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In large scale population-based whole-exome sequencing (WES) studies, there are some samples occasionally sequenced two or
more times due to a variety of reasons. To investigate how to efficiently utilize these duplicated sequencing data, we conducted
comprehensive evaluation of variant calling strategies. 92 samples subjected to WES twice were selected from a large population
study. These 92 duplicated samples were divided into two groups: group H consisting of the higher sequencing depth for each
subject and group L consisting of the lower depth for each subject. The merged samples for each subject were put in a third group
M. Using the GATK multisample toolkit, we compared variant calling accuracy among three strategies. Hierarchical clustering
analysis indicated that the two replicates for each subject showed high homogeneity. The comparative analyses on the basis of
heterozygous-homozygous ratio (Hete/Homo), transition-transversion ratio (Ti/Tv), and overlapping rate with the 1000 Genomes
Project consistently showed that the data quality of the SNPs detected from the M group was more accurate than that of SNPs
detected from the H and L groups. These results suggested that merging homogeneous duplicated exomes instead of using one of
them could improve variant calling accuracy.

1. Introduction

Next generation sequencing technologies generate huge
amount of data in a single experimental run and provide a
revolutionary tool for various genomics studies [1]. Primarily
designed to capture the intended coding variants [2–4],
whole-exome sequencing (WES) has been commonly used
in basic and translational research, including investigation
of diversity and demographic history in human populations
[5–8], identification of etiological variants [9–13], cross-
species genome comparison [14, 15], and even phylogenetic
estimation [16].

Among currently available exome enrichment platforms,
some platforms such as Illumina TruSeq were also designed
to capture a portion of noncoding regions, including untrans-
lated regions (UTRs) and intronic regions [17]. In addition,
we previously found that a significant amount of DNA
fragments from WES falls outside the intended regions and
a large portion of these fragments is of high quality [18].

In large WES studies, some samples are occasionally
sequenced twice or even more times due to a variety of
reasons, for example, insufficient coverage in the first experi-
ment, sample duplication, and the rest. It is challenging how
to best utilize these duplicated exomes for SNP discovery
and genotype calling, especially with batch effects taken
into consideration. In the present study, we systematically
evaluated SNP detection performance of three strategies to
utilize the duplicated exome data of 92 subjects, only using
the data with higher depth, only using the data with lower
depth, and using the merged data from technical replicates.

2. Materials and Methods

2.1. SampleCollection. Thesubjects in this studywere a subset
of participants in the Shanghai Breast Cancer Study (SBCS),
which was a population-based breast cancer case control
study. Details of the study have been described elsewhere
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[19, 20]. In brief, the SBCS is a population-based, case control
study including 3,448 breast cancer cases and 3,474 controls.
Of these, 92 subjects (51 cases and 41 controls) were included
in the current investigation. Genomic DNA from buffy coat
was extracted using QIAmp DNA kit (Qiagen, Valencia, CA)
following the manufacture’s protocol. Approval of the study
was granted by the relevant institutional review boards in
both China and the United States.

2.2. Exome Sequencing and Variant Calling. For each of 92
subjects, one sequencing library was constructed for genomic
DNA captured on the Illumina TruSeq platform according
to the manufacturer’s instructions and subjected to 75 or
100 bp paired end sequencing twice on the Illumina HiSeq
instrument. For each exome, raw reads in FASTQ format
were aligned to the human reference genome (hg19) using
Burrows-Wheeler Aligner (BWA, v0.5.9) in default parame-
ters [21]. Mapped data were then processed and sorted using
SAMtools [22]. Local realignment, PCR duplicates removal,
and base quality score recalibration (BQSR) were performed
using Genome Analysis toolkit (GATK) to generate BAM
files [23]. A total of 184 BAM files were then divided into
two groups, high depth (H) and low depth (L) from each
subject, based on the mean depth across on-target regions.
We also merged the two BAM files for each subject into a
single BAM file and combined 92 merged BAM files as a
third group (M). We called SNPs within each group (H, L,
and M) via the GATK multisample strategy [24] (Figure 1).
Then, we conducted the variants filtering as follows: (1) ≥
3 SNPs detected within 10 bp distance; (2) > 10% alignments
mapped ambiguously; (3) SNPs having a quality score < 50;
(4) variant confidence/quality by depth < 1.5; (5) strand bias
score calculated by GATK > −1.

