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Obstructive sleep apnea (OSA) affecting human’s health is a kind of major breathing-related sleep disorders and sometimes
leads to nocturnal death. Respiratory rate (RR) of a sleep breathing sound signal is an important human vital sign for
OSA monitoring during whole-night sleeping. A novel sleep respiratory rate detection with high computational speed
based on characteristic moment waveform (CMW) method is proposed in this paper. A portable and wearable sound
device is used to acquire the breathing sound signal. And the amplitude contrast decreasing has been done first. Then, the
CMW is extracted with suitable time scale parameters, and the sleep RR value is calculated by the extreme points of
CMW. Experiments of one OSA case and five healthy cases are tested to validate the efficiency of the proposed sleep RR
detection method. According to manual counting, sleep RR can be detected accurately by the proposed method. In
addition, the apnea sections can be detected by the sleep RR values with a given threshold, and the time duration of the
segmentation of the breath can be calculated for detailed evaluation of the state of OSA. The proposed method is
meaningful for continued research on the sleep breathing sound signal.

1. Introduction

Humans spend almost 30% of the time in sleeping, and
the sleep quality is very important for human’s health.
Breathing-related sleep disorders are characterized by
abnormalities of the respiratory pattern or the quantity
of ventilation during sleep [1]. It is considered a chronic
illness which needs long-term treatment and management.
Obstructive sleep apnea (OSA) is a kind of major
breathing-related sleep disorders, and it is described by full
or partial occlusion of the upper airway during sleep
which can produce repeated oxyhemoglobin desaturations
and sleep fragmentation [2]. OSA which is considered a
main risk factor for cardiovascular disease affects human’s
health and sometimes leads to nocturnal death [3, 4].

OSA is commonly defined as a minimum of 10 s interval
pause of breath. The Apnea-Hypopnea Index (AHI) is
described by the number of apnea and hypopnea events per
hour to assess OSA severity. AHI of 5–15 indicates mild
OSA; 15–30, moderate; and over 30, severe [5].

Sleep respiratory rate (RR) is an important indicator for
serious illness [6], especially for OSA monitoring. RR of
healthy adults in a relax state is about 12–20 times per min-
ute. However, the RR will be abnormal for the OSA case
while the sleep breathing becomes slowed or stopped by the
apnea [7]. Hence, sleep RR is an early and vital indicator
for OSA patients.

Polysomnography (PSG) is often used to detect OSA
in clinic which acquires a series of monitoring indices
including RR. But PSG with many sensors is not only
expensive but also complicated for common patients [8].
Moreover, it is uncomfortable for the testers during their
sleep, so the results of PSG will be influenced by the
low-quantity sleep of the testers. With the development
of a smart wearable device, several researchers have inter-
ests in RR detection by acoustic signals.

The acoustic signals mainly come from two aspects,
breathing sound signals of the nose and the mouth [9] and
tracheal signals from the throat [10] and the suprasternal
notch [6, 11]. For RR detection via a tracheal signal, Hilbert
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transform was applied to extract the sound envelope and
wavelet was applied for frequency content decomposition
with a success rate of 96% for healthy volunteers and 85%
for patients suffering from chronic pulmonary diseases
[10]. A respiratory phase segmentation method based on a
genetic algorithm was applied to monitor the RR which was
enhanced by exploiting the signal redundancy [11]. The
short-time Fourier transform, Shannon entropy, and auto-
correlation were calculated to detect the RR value [6]. It is
found that the previous RR detection methods are mainly
based on the tracheal signal, and the acquisition of the tra-
cheal signal is not convenient as a sleep breathing sound sig-
nal. And the selection of a threshold value which plays an
important role in envelope extraction will change accompa-
nied by the speed of breathing for different individuals. So
the adaption of the threshold values, that is, the time scale
parameters, will affect the accuracy of sleep RR detection
and should be solved for further research. The OSA monitor-
ing should be completed all night, and the results of sleep RR
detection need to be transferred to an analysis system cor-
rectly and timely. In the previous research, the RR estimation
via finding the largest spectral peaks of autoregressive power
spectral analysis has been proposed [9]. And the successful
rates for the patients’ RR detection by the breathing sound
from the mouth and nose were 85% and 84%, respectively
[10]. They are not effective for the OSA case with apnea
and not satisfied with the practical demand. In this paper, a
RR detection method via a sleep breathing sound signal based
on characteristic moment waveform is proposed.

