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Abstract
Independent censoring is a crucial assumption in survival analysis. However, this is imprac-

tical in many medical studies, where the presence of dependent censoring leads to difficulty

in analyzing covariate effects on disease outcomes. The semicompeting risks framework of-

fers one approach to handling dependent censoring. There are two representative estima-

tors based on an artificial censoring technique in this data structure. However, neither of

these estimators is better than another with respect to efficiency (standard error). In this

paper, we propose a new weighted estimator for the accelerated failure time (AFT) model

under dependent censoring. One of the advantages in our approach is that these weights

are optimal among all the linear combinations of the previously mentioned two estimators.

To calculate these weights, a novel resampling-based scheme is employed. Attendant as-

ymptotic statistical results for the estimator are established. In addition, simulation studies,

as well as an application to real data, show the gains in efficiency for our estimator.

Introduction
In medical studies, it is very common that death or withdrawal of study and progression on dis-
ease of interest simultaneously occur in the study. For this case, death or withdrawal of study
may censor the development of disease. This type of data structure is called ‘semicompeting
risks data’ [4].

Semicompeting risks data have been widely studied in the past decade. Some researchers
used a Gamma copula to estimate the association parameter between the event of interest and
dependent censoring [2], [4]. There is a literature that extended the methodology of [2] to the
case that a nuisance parameter exists and also considered a more general copula model [22].

On the other hand, other researchers used semiparametric regression to model the event of
interest and dependent censoring jointly. One approach is an estimation procedure based on
the accelerated failure time (AFT) model [13], [17]. They used the artificial censoring
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technique to adjust the bias of the usual estimator. While the estimating equation of [13] is a
U-statistic of order one, that of [17] is a U-statistic of order 2.

However, none of these papers fully discussed optimality of the estimator. In this case,
choosing an estimator that is optimal from an efficiency viewpoint is an important issue for
consideration. Here, we adapt the idea of [25], which proposed an optimal estimator whose
form is a linear combination of estimators for multivariate failure time data. They used idea of
[24], which proposed using combinations of dependent tests in the presence of missing values.
Idea of [24] is to create a test which can maximize power based on linear combination of test
statistics. Approach of [25] is simple and flexible, so it is sensible to apply their method in
our case.

In this paper, we propose a weighted estimator by using methodology from [25]. Our
weighted estimator combines those of [13] and [17]. The structure of this paper is as follows.
In methods section, we review estimators proposed by [13] and [17] briefly. In addition, we de-
scribe details on our new weighted estimator. In model checking section, model checking pro-
cedure is briefly discussed. In simulation studies section, results of simulation studies will be
given. Application of our method to a real data example is presented in real data analysis sec-
tion. Some discussion concludes discussion section.

Methods

Review of Model
Let X be time to the event of interest, D the time to dependent censoring and C the time to in-

dependent censoring. All these times are transformed on a logarithmic scale. Let ~X ¼
X ^ D ^ C and ~D ¼ D ^ C. Define d ¼ IðX � ~DÞ, Δ = I(D� C) and let Z be covariates. The
data contain n independent and identically distributed observations

ð~Xi; ~Di;Zi; di;DiÞ; i ¼ 1; . . . ; n. The model is

Di ¼ ZT
i η0 þ �Di

Xi ¼ ZT
i θ0 þ �Xi

0
@

1
A; i ¼ 1; . . . ; n:

where θ0 and η0 are k × 1 vectors, and �i � ð�Xi ; �Di Þ are error terms with an unknown joint dis-
tribution. In this case, we assume that the model is identifiable only in upper wedge X< D [4],
[17]. We assume that � has unknown distribution H. The goal is to obtain an unbiased estima-
tor of α = (ηT,θT)T without nonparametrically estimating the distribution of �i, i = 1,. . ., n. We
further assume that given Z, C and (X, D) are independent, but X and D can be dependent
given Z. Now we are going to describe the procedures of [13] and [17] in turn.

Since ~D only depends on independent censoring, a standard rank regression approach is
available for estimation [11], [13], [15], [17], [20], [23]. The estimating equation for η is given
by

SnðηÞ ¼ n�1=2
Xn
i¼1

Di Zi �
Pn

j¼1 ZjIf~D�
j ðηÞ � ~D�

i ðηÞgPn
j¼1 If~D�

j ðηÞ � ~D�
i ðηÞg

" #
;

where ~D�
i ðηÞ ¼ ~Di � ZT

i η. The estimator of η can be obtained by solving Sn(η) = 0.

For estimation of θ, simply replacing ~Di � ZT
i η to ~Xi � ZT

i θ does not yield unbiased estima-

tion of θ. This is because the cause-specific hazard function for ~Xi � ZT
i θ depends on

~Di � ZT
i θ, which violates the model assumption [13]. To fix this problem, many authors use ar-

tificial censoring techniques [3], [6], [7], [10], [13], [17]. In [13], a single constant term g(α) is
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proposed so that the estimation equation will be unbiased for estimation of θ in the two-sample

case. The form of g(α) is gðαÞ ¼ max1�i�nf0;ZT
i ðθ � ηÞg. The proposed estimator in [13] is

obtained by solvingUL
nðαÞ = 0, where

UL
nðαÞ ¼ n�1=2

Xn
i¼1

~d�
i ðαÞ Zi �

Pn
j¼1 If~X �

j ðαÞ � ~X �
i ðαÞgZjPn

j¼1 If~X �
j ðαÞ � ~X �

i ðαÞg

" #

~X �
i ðαÞ ¼ ðXi � ZT

i θÞ ^ ðDi � ZT
i η� gðαÞÞ ^ ðCi � ZT

i η� gðαÞÞ
~d�
i ðαÞ ¼ IfðXi � ZT

i θÞ � ðDi � ZT
i η� gðαÞÞ ^ ðCi � ZT

i η� gðαÞÞg;

ð1Þ

and a^bmeans minimum of a and b. In [17], pairwise comparisons of all the subjects is pro-
posed so that each subject has different degree of the artificial censoring. The transformations
suggested by [17] are

gijðαÞ ¼ max
i;j

f0;ZT
i ðθ � ZÞ;ZT

j ðθ � ZÞg

~X �
iðjÞðαÞ ¼ ðXi � ZT

i θÞ ^ ðDi � ZT
i Z� gijðαÞÞ ^ ðCi � ZT

i Z� gijðαÞÞ
~d�
iðjÞðαÞ ¼ IfðXi � ZT

i θÞ � ðDi � ZT
i Z� gijðαÞÞ ^ ðCi � ZT

i Z� gijðαÞÞg
�ijðαÞ ¼ ~d�

iðjÞðαÞIf~X �
iðjÞðαÞ � ~X �

jðiÞðαÞg � ~d�
jðiÞðαÞIf~X �

jðiÞðαÞ � ~X �
iðjÞðαÞg:

ð2Þ

The proposed estimator according to [17] is obtained by solving UP
n ðαÞ ¼ 0, which is defined

by

UP
n ðαÞ ¼

2n1=2

nðn� 1Þ
X

1�i<j�n

ðZi � ZjÞfijðαÞ:

Note that X and D are not observable, but we can express transformation (Eq 1) and (Eq 2) by
using observable quantities [7], [13].