2.3. Statistics of Exome-Sequencing Performance. The metric
of RPKM (reads per kilobase and million mapped reads)
is a commonly used method for RNA-sequencing data
normalization. Recently, the RPKMwas also used to evaluate
the performance of exome sequencing [25]. In this study, the
RPKM was employed and calculated as the number of reads
aligned on the target region per kilobase of target sequence
divided by the total number of mapped reads. The reads
aligned to the 100 bp upstream or downstream of the target
regions were also included in the PRKM statistic [25]. The
Euclidean distance among the 184 exomes was calculated
based on the RPKM value. We conducted the unsupervised
hierarchical clustering analysis using R programming lan-
guage (version 2.15.1) to evaluate batch effects among 92
replicated sequencing experiments.

2.4. SNP Detection Performance. We compared SNP detec-
tion performance for each of three SNP calling strategies from
the following aspects: (1) the total number of SNPs observed;
(2) the ratio of heterozygous genotypes to nonreference
homozygous genotypes (Hete/Homo), which is expected to
be close to 1.5 on genomic scale [26, 27]; (3) the transition-
transversion ratio (Ti/Tv), which is expected to be ∼2 across
the whole genome and ∼3 across the exon regions [18, 27];
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Figure 1: Schematic of SNP calling strategies in this study. For 92
subjects with duplicates, we divided them into two groups (replicate
1 and replicate 2) according to mean sequencing depth across the
target regions.The replicate 1 group is comprised of exomes with the
relative high mean depth (marked with Exome1H to Exome92H).
The remainders with the relative low depth are grouped as replicate
2. Merging BAM files from the two duplicates generates a third
group, referred to as the merged group flagged with Exome1M to
Exome92M.

(4) the overlapping rate between the SNPs uniquely detected
within each group with the SNPs observed in the 1000
Genomes (1 KG) Project [28]. If a closer approximation to
the empirically expected value as well as a higher overlapping
rate is observed, it generally manifests lower false discovery
rate.The evaluationwas inherently stratified, according to the
locations of SNPs, to on-target regions and off-target regions.
All analyses were achieved by a series of custom Perl scripts.

3. Results

3.1. Data Generation between the Duplicates. Table 1 sum-
marizes the statistics for the exome sequencing data. We
obtained an average of 64.0 and 57.2 million reads per
exome, with 43.4 and 36.0 mean depths across the target
regions, for the H and L group, respectively (see Supple-
mentary Table 1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2014/319534). On average, 98.23%
and 98.65% of the reads were aligned to the human reference
genome, and 49.70% and 49.11% were mapped to the target
regions, in the H and L groups, respectively. Approximately
86.16% and 86.14% of the reads in the H and L groups had
mapping quality ≥ 20, respectively. Overall, the comparative
results showed the high homogeneity between the duplicates
for each subject (Supplementary Table 1). Furthermore, the
hierarchical clustering result based on PRKM values also
showed that the two replicates for each subject were closely
clustered with each other (Figure 2). These results suggest
there is low heterogeneity between the replicated experi-
ments.

3.2. SNP Detection Performance. First, we compared the
number of SNPs called from different strategies. Figure 3
summarizes the number of SNPs detected in each exome. For
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Figure 2: Hierarchical clustering of replicated exomes of 92 subjects. The pairwise distance is based on the RPKM matrix for each exome.
Duplicates within each subject are flagged with prefix of H or L.

Table 1: Summary of WES samples divided into two groups (H and L).

Group Total reads (×106) Mapping rate (%) Target mapping (%) Mean deptha Mapping rate with
MQ < 10 (%)b

Mapping rate with
MQ ≥ 20 (%)b

H 64.0 (49.2–97.9) 98.2 (95.9–99.2) 49.7 (46.6–55.4) 43.4 (34.2–65.8) 10.4 (9.5–11.3) 86.2 (84.0–87.7)
L 57.2 (40.3–79.3) 98.7 (97.6–99.2) 49.1 (44.5–55.0) 36.0 (29.5–53.0) 10.8 (9.6–12.3) 86.1 (84.4–87.6)
aMean depth across target regions.
bMQ denotes mapping quality.
Note that the range of values is shown in the parenthesis.

the target regions, the average number of SNPs observed in
each exome was similar across the three groups, with 46,860,
44,806, and 43,664 for the M, H, and L groups, respectively
(Figure 3(a)). Among these SNPs across the TruSeq target
regions detected in the M group, 95.0% and 92.5% of them
were also observed in the H and L groups, respectively.
Approximately 94.9% of the SNPs observed in the H group
were also detected in the L group. Similarly, 94.8%of the SNPs
in the L group were also detected in the H group.

