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Abstract

The purpose of this work is to provide an effective social distance monitoring solution in

low light environments in a pandemic situation. The raging coronavirus disease 2019

(COVID-19) caused by the SARS-CoV-2 virus has brought a global crisis with its deadly

spread all over the world. In the absence of an effective treatment and vaccine the efforts

to control this pandemic strictly rely on personal preventive actions, e.g., handwashing,

face mask usage, environmental cleaning, and most importantly on social distancing

which is the only expedient approach to cope with this situation. Low light environments

can become a problem in the spread of disease because of people’s night gatherings.

Especially, in summers when the global temperature is at its peak, the situation can

become more critical. Mostly, in cities where people have congested homes and no proper

air cross-system is available. So, they find ways to get out of their homes with their families

during the night to take fresh air. In such a situation, it is necessary to take effective mea-

sures to monitor the safety distance criteria to avoid more positive cases and to control the

death toll. In this paper, a deep learning-based solution is proposed for the above-stated

problem. The proposed framework utilizes the you only look once v4 (YOLO v4) model for

real-time object detection and the social distance measuring approach is introduced with a

single motionless time of flight (ToF) camera. The risk factor is indicated based on the cal-

culated distance and safety distance violations are highlighted. Experimental results show

that the proposed model exhibits good performance with 97.84% mean average precision

(mAP) score and the observed mean absolute error (MAE) between actual and measured

social distance values is 1.01 cm.

Introduction

COVID-19 belongs to the family of coronavirus caused diseases, firstly reported in Wuhan,

China at the end of December 2020. China has announced its first death from the virus on Jan-

uary 11, a 61 years old man. On March 11, World Health Organization (WHO) [1, 2] declared

it pandemic due to its spread over 114 countries with a death toll of 4000 and active cases of

118000 [3]. Data from Johns Hopkins University showed that more than seven million people
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were confirmed to have the coronavirus with at least 406,900 dying from the disease on June 8.

Several health organizations, scientists, and doctors tried to develop vaccine but no success is

observed so far. This situation forces the world to find out an alternative solution to avoid

drastic results. Lockdown was imposed globally and maintaining safe social distance is

reported to be the alternate solution to cope with this drastic situation. The term social distanc-

ing is the best idea in the regulation of efforts made to minimize the spread of COVID-19 [4].

The basic objective is to reduce the physical contact between the infected and the healthy peo-

ple. As prescribed by WHO, people should maintain at least 1 meter (m) distance from each

other to control the spread of this disease [1, 5, 6].

This paper aims to mitigate the effects of coronavirus disease along with minimum loss of

resources; this disease has badly impacted the global economy. Secondly, to provide a highly

accurate solution for the detection of people to help out in monitoring social distancing during

the night. Especially, in summer when the heat is at its peak, people having congested homes

find ways to get out of their homes during the night with their families to take fresh air. During

this serious situation, it is necessary to take proper action. Recently, Eksin et al. [7] evaluated

the susceptible infected recovered (SIR) model where they included a social distancing term.

They showed that the spread of disease depends upon people’s social behavior. They assessed

the results of the SIR model with and without behavior change factor and found that a simple

SIR model did not get well performance even after many repeated observations; whereas, their

updated SIR model with behavior change factor showed good results and corrected the initial

error rate. In a similar context, a landing AI [8] company has declared the development of an

AI tool for monitoring social distance in the working area. In a short report [8], the firm pro-

fessed that the prospective tool will be able to observe people, whether they are following safety

distance criteria by examining real-time video streams captured by the camera. They affirmed

that this tool can be easily combined with available security cameras in different working areas

to ensure a safe distance between workers. The world-leading research company Gartner Inc.

[9] declared landing AI as cool vendors in AI core technologies to acknowledge their timely

incentive to support the fight against the deadly situation of COVID-19 [10].

In this article, a deep learning-based solution is proposed for the automatic detection of

people and monitoring social distance in low light environments. The first contribution of this

article is the performance evaluation of YOLO v4 on low light conditions without applying

any image cleansing approaches. As in past low light environments are not much focused, few

have focused the problem but only in the context of enhancing low light scenarios and improv-

ing visibility [11–14]; whereas, in the real-time object detection and monitoring, this approach

is not feasible because it takes more time to enhance low light scenarios at first place and then

apply object detection techniques. So, the real-time application should have to give a timely

response with high accuracy. Secondly, a social distance monitoring solution is proposed by

considering precise speed-accuracy tradeoff and is evaluated on our custom dataset. From

experimental results, it is observed that the model exhibited good performance with a balanced

mAP score and MAE [15] of 1.01 cm.