Weighted estimator
Given these two estimation procedures, it is natural to consider their efficiencies with respect
to standard error. However, in this point of view, neither estimator is superior to the other.
Moreover, these estimators may not be optimal estimators with respect to the standard error.
There is an argument that estimator of [17] gains more efficiency than that of [13] because
pairwise comparisons lead to less artificial censoring than that in [13]. However, this logic only
holds when we look at performance of estimators in the view of bias and variance across the es-
timators in simulation study. Concentrating on standard error of an estimator in a single data-
set, the estimator by [17] may not provide better estimator than that of [13]. This will be seen
in the real data analysis section.

The reason for this is due to estimation procedure of [17]. As discussed [7], for n samples,
the number of comparisons of [13] for artificial censoring is of order n, while that of [17] is of
order n2. By definition of gij(α), different degrees of artificial censoring is applied to observa-
tions. It may lead more variation between observations, which makes standard error larger
than that of [13].

Having discussed our data structure and estimators from [13] and [17], we now describe the

proposed estimation in this paper. Let η̂ ¼ ðη̂1; . . . ; η̂kÞT be estimator of η0, θ̂L ¼
ðθ̂L

1; . . . ; θ̂
L
kÞT be estimator of θ0 by [13] and θ̂P ¼ ðθ̂P

1 ; . . . ; θ̂
P
kÞT be estimator of θ0 by [17]. θ̂L

and θ̂P are asymptotically unbiased estimators of θ0.
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We extend the scope of estimators which provide consistent estimation of θ0. The natural
extension of estimators of [13] and [17] is to consider collections of estimators that are linear
combination of these two estimators with sum of weights being 1. By choosing proper weights,
we can expect that the variance of the new combined estimator is smaller than that of each in-

dividual estimator in θ̂L and θ̂P.
The goal is to find weights such that the variance of the new estimator is smaller than the

minimum of variance of the estimators by [13] and [17], which have good theoretical proper-
ties. To obtain the estimator that yields smallest variance with these properties, we can use the
idea of [25], which was applied to the problem of modeling multivariate failure times.

In [25], the joint distribution of estimators γ̂ ¼ fĝmrg is considered, wherem = 1,. . ., k and
r = 1. . .R. In this case,m indicates index of regression parameters and r stands for index of the
rth event. For obtaining an optimal estimator, they applied arguments from [24] which derived
a linear combination of test statistic to maximize power against every alternative hypothesis.

Let Ĥ be the covariance matrix for the estimators γ̂ . Then we fixm and define Ĥm be covari-
ance matrix of γ̂m ¼ ðĝm1; . . . ; ĝmRÞ. It can be obtained from the entire covariance matrix by se-
lecting the part corresponding to γ̂ for r = 1,. . ., R under fixedm. Now we can definePR

r¼1 dr ĝmr , where d = (d1, d2,. . ., dR) satisfies
PR

r¼1 dr ¼ 1 [25]. Then d � ðeTĤ�1
m eÞ�1

Ĥ�1
m e is

a vector of weights which leads the best estimator among linear combinations of estimators of
γ̂m where e is a vector consisting of R ones [24], [25].

We now apply the argument in previous paragraph to our model by considering the joint

distribution of β̂ ¼ fη̂T ; ðθ̂LÞT ; ðθ̂PÞTgT . Let β0 ¼ ðηT
0 ; θ

T
0 ; θ

T
0 ÞT andGnðβÞ ¼

½ST
n ðZÞ; fUL

nðαÞg
T
; fUP

nðαÞg
T �T where ½ST

n ðZÞ; fUL
nðαÞg

T
; fUP

nðαÞg
T �T are estimating equa-

tions for β0. The strong consistency and asymptotic joint distribution of three estimators, de-
scribed in following theorems, play a crucial role in our methodology.

To prove asymptotic results, several regularity conditions are required. As stated in [7] and
[17], define

Fða; b; c; d; eÞ ¼ Pð�X1 � �D1 � a; �X1 � C1 � b; �X1 � �X2 � c; �X1 � �D2 � d; �X1 � C2 � ejZ1;Z2Þ

Let α0 ¼ ðηT
0 ; θ

T
0 ÞT . Define

T1ðZ1;Z2Þ ¼ @F
@a

fg12ðα0Þ;�ZT
1η0 � g12ðα0Þ; 0; g12ðα0Þ;�ZT

2η0 � g12ðα0Þg

þ @F
@b

fg12ðα0Þ;�ZT
1η0 � g12ðα0Þ; 0; g12ðα0Þ;�ZT

2η0 � g12ðα0Þg

þ @F
@d

fg12ðα0Þ;�ZT
1η0 � g12ðα0Þ; 0; g12ðα0Þ;�ZT

2η0 � g12ðα0Þg

þ @F
@e

fg12ðα0Þ;�ZT
1η0 � g12ðα0Þ; 0; g12ðα0Þ;�ZT

2η0 � g12ðα0Þg

þ 2
@F
@c

fg12ðα0Þ;�ZT
1η0 � g12ðα0Þ; 0; g12ðα0Þ;�ZT

2η0 � g12ðα0Þg

and

T2ðZ1;Z2Þ ¼ T1ðZ1;Z2Þ � 2
@F
@c

fg12ðα0Þ;�ZT
1η0 � g12ðα0Þ; 0; g12ðα0Þ;�ZT

2η0 � g12ðα0Þg

From the Appendix in [17], the additional conditions are as follows:

1. The parameter spaceW is compact, and the true parameter α0 is an interior point ofW.
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2. θ0 is the only solution of the estimating equation Efn�1=2UP
n ðη0; θÞg ¼ 0.

3. E(jjZjj2)<1, where jj�jj is Euclidean norm and there exists positive constant K such that
partial derivatives of F are bounded by K and there exists positive constant K� such that
marginal probability distribution of F is bounded by K� almost surely.

4. cov[(Z1 − Z2){T1(Z1, Z2)}
1/2] and cov[(Z1 − Z2){T2(Z1, Z2)}

1/2] are positive definite.

In many parts of proofs, we adapt arguments from [13] and [17].

Theorem 1. By conditions of C1 − C3 in Appendix of [17] and conditions in [27], β̂ is
(strongly) consistent.

Proof. Let β̂ ¼ fẐT ; ðθ̂LÞT ; ðθ̂PÞTgT . It suffices to show that η̂; θ̂L and θ̂P are strongly
consistent, respectively. Let α = (ηT,θT)T. Note that we have compact region, sayW and we as-
sume regularity conditions in [27]. By [27], there exists nonrandom functionm1 such that
supη 2 N0

jjn−1/2 Sn(η) −m1(η)jj converges to 0 with probability 1 whereN0 is a neighborhood
of η0. Thus η̂ is strongly consistent. Similarly, we have another nonrandom functionm2 such

that supα2N 1
jjn�1=2UL

nðαÞ �m2ðαÞjj converges to 0 with probability 1 whereN1 is a neighbor-

hood of α0. Hence by [27], α̂L is strongly consistent.

