is a mathematical representation
of the salient mechanisms related to the gut
immune system and CD pathophysiology,
derived from the literature, in the form of a
system of coupled differential equations.
Model parameters may be calibrated to
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represent an individual patient or a patient
archetype. Once calibrated, the model may
be used to forecast CD progression with
various treatment scenarios.

3. A virtual library of patients with CD.
A diverse library of virtual patients enables
rapid mapping of a real patient to their
digital twin. A library of virtual patients
with CD was constructed by randomly
sampling selected parameters of the mech-
anistic CD model, running the simulation
with the sampled parameters, and recording
the simulated CD progression in a database.
This virtual patient library was used as a
pool from which key attributes could be
matched quickly to those of a real patient to
identify an appropriate digital twin. For
instance, if a patient is predicted by the
responder classifier to achieve endoscopic
remission, virtual patients showing endo-
scopic remission can be selected and further
filtered using additional criteria.

Further details of the three components and
their integration are described in subsequent
sections. The integrated platform was trained
and validated using patient data from the
VERSIFY study. The platform was evaluated for
its ability to predict the dynamics of CD pro-
gression as measured by the affected surface
area of the gut for both individual patients and
patient populations.

The following steps outline the methodology
for predicting the response of a patient to a
particular treatment using the computational
platform:

1. Determine the responder type of the patient
using the responder classifier.
Patient data (background information and
early treatment response; Fig. 1, part 1) are
first fed into a classification algorithm. The
classifier’s outputs are qualitative predic-
tions about the likely long-term responses
to treatment in terms of a predetermined set
of categories.

2. Create a digital twin of the patient using the
virtual patient library.
The responder classifier output is subse-

quently combined with the patient’s char-
acteristics to find a virtual patient from the
library that best matches the real patient’s
disease state, biomarkers, and clinical his-
tory. The output of this step is a ‘‘digital
twin’’, a specific instance of the mechanistic
model with a unique combination of
parameters, customized to the patient
(Fig. 1, part 3).

3. Forecast the response of the digital twin using
the mechanistic model of CD.
Finally, the selected digital twin (Fig. 1,
part 4) is used to simulate treatment and
predict the patient’s response to the treat-
ment in terms of quantitative changes in
biomarkers and clinical scores over contin-
uous time (Fig. 1, part 5).

Data Sources

The platform was calibrated and tested against
deidentified patient data from the VERSIFY
study, in which patients with CD were treated
with vedolizumab [25]. Data on baseline disease
characteristics, treatment history, biomarkers
(such as C-reactive protein [CRP] and fecal cal-
protectin [FCP]), and SES-CD evaluations were

Fig. 1 Overview of the hybrid computational Crohn’s
disease simulation hybrid platform. Patient data are used as
an input (part 1) into the classification model (responder
classifier; part 2), which returns the best-matched PRS.
The PRS is a semiquantitative, coarse-grained estimate of
changes in mucosal health at selected times. The PRS
(part 3), alongside other patient data, is used to select a
virtual patient from the virtual patient library (part 3a).
This virtual patient, which is an instance of the mecha-
nistic model consistent with the patient data, represents a
‘‘digital twin’’ of the real patient (part 3b). The digital twin
is then simulated forward in time (part 4) to produce time-
series for tissue damage variables, biomarkers, and other
model components (part 5). The digital twin can be used
to test alternative drug regimens or treatments. CRP
C-reactive protein, FCP fecal calprotectin, PRS progres-
sion-response scenario, SES-CD Simple Endoscopic Score
for Crohn’s Disease

c
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used as reported in the VERSIFY study [25], with
no further processing or modifications. Patients
with fewer than three SES-CD evaluations were
excluded from the dataset for the patient strat-
ification analysis.

The study was conducted according to the
Declaration of Helsinki and the International
Society for Pharmacoepidemiology Guidelines
for Good Pharmacoepidemiology Practices.

It was carried out retrospectively using a
database of anonymized data, following Ethical
Guidelines for Medical and Health Research
Involving Human Subjects issued by the Japa-
nese Ministry of Health, Labour and Welfare.
The investigators could only access anonymized
information from the database; therefore, in
accordance with the aforementioned Japanese
Ethical Guidelines, institutional ethics approval
and informed consent were not required.

Progression-Response Classification

The objective of the classification model is to
assign patients to one of several possible pro-
gression-response scenarios (PRSs) (Fig. 1,
part 2), a construct we introduced in this study.
A PRS is defined by specific patterns of changes
in mucosal health and biomarkers over time.
For this study, we used a set of PRSs based on
the temporal dynamics of tissue damage fol-
lowing initiation of vedolizumab treatment.
The evolution of tissue damage was tracked
through the SES-CD score over a period of
1 year. To define the PRS, the 1-year period was
divided into two stages: treatment initiation to
26 weeks, and 26–52 weeks. These temporal
stages were selected because they correspond to
timescales over which changes in mucosal
health typically occur [26, 27] and match the
timescales of the relevant physiological pro-
cesses in the mechanistic model. The set of
possible patterns of change in SES-CD from one
stage to the next defines a set of PRSs. Assigning
a PRS, in general terms, sets expectations for
future evolution and defines an initial set of
constraints on the mechanistic components of
the platform. For example, if the PRS of a

patient indicates a quick resolution of tissue
damage with treatment, the parameters of the
mechanistic model that would lead to slow
resolution can be ruled out. The platform is
flexible and can use different PRS sets assuming
the sets’ components can be mapped to the
mechanistic model and are informative for
constraining that model to a patient.