Related work

In this section, we briefly introduce previous work done on the social distancing in the context

of the 2019 novel coronavirus disease. As the disease spread at the end of December, research-

ers started work to pay their contributions in the deadly situation. Social distancing was sug-

gested as the alternative solution. The different research studies were conducted to provide an

effective social distancing solution. In the same background, Prem et al. [16] studied the conse-

quences of social distancing measures on the progression of the COVID-19 epidemic in

PLOS ONE COVID-19: Monitoring social distancing under various low light conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0247440 February 25, 2021 2 / 19

https://doi.org/10.1371/journal.pone.0247440


Wuhan, China. They used synthetic location-specific contact patterns to imitate an ongoing

trajectory outbreak using age structure susceptible-exposed-infected removed (SEIR) models

for several social distancing measures. They interpreted that a sudden rise in interventions will

lead to an early secondary peak but it will flatten gradually with time. As we all can understand

social distancing is important to cope with the current situation but economically it is a drastic

measure to flatten the curve against infectious diseases. Adolph et al. [17] emphasized the situ-

ation of USA where they gathered state-level responses regarding social distancing and found

the contradiction in the decision among policymakers and politicians which causes a delay in

imposing the social distancing strategies resulting in ongoing harm to public health. On the

brighter side, social distancing helped a lot to control the spread of disease but it has also

affected economic productivity. In the same background, Kylie et al. [18] have studied the

association between transmissibility and social distancing and found that association decreases

as transmissibility decreases within different provinces of China. According to the study, the

intermediate level of activity could be allowed while avoiding an immense outbreak.

Since the COVID-19 pandemic began, many countries are seeking for technology-oriented

solutions. Asian countries have used a range of technologies to fight against COVID-19. The

most used technology is tracking location by phones where the data of COVID-19 positive

people are saved, based on this data their near about healthy people are monitored. Germany

and Italy are using anonymized location data to monitor lockdown. UK has launched an appli-

cation (app) named C9 corona symptom tracker [19] that helps people to report their symp-

toms. Similarly, South Korea launched an app named Corona 100m [19] that has stored the

location of infected people and generate alert to healthy people when they came near to corona

patients at a distance of 100m. India has developed an app that helps people to maintain a spe-

cific distance from a person who has tested corona positive. Besides this, India, South Korea,

and Singapore are taking benefit from CCTV footage [19] to monitor the recently visited

places of COVID-19 patients to track down the infected people. China is utilizing AI-powered

thermal cameras [19] to identify those people in the crowd having the temperature. Such

inventions in this drastic situation might help to flatten the curve but at the same time, it

results in a threat to the personal information.

Object detection helped a lot in this deadly situation. Many of the researchers have investi-

gated the situation [20–23] to detect various types of objects to help out the scenario. Human

detection [24–27] is an established area of research. Recent advancements in this field [28, 29]

had created the demand for intelligent systems to monitor unusual human activities. Despite

the fact, human detection is an interesting field because of many reasons like faint videos,

diverse articulated pose, background complexities, and limited machine learning capabilities;

hence, existing knowledge can boost the detection performance [20]. Narinder et al. [21] moti-

vated by the notion of social distancing proposed a deep learning-based structure to automate

the task of observing social distance using surveillance video [22]. They used YOLO v3 [30]

algorithm with a deep-sort technique for the separation of people from the background and

tracking of detected people with the help of bounding boxes. Cob et al. [23] investigated the

relation of COVID-19 growth rates in US with shelter in place orders (SIP). They presented a

random forest machine learning model for their predictions and found the SIP orders very

effective. Their study showed that SIP orders will not only be helpful for the US but also will

help highly populated countries to reduce the COVID-19 growth rate. Deep learning is the

popular area to perform object detection which gained a huge interest in the modern research

field. Deep learning techniques have successfully applied in the drastic situation of COVID-19

by automating the task of face mask detection [31], detection of COVID-19 cases with X-ray

images [32], lung infection measurement in CT images [33], COVID-19 patients monitoring

[34] and most importantly monitoring social distancing [20–23].
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Different research studies were conducted to provide a better and effective social distance

monitoring solution as we discussed above but no one has focused on the low light environ-

ments. Besides this, we have not found any real-world unit distance mapping solution. To

fillup this research gap, this article mainly focuses on low light conditions and to come up with

a real-world unit distance mapping strategy that simplifies social distance monitoring tasks to

help out in this deadly situation.