For those SNPs detected across the off-target regions,
the M group detected far more SNPs than the other two
groupswith 105,154 SNPs versus 78,745 and 70,766 per subject
for H and L, respectively (Figure 3(a) and Supplementary
Table 2). Almost all SNPs (97.9%) detected in the H and L
groups were also found in theM group, while only 73.5% and
66.2% of SNPs detected in the M group could be identified
in the H and L groups, respectively (Figure 3(b)). Together,
an average of 1,480, 1,246, and 23,397 SNPs across 92 subjects
was uniquely detected in the H, L, and M group, respectively
(Supplementary Table 2), where over 80% of the SNPs within
each group were located in the off-target regions.

We then examined the SNP calling accuracy.TheMgroup
also showed better performance than the H and the L groups.
For SNPs located in the target regions and uniquely observed
within each group, the average Ti/Tv ratios were 2.00 ± 0.13
(mean ± SD), 1.39 ± 0.21, and 1.22 ± 0.19 for the M, H, and
L groups, respectively (Figure 4(a)). For SNPs located in the
off-target regions, the corresponding Ti/Tv ratios were 2.09 ±
0.03, 1.46 ± 0.09, and 1.35 ± 0.11 for the M, H, and L groups,
respectively (Figure 4(b)).

The Hete/Homo ratio was another parameter to evaluate
the genotype quality with the expected value of 1.5 on a
genomic scale [26, 27]. Among the SNPs uniquely observed
in the M group, the average Hete/Homo ratio was 1.51 and
1.52 in the on-target region andoff-target regions, respectively
(Figures 4(c) and 4(d)). However, the Hete/Homo ratios were
much larger for SNPs uniquely observed in the H and L
groups, being 10.45 and 22.43 across the on-target regions and
7.93 and 18.92 across the off-target regions. Among the SNPs
uniquely discovered in the M group, 94.4% were included in
the 1 KG project. However, only 65.7% and 59.3% of the SNPs
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Figure 3: Comparison of SNPs identified across the on-target and off-target regions in three groups (M, L, andH). (a) Each red circle denotes
the number of SNPs detected in the three groups within two regions (ON and OFF). (b) Overlapping rate of the SNPs detected in the H (𝑦-
axis) and L (𝑥-axis) groups with the M group. Each dot denotes the overlapping rate of SNPs across the ON (red) and OFF (black) regions in
each corresponding exome. ON and OFF represent the on-target and off-target regions, respectively; M, L, and H represent the merged, low
depth, and high depth groups, respectively.

uniquely called in the H and L groups were overlapped with
the SNPs in the 1 KG project (Figures 4(e) and 4(f)).

We finally compared the allele frequency of variants
called by three approaches. Figure 5 shows the alternative
allele (relative to the hg19 reference genome) frequency (AF)
distribution among the SNPs observed in these three groups.
For alternative alleles with AF ≥ 0.1, it showed that the
allele frequency spectrum among three groups was overall
identical, despite a slight difference in the range of 0.1-0.2.
However, for low-frequency alleles (AF ≤ 0.05), we found
the allele frequency is significantly lower (two-tailed Fisher’s
exact test, 𝑃 < 0.001) in the M group (Figure 5), almost
up to 2 times lower than that in the L group. When the
frequency of uniquely observed SNPswas considered, similar
patterns were observed (Supplementary Figure 1), suggesting
that merging duplicated exome-seq data within each subject
would reduce false discovery rates for rare variants.

4. Discussion

In this study, we comprehensively investigated the variant
calling based on three strategies to utilize the duplicated
WES data from 92 subjects. From the aspects of the number
of high quality variants, Hete/Homo ratio, Ti/Tv ratio, and
overlapping rate with the 1 KG, our comparative analyses
indicate that the M strategy (merging duplicates into one) is
markedly superior to the other two approaches, especially for
identifying variants located in the off-target regions.