This paper is divided into 6 sections. Section 2 introduces
sleep breathing sound signal acquisition. Section 3 describes
details of the characteristic moment waveform extraction
method. Section 4 gives the introduction of the sleep RR
detection method. The results and analysis are disclosed in
Section 5, and conclusions will be drawn in Section 6.

2. Sleep Breathing Sound Signal Acquisition
and Preprocessing

2.1. Acquisition System of the Sleep Breathing Sound Signal.
The sleep breathing sound signal is collected by a portable
and wearable acquisition device for high sleep quality,
including a smart phone with an android system and a
wireless microphone. The purpose of our research is to
develop a cheap and easy-to-use sleeping monitoring sys-
tem for home use, so that the commercial wireless headset

(such as PTM 165) will be one better choice for our
research. Compared with the acquisition positions inferred,
the microphone is fixed near the nose by a kind of makeup
tape to acquire a stable breath signal during whole-night
sleeping. The environment of data acquisition is shown in
Figure 1. The original sample frequency is 44.1 kHz.

2.2. Preprocessing for Amplitude Contrast Diminution. In
fact, the intensity of the sleep breathing sound signal will
change greatly and impact the efficiency of the proposed
sleep RR detection method. The weak breathing sound will
be covered by the heavy breathing and the surrounding noise.
Therefore, the amplitude contrast of different breathing
cycles should be decreased first. The enhanced preprocessing
method is first introduced in detail as follows. The entropy of
the original signal H t is defined as

H t = E y t = −ξy t ⋅ ln y t , 
ξ = −1 y t > 0
ξ = 0 y t = 0
ξ = 1 y t < 0

1

Then, decrease the volume and intensity difference by
cutting off the strong intensity part; the output signal is

Hcut t = a ⋅H t ± b ⋅ av H t > av ,

Hcut t = c ⋅H t H t < av ,
2

where av is the mean value of the H t , a and b are weaken-
ing factors, and c is the enhancement factor.

According to the experimental results by trial and error, a
is selected as 0.4, b is 0.6 whenH t is positive and −0.6 when
H t is negative, and c is set as 1.5 to enhance the amplitude
of a weak breathing cycle.

The final preprocessed signal is given by

yenhance t =Hcut t ⋅ 1 − l + l ⋅Hcut t
N , 3

where l experimentally set as 0.85 is the limiting amplitude
factor and N is set as 20 by experience.

A section of the sleeping breathing sound signal with
large intensity variation is shown in Figure 2(a). Compared
with the cycles in the both ends, the amplitude of three
breathing cycles in the middle is too small to be detected.
And after a series of processing shown in Figures 2(b) and
2(c), it is clearly found that the amplitude contrast of each
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Sleeping tester

Figure 1: Sleep respiratory signal acquisition system.
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breathing cycle has been shrunk shown in Figure 2(d), and it
will improve the accuracy of the sleep RR detection.

3. Characteristic Moment Waveform
Extraction of the Breathing Sound

A sleep breathing sound signal is generated by the move-
ment of air through the respiratory system, the nose, and
the mouth. It is always affected by a tester’s healthy condi-
tion, mental state, sleeping environment, and so on. It is
considered a quasiperiodic signal, and the sleep RR index
can be computed by counting the number of the breathing
period per minute in clinic.