Background of deep learning models

Several deep learning algorithms are available and every newly developed algorithm has

resolved the problems of the previous one in some way. Conventional object detection algo-

rithms use classifier based procedure, where the classifier runs on a slice of the image in sliding

window fashion, this is how Deformable Parts Model (DPM) [35] works. In R-CNN ancestry

(R-CNN [36], Fast R-CNN [37] and Faster R-CNN [38]) classifier run on region proposals

that are considered as bounding boxes. These algorithms exhibit good performance, especially

Faster R-CNN with an accuracy of 73.2% mAP, but because of their intricate pipeline, they

show poor performance in the context of speed with 7 frames per second (FPS), which limit

them for real-time object detection.

This is where YOLO fits, a real-time object detection system with a creative perspective of

reviewing object detection as a regression problem was introduced in 2016 by Joseph et al.

[39]. YOLO exhibits good performance as compared to previous region-based algorithms in

terms of speed with 45 FPS by maintaining good detection accuracy of 63.4% mAP. Despite

good speed and performance, YOLO made notable localization errors. Moreover, YOLO has

low recall. To resolve the shortcomings of YOLO, in the same year authors of YOLO released

YOLO second version where recall and localization were mainly focused without affecting

classification accuracy. YOLO v2 [40] gained a speed of 67 FPS and mAP reached 76.8%.

YOLO v2 is also called YOLO 9000 because of its ability to detect objects of more than 20 clas-

ses by mutually optimizing classification and detection. The YOLO v3 [30] developed in 2018

brought new improvements in speed and accuracy, but the main idea remained the same.

Recently YOLO v4 is released by Alexey et al. [41]. In comparison with its direct predeces-

sor YOLO v3, average precision (AP) and FPS increased by 10 to 12 percent. In experiments

on the MS COCO [42] dataset, it obtained 43.5% AP score and achieved a real-time speed of

approximately 65 FPS on Tesla V100, vanquishing over the most accurate and fastest detectors

in terms of both accuracy and speed. Most of the detectors require multiple GPUs for training

with a large batch size; whereas, training on a single GPU makes the training process very

slow. YOLO v4 resolved this issue by presenting a fast and accurate object detector that can be

trained with a smaller batch size on a single GPU. Below we have briefly described the architec-

ture of general object detectors and the newly introduced YOLO v4 model.

General architecture of object detector

Ordinary object detectors like R-CNN, Fast R-CNN, and Faster R-CNN are two-stage detec-

tors made up of three parts: backbone, neck, and head.

• Backbone: Models like VGG [43], DenseNet [44], and ResNet [45] are used as feature extrac-

tors, first trained on image classification dataset, and then fine-tuned on detection dataset.

These networks construct different levels of features which will result in a deeper network

and be useful for prior parts of object detection networks.

• Neck: Extra layers lie between backbone and head which will be helpful for feature map

extraction from previous backbone stages. Different feature map extraction techniques are
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used, e.g., YOLO v3 uses Feature Pyramid Network (FPN) [46] for extraction of feature

maps of different scales from the backbone, where every next layer gets in input the merged

results of previous layers and produces different levels of the pyramid. Classification/ regres-

sion (head) is applied on every pyramid level which helps in the detection of different sizes

of objects.

• Head: This is responsible for assigning a class to objects and generating bounding boxes

around it (classification and regression). One stage detectors like YOLO apply classification/

regression to each anchor box.

YOLO v4 architecture

In this section, we discuss YOLO v4. Fig 1 shows a diagrammatic representation of YOLO v4

architecture.

• Backbone: It employs CSPDarknet53 as a feature extractor with a graphics processing unit

(GPU). Few backbones are more appropriate for classification than for detection. For exam-

ple, CSPResNext50 is better than CSPDarknet53 for image classification; whereas, CSPDar-

knet53 is proved better in terms of object detection. For better detection of small objects, the

backbone model needs a higher network size as an input and for higher receptive fields more

layers are required.