Development of the Responder Classifier

To assign a patient to a PRS, we evaluated
decision-tree approaches using different com-
binations of factors available in the data (e.g.,
baseline disease severity, disease duration), and
considered informative a priori. To minimize
the risk of overfitting and to produce algorithms
potentially suitable for use in clinical settings, a
design decision was made to limit the tree depth
to no more than three levels and only incor-
porate factors with clear mechanistic links to
tissue damage. To develop and test candidate
classifiers, each patient in the VERSIFY study
cohort was assigned manually to one PRS
according to their SES-CD time course. Of the
101 patients enrolled in the VERSIFY study,
patients with fewer than three endoscopy
measurements (n = 18) were not considered for
this part of the analysis, nor were patients not
conforming to the general behavior of any PRS
(n = 14). PRS cohorts were segregated randomly
into training and validation sets at an approxi-
mately 2:1 ratio (Fig. 2a, b). During random-
ization, it was ensured that all the PRSs were
represented in both training and validation sets.
It must be noted that patients in the training set
were also used to refine the mechanistic model.
Candidate classification trees were initially
assessed graphically by examining how patients
in different PRSs were distributed in the multi-
dimensional space defined by the factors in the
tree. Cutoffs were then determined heuristically
for the most promising factor combinations.
Classifiers were evaluated on the ability to pre-
dict endoscopic remission and mucosal healing
at 26 weeks.
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Fig. 2 Platform training and validation using VERSIFY
data. a Patients from the VERSIFY study population were
classified according to their SES-CD time course. Patients
with fewer than three endoscopy measurements (n = 18)
were not considered for this part of the analysis, nor were
patients not conforming to the general behavior in any
PRS (n = 14). PRS cohorts were segregated randomly into
training and validation sets at an approximately 2:1 ratio.
Patients who could not be assigned a PRS were not used to
train or test the classification model but were used during
evaluation of the mechanistic model. b The training
dataset was used to tune the response to biologics in the

model and update the virtual patient library. The valida-
tion set was used to evaluate the computational platform.
Each patient, in both the training and validation sets, was
first assigned a responder type using the responder
classifier. Subsequently, a digital twin was assigned to the
patient from the virtual patient library using the archetype-
matching algorithm. *Matching criteria included parame-
ters such as demographics (age, weight, gender), biomarkers
(C-reactive protein), disease parameters (ulcer type, ulcer
area, disease area), and disease location. PRS progression-
response scenario, SES-CD Simple Endoscopic Score for
Crohn’s Disease
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Mechanistic Model Development
and Description

A mechanistic model is a mathematical repre-
sentation of biological processes, such as the
inflammation–damage feedback loop in CD.
Several mechanistic models of inflammatory
bowel diseases exist [16, 17, 28–30]. However, to
the best of our knowledge, none specifically
addresses the relationship between inflamma-
tion and tissue damage in CD, a critical
requirement for our goal. Therefore, we devel-
oped a new model for this study. The scope of
the model was defined to incorporate relevant
mechanisms for regulating changes in tissue
damage and mucosal healing over weeks to
years, as well as to allow representation of the
mechanisms of action of drugs commonly used
to treat CD. A literature review was carried out,
and experts in the field were consulted to assess
relevant disease pathophysiology. Physiological
processes were represented as a system of cou-
pled ordinary differential equations and alge-
braic expressions. Model parameters were
derived from the literature or determined

through an optimization approach, as described
in the Supplementary Material.

The model is organized into five main gut
compartments, each corresponding to an
intestinal segment, namely ileum, ascending
colon, transverse colon, descending and sig-
moid colon (combined into a single compart-
ment), and rectum (Fig. S1a). Each
compartment is divided into subcompartments
(Fig. 3), representing the lamina propria and
other subepithelial tissues (herein referred to as
‘‘lamina’’), lymph nodes (‘‘lymph’’), and the
epithelium (‘‘tissue’’). All the major gut com-
partments are connected through the circula-
tion (‘‘blood’’) compartment, which enables
movement of cell populations and signaling
molecules (e.g., chemokines and cytokines)
between compartments (Fig. S1a). Each main
compartment has associated epithelial and
mucosal layers. The epithelial layer can be in
one of four possible states: healthy (EPh), active
(EPa), damaged (EPd), or remodeled (EPr)
(Fig. S1b), with transition rates controlled by
the extent of local pro- and anti-inflammatory
activity. The mucus layer has protective