3.1. Characteristic Moment Waveform (CMW). Waveform
extraction is always applied at the beginning of the signal
processing in a time domain. The waveform should keep
the useful information of the sleep breathing sound signal
as much as possible and make the impaction of noise as less
as possible. Commonly, Hilbert transform and Shannon
entropy are used for waveform extraction [10, 12, 13].
According to the features of the biomedical signals, one sin-
gle freedommodel [13], a homomorphic filter [14], and other
means are also applied for extracting the waveform. In this
paper, the time characteristic waveform (TCW) is extracted
first with multiscale adjustment. And then, the characteristic
moment waveform (CMW) is proposed for sleep RR detec-
tion based on TCW.

The precondition is assuming the noise part of the sleep
breathing sound signal as the signal with zero mean and unit
variance. Suppose the sleep breathing sound signal is r(t), the
random noise signal is n(t), and the real output signal is

y(t) = r(t) +n(t). TCW of the sleep breathing sound signal,
marked as c(t, δ), defined as the variance of the output y(t)
can be gotten by

c t, δ = σ2 y =
t+δ

t−δ
y τ − y t 2d τ

=
t+δ

t−δ
y τ 2d τ − 2δy t 2,

y t = 1
2δ

t+δ

t−δ
y τ d τ

4

Then, the CMW is calculated by the thought of image
shape identification in image processing with another
time scale l, which is represented by I(t, δ, l). It is calcu-
lated as follows:

I t, δ, l =
t+l

t−l
τ − t 2c τ, δ dτ 5

And the normalization presentation is presented as

n t, δ, l =
t+l
t−l τ − t 2c τ, δ dτ

t+l
t−lc τ, δ dτ

, 6

where δ and l are neighborhood of time t, which is called the
width time scale.

It is easy to find that the calculated amount will increase
with a larger time scale δ and l. The integral waveforms are
applied to compute the TCW and CMW. The calculations
of TCW and CMW are independent of the time scale
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Figure 2: Sleep breathing sound signal waveforms, (a) original signal waveform, and (b–d) the procedure of the preprocessing.
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parameters and fast with a very simple algorithm, just using
additions and multiplications [15].

3.2. Scale Choice for TCW and CMW. A breathing cycle is
constructed by four phases: inhalation, inspiratory pause,
exhalation, and period of rest; the RR value is defined by
the time duration during two consecutive inspirations [16].
According to our experimental statistic, a normal sleep
breathing cycle is about 3 to 5 seconds and the time inspira-
tion/expiration phase duration has a range of (0.3, 1) sec-
onds. So the scale δ is usually set to (1.5, 3), about half of
the sleep breathing cycle. The accuracy of CMW is not
required in high level for sleep RR detection, and the time
scale l is set as 0.1, about 1/10 of the phase duration. And
the affection of the scale δ is shown directly in Figure 3.

The TCW and CMW of a stable sleep breathing sound
signal are shown in Figure 3 while δ is set as 1.5, 2, and 3,
respectively. For this case, a sleeping breathing cycle lasts
about 4 seconds and δ is set to 2.0 as the most suitable value
based on the rules of the scale selection. While δ=1.5, the
waveforms of TCW and CMW are not smooth for the next
segmentation. While δ=3, the necessary details of the wave-
forms are ignored which weakens the periodicity. For the
abnormal breathing case shown in Figure 4, δ is set to 2.5
as the breathing cycle lasting about 5 seconds.

In addition, according to the extracted waveforms, the
most useful information of the original sleep breathing sound
signal can be kept from the TCWwaveform. And CMWwith
clear periodicity is convenient for finding the sleep RR index.

4. Respiratory Rate Detection Method

After choosing the suitable time scales, TCW and CMW are
extracted according to (4), (5), and (6) and the sleep RR index
can be detected using the following steps [15].

Step 1: Calculate the maximum point sequence of CMW.

Step 2: Find the local maximum point sequence by com-
puting the maximum value of the point sequence
gotten from Step 1.

Step 3: Calculate the local minimum point sequence of
TCW shown in the middle plants of Figures 5
and 6.