• Neck: For feature map extraction, it uses Path Aggregation Network (PAN) and Spatial Pyra-

mid Pooling (SPP). PAN used in YOLO v4 is the modified version of the original PAN

where addition is replaced with concatenation. In the original version after minimizing N4

size to get the same spatial size of P5, they summed this new depleted N4 with P5. This reoc-

curs at all layers of Pi+1 to create Ni+1. In YOLO v4 rather than adding Ni with each Pi+1,

they concatenated them. If we glass over SPP it mainly does max-pooling over 19 × 19 × 512

feature map distinct kernel sizes k = 5, 9, 13 with the same padding to keep the spatial size

same. Four feature maps are merged to form 19 × 19 × 2048 magnitude. This increases the

neck receptive field with improvement in the model’s accuracy and minimal rise of inference

time.

• Head: YOLO v4 utilizes the same head as YOLO v3 with the anchor-based detection steps.

YOLO v4 performance optimization. The authors of YOLO v4 differentiated between

two types of methods that are used to improve object detector’s accuracy. They examined

both types of methods to obtain fast operating speed with high accuracy. Both types are as

follows:

• Bag of Freebies (BoF): Procedure that produces an object detector that delivers better accu-

racy without increasing inference cost. One of its examples is data augmentation, the model

trained on small datasets has poor generalization ability which leads these models towards

overfitting. Overfitting is the problem that usually arises when a deep neural network tries to

learn the most frequently occurring pattern. As several methods were proposed to resolve

the problem of overfitting. Data augmentation [47] is from one of those methods, by utiliz-

ing it we can reduce overfitting on the models. Many data augmentation techniques are

available like brightness alteration, disparity, noise, and saturation or we can do geometric

twisting like cropping, rotating, and flipping. Some other bag of freebies include regulariza-

tion approaches to avoid overfitting. Conventional regression technique is mean squared

error (MSE) [48], the mean of the sum of squared difference between observed and true
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values as described in Eq (1).

MSE ¼ ð
1

n
Þ
Xn

i¼1

ðyi � xiÞ
2

ð1Þ

MSE treats variables as self-sufficient rather than unified. To surpass this, IoU [49] loss is

proposed, which takes into account the area of the ground truth bounding box and predicted

bounding boxes (BBox). This notion is further enhanced by GIoU [50] loss by adding orien-

tation and shape of an object with the area. Besides GIoU, CIoU is introduced which takes

into account overlaying area, aspect ratio, and distance between center points. YOLO v4

uses CIoU loss for bounding boxes, because of its good performance and faster convergence.

• Bag of Specials (BoS): Those elements and post-preprocessing techniques that only increase

a small amount of inference cost but bring notable improvement in the object’s detection

accuracy. YOLO v4 considers the modified Spatial Attention Module (SAM) [51]. In SAM

instead of using max and average pooling, the feature map is passed through a convolutional

layer with a sigmoid activation function and then multiplied to the original feature map.

YOLO v4 uses the Mish activation function in the backbone as described in Eq (2). E.g.,

using Mish with Squeeze Excite Network [52] on the CIFAR100 dataset improves accuracy

by 0.494% and 1.671% in comparison with the same network where ReLU and Swish were

used [53].

f ðxÞ ¼ xtanhðlnð1þ exÞÞ ð2Þ

Materials and methods

Training dataset

In this paper, to tune up the object detection model for human detection under various low

light conditions, a recently released ExDARK dataset [54] is considered which specifically

focuses on a low-light environment. In this dataset, 12 different classes of objects are labeled,

out of which we fetched data of our desired class for training. This dataset contains different

Fig 1. Schematic representation of YOLO v4 architecture.

https://doi.org/10.1371/journal.pone.0247440.g001
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indoor and outdoor low light images; furthermore, the data is subdivided for low light envi-

ronment into 10 classes ambient, object, strong, twilight, low, weak, screen, window, shadow,

and single. Sample images of various indoor-outdoor low-light environments from the dataset

are shown in Fig 2.