For θ̂P, by argument in Appendix of [17], note that by the U-statistics version of the law of

large numbers, for all α 2W, jjn�1=2UP
nðαÞ � γðαÞjj converges to 0 in probability where

γðαÞ ¼ Efn�1=2UP
nðαÞg. We can partition our compact space asW1,. . .,Wk so that

W 2 [k
j¼1W j. Clearly, then for {αj 2Wj, j = 1,. . ., k}, max1�j�kjjn�1=2UP

nðαjÞ � γðαjÞjj con-
verges to 0 in probability. Then by Appendix of [17],

sup
jjα�α��jj�x

n�1=2jjUP
nðαÞ �UP

nðα��Þjj

� 2

nðn� 1Þ
X

1�i<j�n

jjZi � Zjjj sup
jjα�α��jj�x

jfijðαÞ � fijðα��Þj

and for all � > 0, there exists ξ> 0 such that

lim
n!1

P
2

nðn� 1Þ
X

1�i<j�n

jjZi � Zjjj sup
jjα�α��jj�x

jfijðαÞ � fijðα��Þj � �

 !
¼ 0

Hence

lim
n!1

Pð sup
jjα�α��jj�x

n�1=2jjUP
nðαÞ �UP

nðα��Þjj � �Þ ¼ 0

Thus θ̂P is strongly consistent and clearly, β̂ is strongly consistent.

Theorem 2. Assuming certain technical conditions from [27] and [17], n1=2ðβ̂ � β0Þ is as-
ymptotically normal with mean zero vector and covariance matrix S0 where S0 ¼ G�1

0 O0G
�1
0 ;

where Γ0 is a nonsingular matrix andΩ0 is the asymptotic covariance matrix of Gn(β0).

Proof. As consistency, we assume the same regularity conditions as in [27]. Let β0 ¼
ðηT

0 ; θ
T
0 ; θ

T
0 ÞT andGnðβÞ ¼ ½ST

n ðZÞ; fUL
nðαÞg

T
; fUP

nðαÞg
T �T . Similar to [13], let lð1Þ0 ðtÞ be the

cause-specific hazard function for the ~D�
i ðηÞ and let lð2Þ

0 ðtÞ be the cause-specific hazard

Weighted Estimation of the AFT Model under Dependent Censoring
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function for ~X �
i ðαÞ under dependent censoring. Define

M1iðtÞ ¼ N1iðt; η0Þ �
Z t

�1
If~D�

i ðη0Þ � uglð1Þ
0 ðuÞdu ð3Þ

M2iðtÞ ¼ N2iðt;α0Þ �
Z t

�1
If~X �

i ðα0Þ � uglð2Þ0 ðuÞdu ð4Þ

ThenM1i andM2i are martingales [5], [13]. By adapting a proof in the Appendix in [13],
Rebdolledo’s martingale central limit theorem [5] gives

Snðη0Þ ¼ n�1=2
Xn
i¼1

Z 1

�1
fZi � �Zð1ÞðuÞgdM1iðuÞ þ opð1Þ

UL
nðα0Þ ¼ n�1=2

Xn
i¼1

Z 1

�1
fZi � �Zð2ÞðuÞgdM2iðuÞ þ opð1Þ

where �Zð1ÞðuÞ ¼ limn!1½
Pn

j¼1 If~D�
j ðη0Þ � ugZj�=½

Pn
j¼1 If~D�

j ðη0Þ � ug� and
�Zð2ÞðuÞ ¼ limn!1½

Pn
j¼1 If~X �

j ðα0Þ � ugZj�=½
Pn

j¼1fIð~X �
j ðα0Þ � uÞg�. From Appendix of [17],

UP
nðα0Þ ¼ n�1=2

Xn
i¼1

2h1ðVi;α0Þ þ opð1Þ

where 2h1(v,α0) = 2E[h(v,V2,α0)]. For j = 1,. . ., n,M1j(t) is the martingale associated with �Dj ,

whileM2j(t) is the martingale associated with �Xj and h(Vi,Vj,α) = (Zi − Zj)ϕij(α) [13], [17]. For

j = 1,. . ., n, define

a0j ¼
Z 1

�1
fZj � �Zð1ÞðuÞgdM1jðuÞ a1j ¼

Z 1

�1
fZj � �Zð2ÞðuÞgdM2jðuÞ

a2j ¼ 2h1ðVj;α0Þ;

By the Cramér-Wold theorem, Gn(β0) has an asymptotically normal distribution with mean
zero and covariance matrixΩ0, where

O0 ¼ E

a01a
T
01 a01a

T
11 a01a

T
21

a11a
T
01 a11a

T
11 a11a

T
21

a21a
T
01 a21a

T
11 a21a

T
21

0
BBB@

1
CCCA

Note that Efn�1=2UP
nðαÞg ¼ γðαÞ. As stated in the Appendix of [17], under conditions of N1 −

N3 from [9], there exists an open neighborhood of α0, say K0, such that

sup
α2K0

jjUP
nðαÞ �UP

nðα0Þ � n1=2gðαÞjj
1þ n1=2jjgðαÞjj ¼ opð1Þ ð5Þ

Using a Taylor series expansion of γ(α) around α0,

gðαÞ ¼ gðα0Þ þ
@gðαÞ
@η

����
α¼α0

ðη� η0Þ þ
@gðαÞ
@θ

����
α¼α0

ðθ � θ0Þ þ oðjjα � α0jjÞ ð6Þ

Weighted Estimation of the AFT Model under Dependent Censoring
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With these two results (Eq 5) and (Eq 6), by Appendix of [17],

UP
nðαÞ ¼ UP

nðα0Þ þ n1=2
@gðαÞ
@η

����
α¼α0

ðη� η0Þ þ n1=2 @gðαÞ
@θ

����
α¼α0

ðθ � θ0Þ þ opð1þ n1=2jjα � α0jjÞ ð7Þ

From [27], we have that

SnðηÞ ¼ Snðη0Þ þ n1=2P0ðη� η0Þ þ opð1Þ ð8Þ

for any η in the small neighborhood of η0, where P0 is k × k nonsingular matrix. From the Ap-

pendix in [13], for J1nðαÞ ¼ ½ST
n ðZÞ; fUL

nðαÞg
T �T ,

J1nðαÞ ¼ J1nðα0Þ þ n1=2L10ðα � α0Þ þ opð1Þ ð9Þ

for any α in the small neighborhood of α0, where L10 is defined as

L10 ¼
P0 0

M0 H0

 !

is 2k × 2k nonsingular matrix andM0 andH0 are k × k constant matrices. Define

J2nðαÞ ¼ ½ST
n ðZÞ; fUP

nðαÞg
T �T . Using expansion from [17], for any α in the small neighbor-

hood of α0,

J2nðαÞ ¼ J2nðα0Þ þ n1=2L20ðα � α0Þ þ opð1Þ ð10Þ

L20 ¼
P0 0

R0 V0

 !

whereR0 ¼ @γðαÞ
@η

jα¼α0
andV0 ¼ @γðαÞ

@θ
jα¼α0

. Combining expansions of (Eq 8), (Eq 9) and (Eq

10), we have

GnðβÞ ¼ Gnðβ0Þ þ n1=2G0ðβ� β0Þ þ opð1Þ

for any β in the small neighborhood of β0, where Γ0 is defined as

G0 ¼

P0 0 0

M0 H0 0

R0 0 V0

0
BBB@

1
CCCA

The results from [9] and [27], along with the consistency of β̂, imply that

n1=2ðβ̂ � β0Þ ¼ �G�1
0 Gnðβ0Þ þ opð1Þ

By combining the above results with Slutsky’s theorem, n1=2ðβ̂ � β0Þ has an asymptotically nor-

mal distribution with mean zero and covariance matrix G�1
0 O0G

�1
0 .