Fig. 3 High-level diagram of the model of progression of
inflammation and tissue damage in Crohn’s disease. Each
gut compartment in the model comprises three subcom-
partments, namely lamina propria, lymph node, and tissue
(representing the epithelial layer). All the gut

compartments are connected by a single circulation
compartment, which allows for cell migration and flow
of cytokines between gut compartments. Age antigen
proximal to the epithelial layer, Agl luminal antigen,
GI gastrointestinal
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properties that prevent luminal antigens from
reaching the epithelial layer. In the event of an
injury to the mucus layer, possibly as a result of
an infection, epithelial cells are exposed to
luminal antigens and become activated [31].
The state of the mucosal layer is determined by
the balance between mucus generation by spe-
cialized cells in the epithelial layer and clear-
ance through natural processes. Disease-
induced damage to mucus-generating cells
results in deterioration of the mucosal layer.
The layer is restored as new mucus-producing
cells differentiate from stem cells upon healing.
Active epithelial cells secrete chemotactic sig-
nals, which promote recruitment of immune
cells to the lamina (Figs. S2 and S3) [31–33],
causing further damage. Damaged tissue allows
luminal antigens to reach the tissue owing to
impaired barrier function, which further drives
disease activity [34, 35]. Chronic inflammation
and tissue damage lead to remodeling of the
epithelial layer [36]. Both active and damaged
tissue can revert to a healthy state through a
process that is promoted by IL-22 [37, 38]. The
remodeled state is irreversible, representing tis-
sue affected by fibrosis. The fractions of active,
damaged, and remodeled tissue are used to
estimate SES-CD subscores for each gut com-
partment (Fig. S4a). Inflammatory activity is
used to estimate levels of serum CRP and FCP
(Fig. S4b). Intra-individual measurement vari-
ability for biomarkers was used to determine
uncertainty around patient data, when com-
paring model predictions at an individual level
(Fig. S4b) [39, 40]. Currently, treatment with
steroids, immunomodulators, anti-TNF agents,
and anti-integrin agents is supported (see Sup-
plementary Material for details on pharmaco-
logical interventions), with the last of these
being the focus of the present study. The model
equations and parameters as well as model
development are presented in detail in the
Supplementary Material and Tables S1.1 to S3.3.

Virtual Patient Library

The mechanistic model refines predictions
about disease progression and response to
treatment beyond that implied by the PRS and

enables extrapolation to alternative treatment
regimens. To facilitate calibration, reduce the
need for expensive computations, and generate
insights in a timely manner in a clinical setting,
the platform includes a library of ‘‘virtual
patients.’’ Virtual patients correspond to
instances of the mechanistic model sharing
most parameter values but differing in a selec-
ted few (Table S3.3). The parameters that chan-
ged between patients were determined through
a sensitivity analysis to be the most influential
for the dynamics of tissue damage and response
to treatments included in the model
(Tables S3.4 and S3.5). Each virtual patient was
presimulated under various treatment scenarios
(including no treatment) and time-series for
tissue damage; inflammatory activity and
biomarkers were recorded in a database. Virtual
patients were preclassified according to com-
mon PRS groups (e.g., delayed responders to
anti-integrin, early responders to anti-integrin,
etc.; Fig. S5a). A core virtual patient library was
created during model development based on
literature estimates for parameter ranges, clini-
cal cases reported in the literature, and experi-
ence from specialists treating patients with CD
(see Supplementary Material for references).

To create a digital twin (an instance of the
model that mimics a real patient), data from the
real patient can be matched against the virtual
patient library, specifically within the PRS
assigned to the individual, to identify the clos-
est match. The quality of this matching process
depends on the diversity of phenotypes in the
virtual patient library. The training set created
from the VERSIFY study population was used to
expand the library to capture the variability of
responses within each PRS, as well as to verify
that all the treatment regimens in the study
were represented (Fig. 2b). To this end, patients
in the training set were matched against exist-
ing virtual patients according to affected surface
area, ulcer area, ulcer type, and biomarkers (CRP
and FCP), as allowed by the available data.
Patients deemed not to have a good match in
the virtual patient library were used as targets to
create new instances of the mechanistic model
reflecting their data and augment the library
(Fig. S5b). Specifically, the ranges for patient-
specific parameters in Table S3.3 were calibrated
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to capture the diverse phenotypes observed in
the VERSIFY training set.

Digital Twin Assignment

A digital twin is an instance of the mechanistic
model calibrated to match an individual
patient’s data. Calibration is performed in two
steps. First, coarse tuning is done by selecting
virtual patients from the virtual patient library
consistent with the PRS assigned to the indi-
vidual during the classification stage (Fig. 1,
part 3a). This step effectively constrains model
parameters to combinations capable of produc-
ing model outputs that match the trends for the
dynamics of variables in the PRS (e.g., rapid
decrease in SES-CD followed by stable levels)
under the reported treatment regimen. Match-
ing also considers the patient’s body weight
because of its effect on pharmacokinetics. Sec-
ond, virtual patients who qualitatively match
the individual time-series of tissue damage are
filtered from the PRS-matched cohort, and a
digital twin (Fig. 1, part 3b) is selected that
recapitulates the actual patient data but with
the highest fidelity. Finally, parameters con-
trolling the biomarkers CRP and FCP are adjus-
ted to match the range observed or expected in
the individual.