Testing dataset

A custom dataset is used for the evaluation of the proposed model. The dataset is collected

from the market of Rawalpindi, Pakistan during the night in the days of COVID-19. Pakistan

is one of the most urbanized countries in South Asia with a 3% yearly urban population growth

rate. The large population and congested streets make it a riskier place in the growth of

COVID-19 and it is very difficult to maintain safety distance in such narrow places. Hence, the

monitoring system should need to have high accuracy in terms of the detection and location of

the people. Evaluation of the proposed framework in such a highly-populated area will help us

to better analyze the performance of the model. Test dataset is the collection of 346 RGB

frames. Frames are collected with motionless ToF camera of Samsung galaxy note 10+ installed

4.5 feet above the ground where a 0˚ regular camera view calibration is adopted. Sample

images of low-light conditions from the custom dataset are shown in Fig 3.

Fig 2. Example of low-light image types in the ExDARK dataset.

https://doi.org/10.1371/journal.pone.0247440.g002

Fig 3. Custom dataset for testing.

https://doi.org/10.1371/journal.pone.0247440.g003
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Monitoring social distancing with deep learning and a single motionless

time of flight (ToF) camera

The emergence of deep learning has caught much attention and became a presiding technol-

ogy that introduced a variety of techniques to solve different challenges including self-driving

[55], fraud detection [56–58], robotics [59], language translations [60], medical diagnosis [61],

and many more [62]. Most of these challenges revolve around object detection, classification,

segmentation, recognition, and tracking, etc.

In this research article, a deep learning-based solution is proposed that uses an object detec-

tion model for automating the task of social distance monitoring at fixed camera distance (Cd)

under various low light environments. To monitor social distance at Cd motionless ToF [63]

camera is utilized along with the YOLO v4 algorithm to maintain speed-accuracy tradeoff.

ToF cameras give real-time distance images which simplify human monitoring tasks. These

cameras utilize light pulses. The light of the camera is switched on for a short time interval

and the resultant light pulse brightens the scene and comes back by striking the object. This

reflected light encounters a reflection delay depending on the distance of the object. The cam-

era lenses assemble the incoming light and create an image on the sensor. ToF camera to object

distance is calculated by Eq (3).

Cd ¼
1

2
� SL � Lp �

S2

S1 þ S2

ð3Þ

Where SL is the speed of light, Lp is the length of the pulse, S1 is gathered charge when light is

emitted and S2 represents the charge when there is no light emission. The view V captured by

ToF camera is the three tuple value V = (F, TD, Cp), where F is an RGB frame with height and

width, TD is a safe distance threshold value, and Cp shows camera position in real world envi-

ronment. In a given V we are eager to find number of people po = (p1, p2, p3, . . ., pn) and their

self-distance PD ¼ ðEDp1;p2;EDp1;p3; ‥; EDp1;pn
; EDp2;p3;EDp2;p4; ‥; EDp2;pn

; . . . ; EDpn� 1 ;pn
Þ where

ED 2 <+ and pn is overall people detected in one frame. We are also keen to find the value of

safety threshold TD to monitor safety distance violations (PD< TD|PD = TD|PD> TD).

People detection in F by deep learning

For the detection of objects, the YOLO v4 model is trained on the ExDARK dataset. We

trained our model on two different network sizes (320 × 320 and 416 × 416) and evaluate the

performance in both cases. The model trained on 416 × 416 network size shows the highest

mAP value as shown in Table 1. The trained model Tm = (BBi, CLi, CSi) is tuple of three values,

where BBi shows bounding boxes coordinates of detected po in F, BBi = (Xmini, Ymini, Xmaxi,

Table 1. Model’s performance evaluation using COCO detection metrics at different IoU threshold.

Backbone FPS Network Size TP FP FN Prec. Rec. F1-score mAP Total BFLOPS

CSPDarknet-53 46.2 (T) 416 × 416 382 37 13 0.91 0.97 0.94 97.84% 59.563

52.5(T) 320 × 320 257 64 38 0.85 0.90 0.88 92.68% 35.244

Backbone FPS Network Size TP FP FN Prec. Rec. F1-score mAP Total BFLOPS

CSPDarknet-53 - 416 × 416 345 74 50 0.82 0.87 0.85 86.67% 59.563

- 320 × 320 273 148 122 0.65 0.69 0.67 56.37% 35.244

Backbone FPS Network Size TP FP FN Prec. Rec. F1-score mAP Total BFLOPS

CSPDarknet-53 - 416 × 416 285 134 110 0.68 0.72 0.70 68.17% 59.563

- 320 × 320 237 184 158 0.56 0.60 0.58 53.93% 35.244

https://doi.org/10.1371/journal.pone.0247440.t001
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Ymaxi), class labels CLi, and confidence score CSi, 8i 2 {1, 2, 3, . . ., n}. We have created list of

all center points CPi of detected BBi in F, CPi = {(x1, y1), (x2, y2), . . ., (xn, yn)}.