Theorem 2 implies the asymptotic normality of β̂ with the form of S0 being

S0 ¼

S11 S12 S13

S21 S22 S23

S31 S32 S33

0
BBB@

1
CCCA:
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Let Ŝ be the estimated covariance matrix of S0. In this covariance matrix, Ŝ11 is a k × k covari-

ance matrix for η̂, Ŝ22 is a k × k covariance matrix for θ̂L and Ŝ33 is a k × k covariance matrix

for θ̂P . Moreover, Ŝ12 and Ŝ13 represent covariance terms between η̂ and θ̂L and between η̂

and θ̂P, respectively. Define Ŝ23 as the covariance matrix between θ̂L and θ̂P. Clearly,

Ŝ21 ¼ ŜT
12, Ŝ31 ¼ ŜT

13 and Ŝ32 ¼ ŜT
23.

The issue remains of how to obtain the matrix corresponding to Ĥ�1
m in our context. Note

that η̂; θ̂L and θ̂P are correlated with each other. The estimating equation structure implies that

θ̂L and θ̂P cannot be estimated separately from η̂. Thus our matrix corresponding to Ĥ�1
m

should include the effect of η̂. To obtain the matrix, we need to invert whole matrix and extract

submatrix corresponding to θ̂L and θ̂P . There are two approaches to obtain submatrix.

The first approach is to invert Ŝ and obtain the submatrix of Ŝ�1 corresponding to θ̂L
m and

θ̂P
m. Let us denote this matrix as Ŝ�

m. Clearly, this matrix is 2 × 2 and also positive definite. Then

we can calculate ĉm ¼ ðĉm1; ĉm2ÞT ¼ ðhTŜ�
mhÞ�1Ŝ�

mh, where h = (1, 1)T. By using the form of

the optimal estimator in [25], we obtain new weighted estimator formth covariate, say θ̂MWE
m ,

where

θ̂MWE
m ¼ ĉm1θ̂

L
m þ ĉm2θ̂

P
m:

We can repeat this step for the other regression coefficients. Then we obtain

θ̂MWE ¼ ðθ̂MWE
1 ; . . . ; θ̂MWE

k ÞT . In this first approach, weights are generated through using k num-
ber of 2 × 2 matrices. We can refer this first approach as ‘marginal approach’.

Sometimes it is desirable to consider entire covariates all at once when obtaining weights.

The second approach is to obtain the corresponding submatrix of Ŝ�1 for fðŷLÞT ; ðŷPÞTgT . We

denote this matrix as Ŝ��. This approach is different from first one in that Ĝm consists of ele-

ments of the covariance matrix from θ̂L
m and θ̂P

m but now Ŝ�� has elements of covariance matrix

from corresponding entire fðŷLÞT ; ðŷPÞTgT . This approach reflects the effect of fðŷLÞT ; ðŷPÞTgT

jointly on our new estimator. Let E be a 2k × kmatrix such that

E ¼

1; 0; . . . ; 0

0; 1; . . . ; 0

..

.

0; 0; . . . ; 1

1; 0; . . . ; 0

0; 1; . . . ; 0

..

.

0; 0; . . . ; 1

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

:

E is a multivariate extension of h. Note that E is concatenation of two k × k identity matrices

by row. Entries that are 1 in these two k × k identity matrices are source of weights for θ̂L and
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θ̂P . The next step is to construct B̂, which is

B̂ ¼ fðETŜ��EÞ�1
ETŜ��gT

Then B̂ has the form

ĉ�1;1 . . . ĉ�1;k

ĉ�2;1 . . . ĉ�2;k

..

. ..
. ..

.

ĉ�ðkþ1Þ;1 . . . ĉ�ðkþ1Þ;k

..

. ..
. ..

.

ĉ�2k;1 . . . ĉ�2k;k

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:

This matrix is a multivariate extension of ĉm from the first approach. This matrix is a contrast

matrix in the sense that ĉ�m;m þ ĉ�ðkþmÞ;m ¼ 1 for themth regression coefficient of θ̂L and θ̂P.

Moreover, ĉ�p;p þ ĉ�ðkþpÞ;p ¼ 0 for p 6¼m = 1,. . ., k. Using a vector form, from this approach our

new estimator, say θ̂ JWE,

θ̂ JWE ¼ ðθ̂ JWE
1 ; . . . ; θ̂ JWE

k ÞT ¼ ðĉ�1;1θ̂L
1 þ ĉ�ðkþ1Þ;1θ̂

P
1 ; . . . ; ĉ

�
k;kθ̂

L
k þ ĉ�ð2kÞ;kθ̂

P
k ÞT :

We can also refer this approach as the ‘joint approach’.

Now the key step is to obtain Ŝ. We use the resampling approach of [16], which was also

used in [13] and [17]. Let α̂L ¼ fẐT ; ðθ̂LÞTgT and α̂P ¼ fẐT ; ðθ̂PÞTgT . From [13] and [17], we
have

Wð1Þ
i ¼ Di Zi �

Pn
j¼1 If~D�

j ðη̂Þ � ~D�
i ðη̂ÞgZjPn

j¼1 If~D�
j ðη̂Þ � ~D�

i ðη̂Þg

" #
�
Xn
l¼1

DlIf~D�
i ðη̂Þ � ~D�

l ðη̂ÞgPn
j¼1 If~D�

j ðη̂Þ � ~D�
l ðη̂Þg

	 Zi �
Pn

j¼1 If~D�
j ðη̂Þ � ~D�

l ðη̂ÞgZjPn
j¼1 If~D�

j ðη̂Þ � ~D�
l ðη̂Þg

" #
;

Wð2Þ
i ¼ ~d�

i ðα̂LÞ Zi �
Pn

j¼1 If~X �
j ðα̂LÞ � ~X �

i ðα̂LÞgZjPn
j¼1 If~X �

j ðα̂LÞ � ~X �
i ðα̂LÞg

" #
�
Xn
l¼1

~d�
l ðα̂LÞIf~X �

i ðα̂LÞ � ~X �
l ðα̂LÞgPn

j¼1 If~X �
j ðα̂LÞ � ~X �

l ðα̂LÞg

	 Zi �
Pn

j¼1 If~X �
j ðα̂LÞ � ~X �

l ðα̂LÞgZjPn
j¼1 If~X �

j ðα̂LÞ � ~X �
l ðα̂LÞg

" #
;

and

Wð3Þ
i ¼ 2

n� 1

Xn
j¼1

ðZi � ZjÞfijðα̂PÞ:
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Define

Wi ¼
Wð1Þ

i

Wð2Þ
i

Wð3Þ
i

0
BBB@

1
CCCA:

A consistent estimator ofΩ0 is

Ô ¼ 1

n

Xn
i¼1

WiW
T
i :