Integration of the Modules into a Platform

The computational platform described in Fig. 1
was developed by integrating three primary
components: (1) the responder classifier (com-
ponent 1 in Fig. 1, part 2) described in the sec-
tions ‘‘Progression-Response Classification’’ and
‘‘Development of the Responder Classifier’’; (2)
digital twin creation by virtual patient match-
ing (Fig. 1, part 3) described in the sections
‘‘Virtual Patient Library’’ and ‘‘Digital Twin
Assignment’’; and (3) the mechanistic model of
CD (Fig. 1, part 4) described in the section
‘‘Mechanistic Model Development and
Description.’’ As described in the section
‘‘Overview of the Computational Platform,’’
patient data provided as an input to the plat-
form (Fig. 1, part 1) are first used by the
responder classifier to predict likely qualitative

response to a treatment based on patient’s
background information and early treatment
response data. Subsequently, a digital twin of
the patient is created by matching patient data
to a subset of the virtual patients with the same
responder profile as the patient. Finally, the
digital twin, which is in fact a specific instance
of the mechanistic model of Crohn’s patho-
physiology, is simulated to predict the response
of the patient to treatment over time (Fig. 1,
part 5).

Outcomes and Definitions

Ulcer area, affected surface area, and ulcer type
are defined as in the SES-CD [12] score (Table 1).
Endoscopic remission is defined as an SES-CD
score of 4 or less. Endoscopic response is defined
as at least a 50% reduction in SES-CD score.

Platform Evaluation Approach

The integrated platform was evaluated using the
validation set (n = 31), created from the VER-
SIFY patient population (Fig. 2b). Demographic
and treatment regimen information of the

Table 1 Objective endoscopic assessment

Size of ulcers 0: None

1: Aphthous ulcers (diameter

0.1–0.5 cm)

2: Large ulcers (diameter 0.5–2 cm)

3: Very large ulcers (diameter[ 2 cm)

Ulcerated

surface

0: None

1:\ 10%

2: 10–30%

3:[ 30%

Affected surface 0: None

1:\ 50%

2: 50–75%

3:[ 75%
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patients in the validation set was unblinded
from the beginning to ensure that we generated
a virtual patient library that captured the
diversity of the entire study population. Patient
time-course biomarker and treatment response
data were blinded except for factors used
explicitly in the classification tree. Patients were
matched to a PRS using the classification tree
approach described above. A digital twin was
selected from among the virtual patients con-
sistent with the PRS based on the best match for
the area affected by the disease at baseline. The
digital twin’s presimulated time-series for tissue
damage was then compared against the full
unblinded data. Specifically, the predicted
response for each patient was evaluated in terms
of affected surface area. Model performance was
categorized as ‘‘good,’’ ‘‘fair,’’ or ‘‘poor’’ accord-
ing to the following criteria: (1) if the prediction
for a metric matched at least 70% of the data
points, the patient was labeled as ‘‘good’’ under
that metric; (2) patients were labeled as ‘‘fair’’ if
the prediction for the metric matched at least
50% of the data points; and (3) patients in the
‘‘poor’’ category had predictions that matched
less than 50% of the data points. For patients
with disease reported in more than one GI seg-
ment, this evaluation was done only on the
section that most closely resembled the global
SES-CD to reflect the predominant role of this
score in the PRS. The integrated platform was
also evaluated at a population level by com-
paring the percentage of patients in different
categories of disease severity, as measured by
the affected surface area and ulcerated area. This
comparison was done at both 26 weeks and
52 weeks after treatment initiation. The initial
matching (i.e., virtual patient assignment) was
evaluated by comparing the distribution of
patients in different disease-severity categories
at week 0. Observed and predicted percentages
of patients showing a reduction in biomarkers,
namely CRP and FCP, at 26 weeks and 52 weeks
were compared for patients in the validation
set. A summary of the metrics used to evaluate
the integrated platform, including specific
components, is provided in Table 2. All simu-
lations were performed in Python 3.7 using the

function solve_ivp with the integration
method set to ‘‘LSODA’’ in the package SciPy
(version 1.3). All other computational work was
also done in Python 3.7. The simulation analy-
sis plots were generated using Plotly Python
Graphing Library.

Table 2 Summary of different metrics used for evaluating
the performance of the integrated Crohn’s disease platform

Component Evaluation method

Responder classifier 1. Sensitivity and specificity

of predicting endoscopic

remission at 26 weeks post-

treatment

2. Sensitivity and specificity

of predicting mucosal

healing at 26 weeks

post-treatment

Virtual patient matching Matching of affected surface

area and ulcerated area at

baseline (population-level

distributions)

Overall platform

(responder classifier ? virtual

patient matching ?

mechanistic model)

1. Individual-level

comparison of time-series

predictions of affected

surface area against data.