Step 4: Adjust the cycle segment points by a computation
window with the central point as the local mini-
mum point sequence of TCW and the segment
points shown in the bottom of Figures 5 and 6.

Step 5: Count the number of the cycle segment point per
minute as the RR value.

0 10 20 30 40 50 60
‒0.4
‒0.2

0
0.2

O
rig

in
al

 si
gn

al

0 10 20 30 40 50 60
0

0.5

1

TC
W

0 10 20 30 40 50 60
0

0.5

1

CM
W

Time (s)

Figure 4: TCW and CMW of the breathing sound signal in the
apnea case while δ= 2.5 and l = 0.1.
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Figure 3: Time characteristic waveforms (TCW) and moment waveforms (CMW) of the breathing sound signal in the normal case while
l = 0.1 and δ= 1.5, 2.0, and 3.0, respectively, from left to right.
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Take the cases shown in Figures 3 and 4 for example; the
breathing cycles are segmented correctly based on the TCW
and CMW displayed by the gray dot line in Figures 5 and
6. Even there is some noise coming from the movements of
the mouth, the segment results have not been affected. 16
breathing cycles in Figure 5 and nine breathing cycles
in Figure 6 are extracted correctly. The proposed method
shows outstanding stability and accuracy in sleep RR
value detection.

5. Experiment

5.1. The Information of Experimental Data. Five young stu-
dents (21± 1 years old) and a 59-year-old man who was diag-
nosed with OSA in the clinical setting are selected as testers.

Utilizing the acquisition system of the sleeping breath-
ing sound signal, we recorded about 374-minute-length
data and counted the breathing cycles manually with the

guidance of the prodoctor for the reference. The informa-
tion of the experimental data is listed in Table 1, and the
OSA case is number 6.

5.2. The Efficiency of the Preprocessing. Through a series of
processing introduced in Section 2.2, the intensity difference
between strong and weak respiratory signals becomes small
and its efficiency is validated.

The results of breathing cycle segmentation before and
after applying the enhanced preprocessing method are
summarized in Table 2. Without preprocessing, the scale
parameters (δ, l) are selected as (2, 0.1), (2, 0.1), (2.5,
0.1), (2.5, 0.1), (3, 0.1), and (3, 0.1) for test cases orderly.
While applying the enhanced preprocessing method, the
scale parameters (δ, l) are set as (2.5, 0.1) for all cases.

From Table 2, it seems that the method without prepro-
cessing can detect the breathing cycle with a success rate of
at least 93.06%. And the total successful rate is improved to
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Figure 5: Results of the breath cycle segmentation of the case in Figure 3.
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Figure 6: Results of the breath cycle segmentation of the case in Figure 4.
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98.40% with the same predicted time scale parameters for
different cases when applying the enhanced preprocessing
method. Especially, the successful rate of the OSA case that
improved to 97.44% can satisfy the experimental require-
ment of the sleep RR detection. Therefore, the use of the
enhanced preprocessing method shows more adaptability
and veracity in this experiment.

5.3. The Sleep RR Detection for OSA Analysis. The sleep RR
value per minute is computed by counting the number of
the segmented breathing cycles. The average values of the
sleep RR index of each case are expressed by the bar graph
shown in Figure 7. The blue bars in the left show the manual
counting results and the red bars in the right show the aver-
age sleep RR via the proposed detection method.

It is known that the sleep RR of healthy young men is
from 13 to 15 times per minute. And the sleep RR of the
OSA case is the slowest among the entire tester which is
related to the age and presence of the OSA disease. Spe-
cially, the sleep RR of case 5 is closed to that of the
OSA case (case 6). Hence, these two cases will be analyzed
in detail in the following.