We then solve the estimating equation

GnðβÞ ¼ �n�1=2
Xn
i¼1

WiQi; ð11Þ

where Qi (i = 1,. . ., n) represent standard normal random variables. Note thatGnðβÞ ¼
½ST

n ðZÞ; fUL
nðαÞg

T
; fUP

nðαÞg
T �T is joint estimating equation for ðηT

0 ; θ
T
0 ; θ

T
0 ÞT . By solving this

equation, we obtain many realizations of β̂s, say β̂R ¼ fðẐ�ÞT ; ðθ̂L�ÞT ; ðθ̂P�ÞTgT where
fðẐ�ÞT ; ðθ̂L�ÞT ; ðθ̂P�ÞTgT are solutions from (Eq 11). The next theorem, combined with Theo-

rem 2, justifies the resampling approach for calculating Ŝ.
Theorem 3. Based on the technical conditions in [16], the unconditional distribution of

n1=2ðβ̂ � β0Þ is same asymptotically as the conditional distribution of n1=2ðβ̂R � β̂Þ where β̂R

are realizations of β̂ from resampling.
Proof. Recall that for any β in the small neighborhood of β0, we have

GnðβÞ ¼ Gnðβ0Þ þ n1=2G0ðβ� β0Þ þ opð1Þ ð12Þ

Note that β̂R are solutions of Eq (11). By conditioning on observed data and using expansion
(Eq 12) as well as by adapting arguments in [13] and [16],

Gnðβ̂RÞ ¼ Gnðβ̂Þ þ n1=2G0ðβ̂R � β̂Þ þ opð1Þ

and hence,

n1=2ðβ̂R � β̂Þ ¼ �G�1
0 n�1=2

Xn
i¼1

WiQi þ opð1Þ

Note that n�1=2
Pn

i¼1 WiQi is asymptotically normal with covariance matrix S0. Then given ob-

served data, distribution of n1=2ðβ̂R � β̂Þ is asymptotically normal with covariance matrix

G�1
0 S0G

�1
0 . Hence conditional distribution of n1=2ðβ̂R � β̂Þ on observed data is asymptotically

same as unconditional distribution of n1=2ðβ̂ � β0Þ.
Form = 1,. . .k and j = 1,. . .,M, let ðη̂�

mÞðjÞ; ðθ̂L�
m ÞðjÞ and ðθ̂P�

m ÞðjÞ be jth realizations of an ele-

ment η̂m; θ̂
L
m and θ̂P

m corresponding tomth covariate, respectively. The algorithm for the first
approach is as follows.

1. By resampling, calculate the covariance matrix Ŝ using realizations ðη̂�
mÞðjÞ; ðθ̂L�m ÞðjÞ and

ðθ̂P�m ÞðjÞ, (m = 1,. . ., k and j = 1,. . .,M).
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2. From Ŝ�1, obtain the covariance matrix corresponding to θ̂Lm and θ̂Pm, say Ŝ
�
m.

3. Calculate ĉm ¼ ðĉm1; ĉm2ÞT ¼ ðhT Ŝ�
mhÞ�1Ŝ�

mh where h = (1,1)T and obtain the new esti-

mate θ̂MWE
m ¼ ĉm1θ̂Lm þ ĉm2θ̂Pm.

4. Repeat step 3 for all covariates.

The algorithm for the second approach is as follows.

1. By resampling, calculate the covariance matrix Ŝ using realizations ðη̂�
mÞðjÞ; ðθ̂L�m ÞðjÞ and

ðθ̂P�m ÞðjÞ (m = 1,. . ., k and j = 1,. . .,M).

2. Obtain Ŝ�� from Ŝ.

3. From Ŝ�� and E, obtain B̂.

4. Calculate the new estimate θ̂JWE
m ¼ ĉ�m;mθ̂

L
m þ ĉ�kþm;mθ̂

P
m, where ĉ

�
j;l be the element of jth row

and lth column of B̂.

By Theorem 1 and Theorem 2, our new estimators are consistent and
asymptotically normal.

Model checking
For assessing the adequacy of the model, since our weight estimator is based on estimators
from [13] and [17], it is reasonable to consider entire processes from [13] and [17]. In this case,

we extend model checking technique from [13]. As defined in [13], Let N1iðt; ηÞ ¼
DiIf~D�

i ðηÞ � tg and N2iðt;αÞ ¼ ~d�
i ðαÞIf~X �

i ðαÞ � tg, where i = 1,. . ., n. Then Nelson-Aalen
estimators for the event of interest and dependent censoring are

L̂ð1Þ
0 ðu; ηÞ ¼ R t

�1

Pn
i¼1 dN1iðu; ηÞPn

j¼1 If~D�
j ðηÞ � ug L̂ð2Þ

0 ðu;αÞ ¼
Z t

�1

Pn
i¼1 dN2iðu;αÞPn

j¼1 If~X �
j ðαÞ � ug :

Note that by (Eq 3) and (Eq 4), martingale residuals are defined as

M̂ 1iðt; η̂Þ ¼ N1iðt; η̂Þ �
Z t

�1
If~D�

i ðη̂Þ � ugdL̂ð1Þ
0 ðu; η̂Þ

M̂ 2iðt; α̂Þ ¼ N2iðt; α̂Þ �
Z t

�1
If~X �

i ðα̂Þ � ugdL̂ð2Þ
0 ðu; α̂Þ;

where α̂ can be either α̂L ¼ fẐT ; ðθ̂LÞTgT
or α̂P ¼ fẐT ; ðθ̂PÞTgT . Then as defined in [13],

Snðs; ηÞ ¼ n�1=2
Xn
i¼1

ZiM̂ 1iðs; ηÞ Unðt;αÞ ¼ n�1=2
Xn
i¼1

ZiM̂ 2iðt;αÞ:

Then similar to [13] and [17], we can substitute η̂ on Sn(s; η), α̂L and α̂P on Un(t; α).

½ST
n ðs; ẐÞ; fUnðt; α̂LÞgT ; fUnðt; α̂PÞgT �T are called observed score processes with respect to de-

pendent censoring and the event of interest, respectively [7], [13], [17]. We can construct
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½ŜT
n ðs; Ẑ�Þ; fÛL

nðt; α̂L�ÞgT ; fÛP
nðv; α̂P�ÞgT �T [13], [17], where

Ŝnðs; η̂�Þ ¼ n�1=2
Xn
i¼1

Z s

�1
Zi �

Pn
j¼1 If~D�

j ðη̂Þ � wgZjPn
j¼1 If~D�

j ðη̂Þ � wg

" #
dM̂ 1iðw; η̂ÞQi

þSnðs; η̂�Þ � Snðs; η̂Þ

ÛL
nðt; α̂L�Þ ¼ n�1=2

Xn
i¼1

Z t

�1
Zi �

Pn
j¼1 If~X �

j ðα̂LÞ � wgZjPn
j¼1 If~X �

j ðα̂LÞ � wg

" #
dM̂ 2iðw; α̂LÞQi

þUnðt; α̂L�Þ �Unðt; α̂LÞ

ÛP
nðv; α̂P�Þ ¼ n�1=2

Xn
i¼1

Z v

�1
Zi �

Pn
j¼1 If~X �

j ðα̂PÞ � wgZjPn
j¼1 If~X �

j ðα̂PÞ � wg

" #
dM̂2iðw; α̂PÞQi

þUnðv; α̂P�Þ �Unðv; α̂PÞ;