Each individual prediction

was labeled as ‘‘good,’’ ‘‘fair,’’

or ‘‘poor’’ based on the

criteria described in

the section ‘‘Platform

Evaluation Approach’’

2. Population-level

distributions of disease

severity in patients, as

indicated by affected

surface area and ulcerated

area at 26 weeks and

52 weeks post-treatment
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Fig. 4 Archetypical disease progression and responses to
therapy. a Virtual patients were classified according to
parameters corresponding to nine physiological processes
(Sensitivity to inflammation-driven damage is represented
by two spokes, one each for IFNc- and TNFa-dependent
pathways). The extensions along the spokes in the spider
diagram represent the values of the corresponding param-
eters, with outer layers representing larger values. Values
for each parameter are normalized across the population so
the scale of all spokes is 0–1. b Top panels: progression of
damage for the ‘‘aggressive’’ and ‘‘mild’’ cohorts. Each line

represents a virtual patient (some removed for clarity). The
red dotted line indicates when stratification was performed
(2 and 10 years for aggressive and mild cohorts, respectively).
Lower panel: superposition of footprints of all virtual
patients in the aggressive (left) and mild (right) cohorts.
Darker shades indicate more virtual patients’ footprints
overlapping. Spokes should be interpreted
as in a. c PRSs for this study. PRS progression-response
scenario, SES-CD Simple Endoscopic Score for Crohn’s
Disease
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Fig. 5 Classification tree. The classification tree used for
the classification stage assigns a PRS based on baseline and
early response patient information. The PRS sets in this
study were designed for prediction of mucosal health at
26 and 52 weeks after initiation of biologic treatment.

ER-PRS early responder progression-response scenario,
NR-PRS nonresponder progression-response scenario,
PRS progression-response scenario, R-PRS responder
progression-response scenario, SES-CD Simple Endoscopic
Score for Crohn’s Disease

Table 3 Confusion matrix for evaluating the performance
of the responder classifier in predicting endoscopic remis-
sion at 26 weeks

Patient achieved
endoscopic
remission in
26 weeks

Patient assigned
ER-PRS by the
responder classifier

Correctness
of
classification

Yes Yes True positive

Yes No False

negative

No Yes False positive

No No True

negative

ER-PRS early responder progression-response scenario

Table 4 Evaluation of the responder classifier

Outcome
predicted

Dataset
(n)

Sensitivity
(%)

Specificity
(%)

Endoscopic

remission at

26 weeks

Training

(46)

75 76

Validation

(23)

100 57

Overall

(69)

80 69

Mucosal healing

at 26 weeks

Training

(46)

75 76

Validation

(23)

75 58

Overall

(69)

75 70
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RESULTS

Virtual Library of Patients with CD

The library of virtual patients generated in this
study contained approximately 35,000 patients.
A period of 10 years after disease onset was
simulated for each virtual patient under a vari-
ety of treatment scenarios. A measure of the
quality of the virtual patient library is diversity
of disease behavior. The library for this study
was found to contain a diverse set of endoscopic
response patterns to common treatments. Dif-
ferent disease-progression patterns in the
absence of treatment are also present, such as
patients with ‘‘aggressive’’ disease (correspond-
ing to 75% or more of the GI tract impacted by
disease in 2 years, but not sooner) or ‘‘mild’’
disease (10% or less GI tract damage in
10 years). The aggressive and mild disease
cohorts contained 2336 and 4228 virtual
patients, respectively. Further analysis of these
two cohorts showed intra- and inter-cohort
differences in the distribution of values for the
sensitive mechanistic parameters (Fig. 4a, b,
lower panels). The aggressive disease cohort is
characterized by reduced healing capacity,
whereas low sensitivity to inflammation-driven
damage is strongly represented in the mild dis-
ease cohort. The between-cohort differences in
the distribution of mechanistic parameters
demonstrate that the temporal dynamics of
tissue damage do introduce constraints in the
model parameters as expected. This analysis
resulted in a better characterization of model
behavior and its strengths and limitations.

PRSs

Four PRSs were defined for this study. The early
responder PRS (ER-PRS) is characterized by
endoscopic remission (SES-CD B 4) in less than
26 weeks (Fig. 4c). The responder PRS (R-PRS)
displays slower dynamics with a gradual drop in
SES-CD that continues over the 52 weeks of the
study. The nonresponder PRS (NR-PRS) corre-
sponds to SES-CD fluctuations around baseline
levels without a marked improvement or dete-
rioration in SES-CD score over time. The partial

responder PRS (PR-PRS) is characterized by an
initial reduction in SES-CD in the first 26 weeks
that either stalls or rebounds later. All patients
in the study were manually assigned one of the
PRSs.

Classification into PRSs

An algorithm to automate the classification of
patients into PRSs was developed. Of the alter-
natives evaluated, a classification tree based on
combinations of early SES-CD observations and
historical data on disease duration produced the
best results overall for the test cohort. The first
test was done on evidence of endoscopic
response (at least 50% reduction in SES-CD) by
week 14 based on the SES-CD score. Positives
were mapped to the ER-PRS group. Of the
remaining patients, those showing a greater
than 25% reduction in SES-CD by week 14 were
mapped to the R-PRS. Patients failing to show a
SES-CD reduction of more than 25% by week 14
were also assigned to R-PRS unless baseline SES-
CD was less than 10 or disease duration was less
than 8 years, in which case they were assigned
to NR-PRS (Fig. 5). Including previous treatment
(bio-naive or biologic) as a factor did not