The plot of the sleep RR value of the OSA case (number 6)
in one hour is shown in Figure 8. In order to detect the apnea
events, a threshold value TRR is set by

TRR = RRstable − 10∗ RRstable
60 , 7

where RRstable is the stable or normal respiratory rate in
sleeping. The apnea should last more than 10 seconds
according to the clinical definition. In another explanation,
10 seconds can be counted as 10∗RRstable/60 times/min.
Based on the result in Figure 8, the RRstable is 11 times/min;
therefore, 10∗RRstable/60 is calculated as 1.8 times/min and
TRR is around 9 times/min. It is found that seven points,

denoted by Ai, are the satisfying condition RR < TRR as
shown in Figure 8.

In another way to describe the apnea event detection, we
can calculate the RR time interval dd i of the segmentation
directly. As the results shown in Figure 6, since each seg-
mented part contains a breathing signal, the apnea pause
time can be calculated as dd i − 60/RRstable as shown in
Figure 9. Figure 10 shows the time duration values dd i of
each segmented breathing cycle. It shows that the stable or
normal breathing cycle is about 5 seconds and the longest
apnea is about 40.

Figure 11 shows the pause time calculation results at
apnea event points A1 to A7 of Figure 8. The pause time
durations of A1 to A7 are 14.39 s, 13.28 s, 25.31 s, 15.31 s,
31.06 s, 16.97 s, and 13.92 s, respectively. Therefore, there
are 7 apnea events lasting more than 10 s; the tester might
be identified as having mild OSA because of AHI=7. The
sleep RR detection will be acquired for more times of all-
night monitoring in order to get more accurate results.

In addition, the signal waveform of the AX section is
shown in Figure 12. Since the largest breathing pause is about
7 s, the AX section can be diagnosed as the hypopnea case, a
kind of abnormal sleep breath. The abnormal breathing
cycles will be meaningful for sleep monitoring.

As mentioned in Figure 7, the data of case number 5 is
from a young student and its statistic average value of sleep
RR is closed to that of OSA. In the same way, the plot of
the time duration values dd i of each segmentation is shown
in Figure 13. The stable breathing cycle lasts about 5 seconds,
and nine breathing cycles with apnea are detected.

The breathing sound signal waveforms with apnea are
displayed in Figure 14. Although there are lots of noise chips
during the apnea duration and the intensity of the breathing
changes greatly, the breathing cycle can be segmented

Table 2: Detection results of the respiratory cycle segmentation.

Case
number

Without preprocessing With preprocessing
Cycle
number

Successful
rate (%)

Cycle
number

Successful
rate (%)

1 849 95.39 872 97.98

2 851 95.51 865 97.08

3 1156 98.22 1172 99.58

4 683 97.29 694 98.86

5 667 98.38 672 99.12

6 617 93.06 646 97.44

Total 4823 96.44 4921 98.40

Successful rate = segmented cycle number/test cycle number by counting
manually.
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Figure 7: Sleep RR statistic average values of the six cases.

Table 1: Experimental data.

Case number 1 2 3 4 5 6 Total

Test time (min) 57 62 85 50 60 60 374

Test cycle number (manual counting) 890 891 1177 702 678 663 5001
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correctly and the apnea can be extracted successfully. It
shows that the proposed method has high anti-interference
and accuracy on signal segmentation and apnea event
extraction.

6. Conclusion

Sleep RR is one of the significant human vital signs. The sleep
RR and intensity are changed a lot during the whole-night
monitoring, and the real-time RR detection will be influenced
by strong volume noise. This paper utilizes the characteristic
moment waveform for sleep RR detection from the sleep
breathing sound signal which is acquired by a wearable
sound device. At the first part, the enhanced preprocessing
method is applied to reduce the amplitude contrast of the
original recording signal. The accuracy of the sleep RR detec-
tion and the adaptation of the time scale parameters for
different individuals have been improved. According to the
results of the experiment, the successful rate of the sleep RR
detection can reach to 98.40%. And the sleep breathing
sound of subjects with OSA disease can be analyzed easily
by the sleep RR value. Moreover, the time interval of apnea
can be calculated by the breathing cycle segmentation based
on the characteristic moment waveform. The proposed sleep
RR detection method is effective for the sleep condition
monitoring and OSA disease analysis.
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