where α̂L� ¼ fðẐ�ÞT ; ðθ̂L�ÞTgT and α̂P� ¼ fðẐ�ÞT ; ðθ̂P�ÞTgT
. These three processes are called

bootstrapped processes [7], [13], [17]. We can plot the observed process with bootstrapped
processes by randomly selecting 20 or 30 observations. Standard tests for goodness of fit can be
performed by calculating Kolmogorov-Smirnov type test statistics. Test statistics are then de-
fined by supsjjSnðs; η̂Þjj; suptjjUnðt; α̂LÞjj, and supvjjUnðv; α̂PÞjj. To calculate the null distribu-
tion of the test statistics, first we obtain jth realizations of bootstrap samples ðη̂�ÞðjÞ; ðθ̂L�ÞðjÞ and
ðθ̂P�ÞðjÞ. Then we compute BSj ¼ supsjjŜnðs; ðη̂�ÞðjÞÞjj;BSLj ¼ suptjjÛL

nðt; ðα̂L�ÞðjÞÞjj and
BSPj ¼ supvjjÛP

nðv; ðα̂P�ÞðjÞÞjj, respectively for j = 1,. . .,M, where ðα̂L�ÞðjÞ and ðα̂P�ÞðjÞ are jth re-

alizations of bootstrap samples of α̂L� and α̂P�. The p-values can be defined by

p1 ¼
1

M

XM
j¼1

IfBSj � sup sjjSnðs; η̂Þjjg

p2 ¼
1

M

XM
j¼1

IfBSLj � sup tjjUnðt; α̂LÞjjg

p3 ¼
1

M

XM
j¼1

IfBSPj � sup vjjUnðv; α̂PÞjjg:

[10]. If the p-value is smaller than predetermined level, we reject the null hypothesis, which
means that data does not have appropriate fit on our bivariate model. Note that a multiple test-
ing problem arises for testing the models for θ. We address this by adjusting p-values based on
a Bonferroni correction with two tests.

Simulation Studies
We consider two simulation settings. In first simulation setting, the errors follow a bivariate
normal distribution with mean (0,1.2) with variance 1 and correlation ρ = 0,0.25. The indepen-
dent censoring time C is generated from log(U�), where U� has uniform distribution with mini-
mum value 0 and maximum value 20. Covariate is Z* Bernoulli(0.5), where Bernoulli(0.5) is
Bernoulli distribution with success probability 0.5. We run 500 simulation runs. Within each
simulation run, 500 resampling runs are tried for covariance matrix calculation. Sample sizes
are N = 150 and N = 300. If there is only one covariate in the model, the first and the second
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method of the weighted estimation are equivalent. Let this common weighed estimator be θ̂WE.
We calculate bias (Bias), mean squared error (MSE), mean of standard error (SEE), 95% cover-
age rate (Coverage). The coverage is based on the normal approximation. Moreover, to evalu-
ate robustness of estimators, we also compute median of difference of the estimator from true
value (Dmedian), median of squared error of estimates (Mediansq), and median of standard
errors (Sdmedian). Results are summarized on Table 1 and Table 2.

In second simulation setting, we generate Gamma random variable ν with mean μ = 1 and
variance σ2 = 0 or 1, then createW = exp (�X), which is an exponential random variable with
rate 4ν−1 and exp (�D) with an exponential random variable with rate ν−1. Then we generate

time to the event of interest by expðXÞ ¼ expðθT
0ZÞexpð�XÞ and time to the dependent censor-

ing by expðDÞ ¼ expðηT
0ZÞexpð�DÞ (By notation in our paper, X, D and C are already log-trans-

formed times. Thus in this context, exp (X), exp (D) and exp (C) are times in the original
scale). The independent censoring time exp (C) has uniform distribution with minimum value
0 and maximum value 20. True parameter values are θ0 = (0.5,1)T and η0 = (1,0.5)T and covari-
ates are Z1 * U(0,1), where U(0,1) is uniform distribution with minimum value 0 and maxi-
mum value 1 and Z2 * Bernoulli(0.5). We run 500 simulation runs. Within each simulation

run, 500 resampling runs are tried for covariance matrix calculation. Let θ̂MWE be weighted esti-

mators from calculating weights marginally (the first proposed method) and let θ̂ JWE be weight-
ed estimators from calculating weights jointly (the second proposed method). We compute the
same quantities as we did in the first set of the simulation study. Results are summarized on
Table 3 and Table 4.

In these simulation results, we can see that our weighted estimators have good results. In
both cases, bias and mean squared error of our new estimator has similar performance com-
pared to the estimators by [13] and [17]. Mean of standard errors and median of standard

Table 1. Simulation result when N = 150 and N = 300, ρ = 0 with covariate Bernoulli(0.5).

Estimators1 N = 150

Bias (Dmedian2) MSE3 (Mediansq4) SEE5(Sdmedian6) Coverage7

θ̂L 0.018 (0.018) 0.04 (0.017) 0.204 (0.2) 0.95

θ̂P 0.021 (0.014) 0.036 (0.017) 0.193 (0.19) 0.96

θ̂WE 0.016 (0.006) 0.036 (0.015) 0.188 (0.185) 0.95

Estimators1 N = 300

Bias (Dmedian2) MSE3(Mediansq4) SEE5(Sdmedian6) Coverage7

θ̂L -0.002 (-0.003) 0.017 (0.006) 0.140 (0.140) 0.95

θ̂P -0.001 (0.002) 0.016 (0.007) 0.133 (0.132) 0.95

θ̂WE -0.004 (-0.002) 0.016 (0.007) 0.130 (0.129) 0.94

1 θ̂L: the estimator by [13]; θ̂P: the estimator by [17]; θ̂WE : the weighted estimator by the proposed approach (Note that the marginal approach and the joint

approach are equal in one variable case)
2 median of difference of the estimator from true value
3 mean squared error
4 median of squared error
5 mean of standard error
6 median of standard error
7 95% coverage rate

doi:10.1371/journal.pone.0124381.t001
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errors are smaller than the estimators by [13] and [17]. Moreover, computation results for the
median of difference of the estimators from true value and the median of squared error imply
that our proposed estimator is comparable with the estimators from the original methods.

In the first simulation setting, the difference of standard error between our proposed estima-

tor and θ̂L is bigger than the one between θ̂P and the proposed estimator. In the second simula-

tion setting, the phenomenon is the opposite. Furthermore, in the first simulation setting, θ̂P

has lower standard error on average than one of θ̂L while θ̂L have better efficiency (with respect

to standard error) than ones by θ̂P in the second simulation setting. This simulation result veri-
fies our claim, which means that neither estimator is better than another. Our proposed estima-
tor takes advantage of smaller standard error with achieving small bias and correct coverage
except N = 150 with σ2 = 1 in the second simulation setting. In this scenario, empirical coverage

of proposed estimators is lower than nominal 95% coverage. This is due to low coverage of θ̂L.