cFig. 6 Performance of the integrated platform. a, b Com-
parison of affected surface area (a) and ulcerated surface
(b) at baseline for digital twin (purple bars) and patient
data (pink bars) in terms of SES-CD categories.
c, d Comparison of predicted (purple bars) and actual
(pink bars) time evolution of mucosal healing at weeks 26
and 52 using the SES-CD score categories for affected
surface area (c) and ulcerated area (d). e Predicted (red)
and observed (blue) geometric mean of serum CRP
concentration in the validation cohort at baseline,
26 weeks, and 52 weeks. Error bars represent one geomet-
ric standard deviation factor. f Predicted (purple) and
observed (pink) directional changes in levels of serum CRP
for the validation cohort. g Predicted (red) and observed
(blue) geometric mean of FCP concentration in the
validation cohort at baseline, 26 weeks, and 52 weeks.
Error bars represent one geometric standard deviation
factor. h Predicted (purple) and observed (pink) direc-
tional changes in levels of FCP for the validation cohort.
CRP C-reactive protein, FCP fecal calprotectin, SES-CD
Simple Endoscopic Score for Crohn’s Disease
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improve the classification. Because of the lim-
ited number of patients with a long enough SES-
CD history, classification into the PR-PRS was
not attempted. To account for this limitation,
patients assigned to R-PRS by the classification
scheme were scored as ‘‘correct’’ if the original
category was R-PRS or PR-PRS and ‘‘incorrect’’
otherwise. Similarly, patients assigned to ER-
PRS by the classification scheme were scored as
‘‘correct’’ if the original category was ER-PRS or
PR-PRS, and ‘‘incorrect’’ otherwise.

To evaluate the performance of the respon-
der classifier, we used it to predict whether a
patient would achieve endoscopic remission
and mucosal healing at 26 weeks based on their
PRS. A patient was labeled as true positive if
they achieved endoscopic remission in
26 weeks, and the classifier mapped the patient
to the ER-PRS group. Any other mapping was
labeled as a false negative. If the patient did not
achieve endoscopic remission in 26 weeks, but
the classifier mapped the patient to the ER-PRS
group, the patient would be labeled as a false
positive. Any other mapping in the previous
case was labeled as a true negative (Table 3).
Sensitivity and specificity were calculated from
the confusion matrix so created. Sensitivity and
specificity for mucosal healing predictions at
26 weeks were determined in a similar manner.
With the training set (n = 46), the classification
scheme resulted in a sensitivity of 75% for ER-
PRS, with 76% specificity for predicting endo-
scopic remission at 26 weeks. With the valida-
tion set (n = 23), the classification
scheme produced sensitivity and specificity of
100% and 57%, respectively, for predicting
endoscopic remission at 26 weeks (Table 4).

Prediction of Temporal Changes
in Mucosal Health Due to Treatment

To evaluate the performance of the platform as
a whole, we assigned digital twins to patients in
the validation set and scored the predictions for
tissue damage and biomarkers against their
observed counterparts, as described in the sec-
tion ‘‘Integration of the Modules into a Plat-
form.’’ Baseline surface area was similar between
patients and their assigned digital twins,

whereas some deviations were observed for the
ulcerated surface variable (Fig. 6a, b). This dif-
ference is due to the matching algorithm’s
internal prioritization criteria, which gives
preference to an exact match for an affected
area, as predictions of mucosal healing dynam-
ics are very sensitive to this specific variable,
and mismatches can introduce significant errors
given the size of the corresponding SES-CD
categories (Table 1).

The comparison of predicted and observed
disease severity at weeks 26 and 52 using the
SES-CD score categories for affected surface area
and ulcerated area is shown in Fig. 6c, d. There
was no substantial difference between disease-
severity distributions in data and predictions,
indicating the response of the virtual patients
created for the clinical study validation set was
no different from the patient data at a popula-
tion level. The integrated platform also pre-
dicted the overall directional change in
biomarkers such as CRP and FCP (Fig. 6e–h).
The geometric mean and geometric standard
deviation factor of serum CRP and FCP were
comparable between data and predictions. At an
individual patient level, of 31 patients in the
validation set, 22 (71%), seven (23%), and two
(6%) scored good, fair, and poor, respectively, in
predicting the effect of treatment on tissue
damage, reported as affected surface area in the
model (Fig. 7).

Incorrect PRS matches were not modified for
this evaluation. As the assignment of PRS was
the first step in the digital twin-based simula-
tions, the predictive accuracy of tissue damage
evolution was indicative of the overall perfor-
mance of the hybrid platform. Eight patients
who did not conform to any of the PRS motifs
were assigned digital twins by matching against
the whole virtual patient library.

DISCUSSION

A hybrid computational platform has been
demonstrated that is capable of predicting the
time course of mucosal health in patients with
CD undergoing treatment with vedolizumab.
Because of the causal relationships built into its
mechanistic components, the platform provides
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time-resolved estimates of a range of variables
related to inflammatory activity and biomark-
ers. The platform presented in this study is
designed for flexibility. Both the PRSs used by
the responder classifier and the virtual patient
library can be modified or extended as needed.