The Ti/Tv ratio is a critical metric for assessing the
specificity of SNP calling [23]. The empirical Ti/Tv ratios
are ∼2.0 for genome-wide variants and ∼3.0–3.3 for coding
variants [18, 27]. Typically, the Ti/Tv ratio is lower in the
newly discovered SNPs than that in known SNPs because of
a combination of residual false positives, a relative deficit of
transitions due to sequencing context bias, and an apparently
higher transition ratio at lower frequency variation [23]. The
Ti/Tv ratio for SNPs uniquely called in theMgroupwasmuch
closer to expected value, suggesting the higher confidence
of these SNPs than those uniquely called in H/L groups.
The Hete/Homo ratio, an average of ∼1.5 on the genomic
scale [26, 27], is another metric for assessing the SNP calling
accuracy. The observed Hete/Homo ratio was 1.51 ± 0.13 (±
s.d.) for these SNPs uniquely observed in the M group. In
addition, the overlapping rate between the SNPs uniquely
detected in the M group and the 1 KG project was much
higher than that in the L and H groups. These results are
consistent with Liu et al.’s report that multiple-sample calling
byGATKpipelines increased the sensitivity of variants calling
[29].

Although the aim of WES is to identify SNPs located in
the coding regions, not all coding variants could be equally
discovered. There are diverse reasons, including high or low
GC contents in the target regions, uneven DNA capture,
and sequencing depth [30–32]. Besides improving technical
issues, the maximal utilization of WES data, particularly in
the noncoding regions, is also of great interest. The enrich-
ment of SNPs in the off-target regions might be related to the
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Figure 4: Comparison of the accuracy of SNPs detected by three strategies. The upper panel is plotted for SNPs across the on-target regions;
the lower panel is for the off-target SNPs. From the left to right in each panel are the Ti/Tv ratio ((a) and (b)), Hete/Homo ratio ((c) and
(d)), and overlapping rate with SNPs observed in the 1 KG project ((e) and (f)). Uni M, Uni L, and Uni H represent the number of SNPs
uniquely identified by the merged, low depth, and high depth strategies, respectively; All M, All L, and All H denote the total number of
SNPs identified by the merged, low depth, and high depth strategies, respectively. The 𝑥-axis represents each of 92 exome-seq samples.

capturing probe design and hybridization steps. Especially,
increasing the sequencing depth (equivalent to the merged
strategy) per sample may help to identify more off-target
SNPs. SNPs in off-target regions are reported in multiple
capture platforms, including Illumina, NimbleGen, and Agi-
lent platforms [17, 18]. However, SNPs located in off-target
regions exhibit more variability in the number of variants and
data quality. This suggests that more consideration should be
taken into account when calling SNPs across the off-target
regions. In the present study, we found that merging BAM
files from duplicated sequencing data could greatly enhance
the detection of high quality SNPs in off-target regions.

Merging two or more replicated sequencing data could
improve SNP calling accuracy, as this strategy is to a large
extent similar to the addition of sequencing depth. However,
there is a prerequisite. It needs to assess the heterogeneity
between replicates within each subject before merging them.
Multiple measurements, including on-target region mapping

rate, low quality read rate, the fraction of four bases, and
genome coverage, could be used for evaluation. We also
propose that the hierarchical clustering based on the RPKM
statistic is a robust evaluation for quality control in the
WES performance [25] as the RPKM statistic does for
RNA-sequencing data [33, 34]. In addition, due to the fact
that replicated experiments are generated from the same
sequencing library preparation, which shows the low batch
problem, it is unclear whether merging replicated samples
prepared from the different sequencing libraries also reaches
this conclusion. As Leek et al. reported [35], large batch effects
are associated with DNA preparation group and processing
date.Therefore, if the two duplicates within each subject show
remarkable disparity in the quality control, it is cautious to
use merging strategy for further analysis.

In summary, our investigation indicates that merging
the low heterogeneous duplicated WES data within each
subject into a single sample and then conducting SNP calling
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Figure 5: Alternative allele frequency distribution of all SNPs called
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are a reasonable strategy to discover variants from the next
generation sequencing technology.
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