Since we combine θ̂L and θ̂P , if one of them has low coverage, it is highly likely that the cover-
age of weighted estimator may also be below the nominal coverage.

Real data analysis
We applied our method to data from the AIDS Clinical Trial Group (ACTG) Study 364 [1],
which was used in [17]. This multicenter randomized study investigated patients whose plasma
RNA level is at least 500 copies per ml. Subjects were assigned to three treatments, nelfinavir
(NFV), efavirenz (EFV), and combination of nelfinavir and efavirenz (NFV + EFV). Details
about this study can be found in [1].

The two failure times are time to HIV RNA level greater than 2000 copies per ml and time
to withdrawal of study. Let X be the first time when HIV RNA level is greater than 2000 copies

Table 2. Simulation result when N = 150 and N = 300, ρ = 0.25 with covariate Bernoulli(0.5).

Estimators1 N = 150

Bias (Dmedian2) MSE3(Mediansq4) SEE5(Sdmedian6) Coverage7

θ̂L 0.005 (0.01) 0.036 (0.017) 0.198 (0.197) 0.95

θ̂P 0.006 (0.007) 0.032 (0.015) 0.189 (0.188) 0.95

θ̂WE -0.001 (-0.006) 0.033 (0.016) 0.184 (0.183) 0.94

Estimators N = 300

Bias (Dmedian2) MSE3(Mediansq4) SEE5(Sdmedian6) Coverage7

θ̂L -0.003 (0.005) 0.018 (0.008) 0.138 (0.137) 0.95

θ̂P 0.001 (0.007) 0.017 (0.007) 0.131 (0.131) 0.95

θ̂WE -0.003 (0.002) 0.017 (0.007) 0.129 (0.128) 0.95

1 θ̂L: the estimator by [13]; θ̂P: the estimator by [17]; θ̂WE : the weighted estimator by the proposed approach (Note that the marginal approach and the joint

approach are equal in one variable case)
2 median of difference of the estimator from true value
3 mean squared error
4 median of squared error
5 mean of standard error
6 median of standard error
7 95% coverage rate

doi:10.1371/journal.pone.0124381.t002
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per ml and D be time to withdrawal of study. We considered four covariates and 194 observa-
tions. Z1 takes value 1 if a patient receives EFV and 0 otherwise. Z2 takes value 1 if a patient re-
ceives NFV + EFV and 0 otherwise. Z3 is New3TC, which takes value 1 if lamivudine is given
as a new nucleoside analogue therapy to a patient and 0 otherwise. Z4 is logarithm of RNA
level at the start of the study.

Table 5 and Table 6 show the point estimates and standard errors of η̂, θ̂L, θ̂P, θ̂MWE and

θ̂ JWE. Our method works well for the models with and without New3TC on all covariates. Some
variables are seen to be statistically significant based on the weighted estimator while they are
not by [13] or [17]. For example, let’s consider effect of EFV to the time to first virologic failure.
By Table 6, the estimated effect by using approach of [13] is 0.475 and its standard error is
0.250. From approach of [17], an estimate is 0.464 and its standard error is 0.281. Based on the
fact that estimators are asymptotic normal, fromWald test using [13] and [17], EFV is not a
statistically significant variable on 5% significant level. On the other hand, a weighted estimate

Table 3. Simulation result when N = 150 and N = 300, σ2 = 0 with two covariates (Z1: U(0, 1), Z2: Ber-
noulli(0.5)).

Estimators1 N = 150

Bias (Dmedian2) MSE3(Mediansq4) SEE5(Sdmedian6) Coverage7

Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2

θ̂L 0.0001
(0.002)

0.002
(-0.005)

0.12
(0.052)

0.042
(0.018)

0.358
(0.352)

0.226
(0.222)

0.96 0.96

θ̂P -0.003
(0.003)

-0.003
(-0.002)

0.158
(0.074)

0.051
(0.023)

0.427
(0.418)

0.243
(0.241)

0.96 0.96

θ̂MWE 0.003
(-0.007)

0.003
(0.003)

0.123
(0.053)

0.043
(0.019)

0.351
(0.349)

0.219
(0.218)

0.95 0.95

θ̂JWE 0.003
(-0.007)

0.004
(0.001)

0.123
(0.055)

0.043
(0.018)

0.351
(0.349)

0.219
(0.217)

0.94 0.95

Estimators1 N = 300

Bias (Dmedian2) MSE3(Mediansq4) SEE5(Sdmedian6) Coverage7

Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2

θ̂L -0.012
(-0.013)

0.004
(0.001)

0.065
(0.028)

0.02
(0.01)

0.257
(0.255)

0.148
(0.148)

0.95 0.96

θ̂P -0.014
(-0.017)

-0.001
(-0.015)

0.081
(0.035)

0.024
(0.013)

0.283
(0.281)

0.162
(0.162)

0.95 0.96

θ̂MWE -0.01
(-0.012)

0.003
(-0.001)

0.064
(0.031)

0.02
(0.01)

0.252
(0.251)

0.146
(0.146)

0.95 0.96

θ̂JWE -0.01
(-0.014)

0.003
(0.002)

0.064
(0.032)

0.02
(0.01)

0.251
(0.25)

0.146
(0.146)

0.95 0.96

1 θ̂L: the estimator by [13]; θ̂P: the estimator by [17]; θ̂MWE : the weighted estimator by the marginal

approach; θ̂JWE : the weighted estimator by the joint approach
2 median of difference of the estimator from true value
3 mean squared error
4 median of squared error
5 mean of standard error
6 median of standard error
7 95% coverage rate

doi:10.1371/journal.pone.0124381.t003

Weighted Estimation of the AFT Model under Dependent Censoring

PLOS ONE | DOI:10.1371/journal.pone.0124381 April 24, 2015 15 / 22



Table 4. Simulation result when N = 150 and N = 300, σ2 = 1 with two covariates (Z1: U(0,1), Z2: Ber-
noulli(0.5)).

Estimators1 N = 150

Bias (Dmedian2) MSE3(Mediansq4) SEE5(Sdmedian6) Coverage7

Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2

θ̂L -0.010
(-0.003)

-0.033
(-0.039)

0.273
(0.127)

0.086
(0.038)

0.441
(0.434)

0.315
(0.312)

0.90 0.96

θ̂P 0.002
(-0.002)

-0.032
(-0.046)

0.295
(0.142)

0.095
(0.038)

0.559
(0.552)

0.325
(0.324)

0.95 0.96

θ̂MWE -0.009
(-0.008)

-0.030
(-0.031)

0.263
(0.128)

0.085
(0.041)

0.437
(0.432)

0.303
(0.301)

0.90 0.96

θ̂JWE -0.009
(-0.008)

-0.030
(-0.03)

0.262
(0.128)

0.086
(0.04)

0.437
(0.432)

0.303
(0.301)

0.90 0.96

Estimators1 N = 300

Bias (Dmedian2) MSE3(Mediansq4) SEE5(Sdmedian6) Coverage7

Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2

θ̂L -0.024
(-0.038)

0.003
(-0.006)