The performance achieved by the classifica-
tion stage in this study is comparable to related
predictive tools for CD [14]. The first stage of
the computational platform (i.e., responder
classifier) was developed using the PRS assign-
ments in the training dataset of the study
cohort. The classifier was evaluated on its ability
to predict endoscopic remission and mucosal
healing in patients at 26 weeks by classifying
them as ER-PRS. With an overall sensitivity of
75% and specificity of 70% in predicting
mucosal healing, the performance of the clas-
sifier is comparable to the best possible out-
comes for the prognostic clinical decision-
support tool (CDST) [14] developed for vedoli-
zumab (sensitivity 98% and specificity 30% for a
13-point cutoff in the CDST; sensitivity 40%,
specificity 80% for a 19-point cutoff in the
CDST for mucosal healing at 26 weeks).
Whereas the CDST was developed to predict
both clinical and endoscopic remission after
26 weeks of treatment, among other endpoints,
the objective of the computational platform in

this study is to predict temporal evolution of
mucosal health.

The performance of the classifier was suffi-
cient for constraining the mechanistic part of
the platform. Indeed, tracking of the time-series
for tissue damage over 52 weeks, a more strin-
gent test than endpoint matching, was consid-
ered good or fair for 94% of the patients in the
test group. It is important to point out that the
‘‘resolution’’ of the matching is limited by the
fact that affected area measurements are avail-
able only in terms of SES-CD categories, some of
which are broad (Table 1). For example, the
categorical nature of the data does introduce
artifacts as changes in affected surface area (e.g.,
from at least 50% to less than 50%) translated
into a unit category change. The platform also
predicted overall directional change in
biomarkers such as CRP and FCP. The means
and standard deviations of serum CRP and FCP
were comparable between data and predictions.
However, the predicted mean FCP concentra-
tion was lower than the data at weeks 26 and 52.
The scope of the CD model was limited to
mechanisms related to inflammation-driven
tissue damage and mucosal healing. Additional
mechanisms may need to be incorporated to
predict fecal biomarker trajectories with higher
fidelity. Another limitation of the study was the
coverage of the virtual patient library generated

Fig. 7 Performance of the integrated platform measured
by accuracy of affected surface area predictions at an
individual patient level. The histogram shows the percent-
age of patients with specific accuracy in the predictions of
affected surface area category. The x-axis represents
percentage of time points with mismatch and the y-axis
represents percentage of patients. The first bin (0–10)
indicates the percentage of patients with mismatch in

affected surface area category predictions in up to 10% of
the time points. The black line indicates cumulative
frequency histogram. For example, the leftmost bar
indicates that the platform correctly matched between
90% and 100% of the measurements (i.e., 0–10%
mismatch) of affected surface area in 45% of the patients
in the validation cohort as assessed across all available time
points
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in the study, which was not exhaustive. For
example, the differences in disease progression
due to other potential risk factors such as
smoking are not captured by the current version
of the platform. Future work with additional
patient datasets could help identify gaps in the
coverage of the virtual patient library and guide
enhancements to the platform. In conclusion,
despite the aforementioned limitations, the
results in this study present digital twin-based
simulations as a viable approach for predicting
likely responses to treatments based on limited
early treatment response data.

The inclusion of the mechanistic component
brings several strengths to the platform but also
challenges. Among the strengths is the ability to
generalize the ‘‘learning’’ from a patient’s
response to one treatment and extrapolate
likely responsiveness to different regimens or
drugs. This is possible because the response to a
treatment on the rate of damage progression
contains information about the pathophysiol-
ogy underlying the disease in a particular
patient. The mechanistic model introduces
flexibility, as it can be interrogated to answer a
variety of questions with time resolution and
potentially informative variables not typically
available to a clinician. As with most modeling
approaches, validation remains a challenge that
requires additional efforts, especially to assess
the performance beyond the treatments tested
in the present study. As further validation with
other drugs occurs, this platform will enable the
simulation of what-if experiments for estimat-
ing a patient’s response to different treatment
alternatives, not just in terms of endpoint out-
comes, but also incorporating the progression
leading to those outcomes.

The hybrid approach is well suited to
addressing some weaknesses that, despite their
undeniable power, machine-learning approa-
ches tend to share. Incorporating a mechanistic
component eliminates the need for a model to
‘‘relearn’’ known physiological relationships
during training, which may be difficult in sce-
narios with limited, incomplete, or noisy data.
In contrast to machine-learning models trained
to answer very specific sets of predetermined
questions that cannot be easily repurposed, the
approach demonstrated here is flexible, as the

model can be interrogated to answer different
questions or investigate what-if scenarios.
Finally, the approach is more transparent com-
pared with ‘‘black box’’-type machine-learning
approaches, thus, at least in principle, allowing
clinical users to leverage their expertise to assess
confidence in the model predictions for specific
patients. However, taking full advantage of the
transparency afforded by the mechanistic com-
ponent will likely require the platform to be
wrapped into an informative patient- and
physician-centric user experience.

While the mechanistic model offers a pow-
erful scientific tool to dissect the underlying
pathophysiology of disease, the computational
complexity can make real-time use of the model
challenging. Numerically solving a large system
of differential equations can be time-consuming
and, depending on the combination of software
and hardware in use, simulating a few years of a
patient’s life may require several seconds to
minutes of clock time. Furthermore, calibration
of model parameters to create an instance of the
model tailored to a specific patient requires
extensive exploration of the parameter space of
the model. Any optimization of the algorithm
would require running hundreds if not thou-
sands of iterations of the model to find a near-
optimal solution in a high-dimensional param-
eter space [41]. This process could require sev-
eral minutes to hours on a typical personal
computer. For this type of a platform to be
useful for real-time applications (i.e., for physi-
cian–patient interactions), solutions must be
found that eliminate or reduce the lag intro-
duced by the calibration and simulation pro-
cesses. Our approach of using a virtual library of
patients alleviates this problem greatly because
the computationally expensive step of explor-
ing the parameter space is front-loaded in the
process. The process of parameter calibration is
replaced by a simple database search to find a
pre-generated virtual patient that is sufficiently
similar to the real patient, and the search can be
executed on a subsecond-to-second timescale. A
limitation of this approach is that the best
match found in the library may not be good
enough in some instances. The library must be
continually updated and augmented as new
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patients with inadequately matched digital
twins are discovered.

Managing patients with CD often necessi-
tates decisions to be made with limited visibility
of the actual state of the patient’s GI tract, in
terms of both tissue quality and frequency of
observation. Therefore, to alleviate pain and
manage CD symptoms, patients are often pre-
scribed medication on a ‘‘trial and error’’
approach. To improve the quality of life for
patients with CD, there is a critical need to
better understand how individual patients will
respond to a new or adjusted treatment, not just
in terms of outcomes but also in terms of the
path to those outcomes. Computational models
can help answer such questions by supple-
menting clinical data with insights based on
system behaviors emerging from the known
pathophysiological mechanisms of a disease
[42, 43]. In particular, if the digital twin was
available to provide physicians with the fore-
sight of disease outcomes for a patient, then
doctors could move from ‘‘trial and error’’ to a
personalized approach with presumably fewer
errors. For example, a physician could use the
digital twin to evaluate if an early intervention
(i.e., a top-down or accelerated step-up
approach, among other strategies) is required to
reduce bowel damage in a patient. The compu-
tational platform developed and validated in
this study could be used to predict the evolution
of tissue damage in response to treatment with
vedolizumab. Similar training and validation
for other biologics will enable simulation of an
increasingly rich set of treatment options. A
clinical tool based on this platform could enable
a physician to forecast the effect of treatment
on important clinical measures, e.g., ulcerated
area, size of ulcers, and overall SES-CD score and
biomarkers. Importantly, in this framework,
such forecasts could be customized using the
individual patient’s historical data, rather than
relying on a population average. These indi-
vidualized predictions open possibilities for
rationally comparing alternative treatments,
based on model-informed prognosis. A gas-
troenterologist could use the digital twin to
engage patients in conversations about treat-
ment goals with objective outcomes as a focus,
and jointly decide upon a treatment plan.

Engaging patients in shared decision-making
could improve their adherence to the treatment
plan and overall prognosis [13]. Consequently,
we expect that the platform developed in this
study will eventually enable model-based clini-
cal decision-support tools, to aid physicians in
managing treatment plans and facilitate shared
decision-making with patients. However, to
enable such clinical use, our predictive platform
needs to undergo more rigorous testing, vali-
dation, and refinement. While we have retro-
spectively tested our predictions against a
limited patient sample, larger-scale qualifica-
tion, and virtual population augmentation
against a more comprehensive database of
patients with CD, preferably a real-world
cohort, is the next logical step. This will build
confidence in the tool, prior to adoption by
practicing gastroenterologists.

Model development to date has focused on
‘‘virtualizing’’ the research process to accelerate
drug development and optimize clinical trial
design. The concept of model-based drug
development, or model-informed drug devel-
opment, usually involves pharmacokinetic and/
or pharmacodynamic data and other laboratory
measures [44]. The term ‘‘in silico trial’’ refers to
the use of computer modeling and simulation
for the testing and evaluation of a drug or
medical device, with the aim of reducing,
refining, or replacing the number of in vivo
tests in animals and humans [45]. Computa-
tional models must be verified and validated to
be classified as a ‘‘credible’’ methodology to be
included in regulatory submissions [46]. The
computational platform described in this study
extends beyond the context of clinical devel-
opment to simulate possible clinical implica-
tions of managing patients with chronic
disease. The inclusion of both evidence-based
mechanisms of disease and the validation of the
digital twin using real patient data support the
credibility of this computational model to sim-
ulate the disease course [46]. Thus, in addition
to the real-world application of forecasting
treatment outcomes, the inclusion of the digital
twin technology within in silico trials could
‘‘refine’’ human trials [45]. Furthermore, data
accumulated during clinical development and
from real-world experience of a drug could
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inform the model in a way that is not possible
during development.

We believe that predictive approaches based
on sophisticated computational models, like
the one presented in this work, will play an
important role in clinical practice in the future.
An important aspect in the clinician’s adoption
of advanced analytical tools is appreciation and
understanding of the value these tools could
add to their clinical practice. Knowing the
strengths and pitfalls of these tools could help
clinicians critically synthesize predictive model
outputs into their own knowledge in treating
patients. We hope that this work, aside from its
technical value, will also contribute to aware-
ness about model-based analytical tools and
their promise to improve patients’ lives in the
real world.
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