0.133
(0.057)

0.04
(0.019)

0.345
(0.344)

0.211
(0.21)

0.94 0.96

θ̂P -0.016
(-0.016)

0.012
(0.003)

0.148
(0.059)

0.045
(0.02)

0.384
(0.382)

0.222
(0.222)

0.96 0.97

θ̂MWE -0.024
(-0.035)

0.007
(-0.003)

0.134
(0.058)

0.04
(0.019)

0.341
(0.341)

0.207
(0.207)

0.94 0.96

θ̂JWE -0.025
(-0.035)

0.007
(-0.002)

0.135
(0.058)

0.039
(0.018)

0.341
(0.341)

0.206
(0.207)

0.94 0.96

1 θ̂L: the estimator by [13]; θ̂P: the estimator by [17]; θ̂MWE : the weighted estimator by the marginal

approach; θ̂JWE : the weighted estimator by the joint approach
2 median of difference of the estimator from true value
3 mean squared error
4 median of squared error
5 mean of standard error
6 median of standard error
7 95% coverage rate

doi:10.1371/journal.pone.0124381.t004

Table 5. Point estimates with standard errors of covariates in AIDS study for model without New3TC (Standard errors are shown in parenthesis).

Covariates η̂ θ̂L θ̂P θ̂MWE θ̂JWE

EFV1 0.753 (0.339) 0.115 (0.219) 0.375 (0.269) 0.168 (0.206) 0.2 (0.205)

NFV2+ EFV 0.674 (0.255) 1.128 (0.239) 1.091 (0.309) 1.120 (0.222) 1.114 (0.222)

log(RNA)3 -0.544 (0.154) -0.464 (0.215) -0.531 (0.169) -0.507 (0.163) -0.511 (0.162)

1 efavirenz
2 nelfinavir
3 logarithm of RNA at the start of the study

doi:10.1371/journal.pone.0124381.t005
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using first approach is 0.471 and its standard error is 0.222. In this case, EFV is a statistically
significant variable on 5% significant level.

Observed score process with bootstrapped processes for withdrawal of study with respect to
Z1 is shown in Fig 1. Fig 2 and Fig 3 show observed score processes and bootstrapped processes
of the first virologic failure using α̂L; α̂P with respect to Z1. These three plots are based on the
model without New3TC. They are fluctuating around zero, so it seems that there is no graphi-
cal evidence for lack of fit. The p-value for the lack of fit tests of withdrawal is 0.952 and the
first virologic failure using α̂L and α̂P are 0.918 and 0.959 respectively. With graphical check-
ing, p-value indicates that there is no evidence for violation of the model assumption.

For purposes of interpretation, since D represents a standard survival time, the interpreta-
tion of η̂ is in terms of covariate effect for survival time. However, since the observed time for

X depends on D, interpretation of θ̂ is difficult. One way to interpret θ̂ is to assume that D does

not exist and interpret the effect of θ̂ on X only. This approach is possible if there exists a rea-
sonable extrapolation mechanism for X [18]. However, considering the estimation structure

for θ, it is difficult to separate effect of θ̂ to X from effect of η̂ to D.

Discussion
In this paper, we have proposed optimal estimators using combinations of the two estimators
from [13] and [17]. Our methodology can be extended to a case of recurrent event with depen-
dent censoring, which is extensively studied [6], [7], [10]. We are currently working on
this extension.

Optimality of the estimator has been discussed in other contexts. Recently, there is a publi-
cation that proposed optimal additive functions based on score functions [14]. The main point
of their method is to combine unbiased estimating functions. In our case, this would be com-
bining estimating equations and new solution can be obtained by this estimating equation.
Comparing performance of this solution and our proposed estimator is of interest. This will be
left open to future research.

Another way of achieving optimality is to use generalized method of moment estimator [8].
This estimator is a linear combination of estimating functions [19]. In this case, the estimating
functions have a greater dimension than the dimension of the parameter vector. The optimality
is achieved by the linear combination. It is shown that the estimator from this linear combina-
tion of estimating functions is consistent and asymptotically normal [8]. In the literature of sta-
tistics, this idea is applied to generalized estimating equations [19]. The estimating functions

Table 6. Point estimates with standard errors of covariates in AIDS study for model with New3TC (Standard errors are shown in parenthesis).

Covariates η̂ θ̂L θ̂P θ̂MWE θ̂JWE

EFV1 0.770 (0.278) 0.475 (0.250) 0.464 (0.281) 0.471 (0.222) 0.471 (0.222)

NFV2+ EFV 0.650 (0.260) 1.353 (0.277) 1.246 (0.338) 1.333 (0.263) 1.317 (0.261)

New3TC3 0.927 (0.355) 1.449 (0.296) 1.374 (0.328) 1.431 (0.267) 1.420 (0.261)

log(RNA)4 -0.631 (0.183) -0.654 (0.289) -0.661 (0.218) -0.659 (0.216) -0.660 (0.215)

1 efavirenz
2 nelfinavir
3 lamivudine as new nucleoside analogue therapy
4 logarithm of RNA at the start of the study

doi:10.1371/journal.pone.0124381.t006
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proposed by [19] are called quadratic inference function. Recently, the quadratic inference
function is applied to Cox model [26].

[8] and [19] derived new estimating functions, while we combined two estimators directly.
This idea of the generalized method of moments is very appealing, but the estimating functions
of [13] and [17] are nonsmooth. Finding derivative for the linear combination of the estimating
functions, which is a key in generalized method moments, is challenging for our work because
we cannot find the derivatives in the estimating functions proposed by [13] and [17]. Applying
the idea of [8] to AFT model will be interesting future research.

Fig 1. Plot of observed score process and bootstrapped processes of time to withdrawal of study with respect to Z1. The thickline is observed
process and the dashed lines are bootstrapped processes.

doi:10.1371/journal.pone.0124381.g001
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Our estimating equations to obtain estimators involve nonsmooth functions of η and α.
Many literatures used a linear programming approach for estimating θ [3], [11]. However, this
linear programming method is very slow for computing estimators of θ. Thus this approach is
very inefficient when implementing to solve (Eq 11) for estimation of S. Recently, an approach
called a derivative free-spectral algorithm for nonlinear equations (DF-SANE) was proposed
[12], and there is a publication that showed that this algorithm is better than the linear pro-
gramming method using an example of estimating parameters of AFT models under indepen-
dent censoring. [21]. However, under dependent censoring, the artificial censoring term leads

Fig 2. Plot of observed score process and bootstrapped processes of time to first virologic failure using α̂L with respect to Z1. The thickline is
observed process and the dashed lines are bootstrapped processes.

doi:10.1371/journal.pone.0124381.g002
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to numerical instability in estimating parameters and calculating resampled estimators. More-
over, this algorithm does not converge well under default tolerance settings using DF-SANE
[21]. Thus using this algorithm requires changing the tolerance level. Developing efficient nu-
merical algorithms for estimating parameters is an important topic for future research.
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Fig 3. Plot of observed score process and bootstrapped processes of time to first virologic failure using α̂P with respect to Z1. The thickline is
observed process and the dashed lines are bootstrapped processes.

doi:10.1371/journal.pone.0124381.g003
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