Specifying TD in F
The considered safety threshold value to control the spread of disease is 100 cm as specified by

WHO [1]. For initializing the monitoring process we have placed two temporary targets (T1,

T2) in the real-world environment with the actual self distance DT1T2 of 100 cm at Cd and cap-

ture image. The captured image is passed to Tm and calculated Euclidean distance Ed between

CPi of detected bounding boxes by Eq (4). The calculated Ed gives us distance between T1 and

T2 in F in the form of pixels which is equivalent to real-world unit distance DT1T2. This Ed

will be used as a threshold value to filter newly coming people in the V. The environmental

arrangement of ToF camera with target objects T1, T2, and safety threshold distance DT1T2 is

shown in Fig 4.

Ed ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxT2 � xT1Þ
2
þ ðyT2 � yT1Þ

2

q

TD ¼ Ed

ð4Þ

Pixels to real-world unit distance mapping

To convert TD from pixel distance to unit distance (cm) we found that TD is directly propor-

tional to DT1T2 as described in Eq (5).

DT1T2 / TD

DT1T2 ¼ k� TD

k ¼
DT1T2

TD

ð5Þ

Here k is the constant which represents one pixel which is equivalent to
DT1T2

TD
units. We convert

Fig 4. Environmental setup of motionless ToF camera based social distance monitoring at fixed camera distance

Cd where T1 and T2 are target objects placed in environment to initialize monitoring process.

https://doi.org/10.1371/journal.pone.0247440.g004
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the distance between the center points of newly coming objects at Cd in V into units by Eq (6).

Dui ¼ k� PD ð6Þ

Where Dui is measured distance in units, k is constant which stores pixel to unit equivalent

value, and PD is the Euclidean distance between the CPi of all detected persons in F. The work-

flow of the proposed model is shown in Fig 5.

Experiments & results

Experimental setup

In the ExDARK image classification experiment, the selection of hypermeters are as follows:

training steps are 35000 and 50000 at two different network sizes 320 and 416; batch size and

subdivisions are 64 and 16; the polynomial decay learning rate scheduling strategy is adopted

with an initial learning rate 0.001; the warm-up steps are 1000; Momentum and weight decay

of 0.949 and 0.0005 respectively. From a bag of freebies (BoF) mosaic data augmentation tech-

nique is utilized. From the bag of specials (BoS) mish and leaky- ReLU [64] activation func-

tions are used. The network size is 320 × 320 and 416 × 416 with 3 channels and the initialized

IoU threshold for ground truth allocation is 0.213. The IoU normalizer is 0.07 and CIoU loss

is used for bounding boxes. To cut off a large number of rectangular boxes and choose the best

one greedy non-maximum suppression (NMS) is used. The experiments are done on Tesla T4

GPU with 16 GB memory, CUDA v10010, and cuDNN v7.6.5.

Fig 5. Workflow model.

https://doi.org/10.1371/journal.pone.0247440.g005
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Evaluation standards

Common evaluation indicators for object detectors are Precision, Recall, and AP. The subse-

quent explains the purpose of these indicators in the context of person detection under various

low light conditions. Precision shows how accurately the model has predicted the people.

Recall is described as the number of truly detected people over the sum of truly detected people

and undetected people in the image. AP is the mean of the precision score after every true

object is detected as shown in Eq (7). It comprehends the performance of the object detection

algorithms. Having extensive assessment ability AP is used as an assessment indicator in this

research which is equivalent to mAP in COCO detection metrics [42].

AP ¼

X

n

precision

n
ð7Þ

Fig 6. COCO evaluation, the IoU threshold ranges from 0.5 to 0.95 with a step size of 0.05.

https://doi.org/10.1371/journal.pone.0247440.g006
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Performance evaluation

By performing a series of experiments, we evaluate the performance of the trained model by

COCO detection metrics. Table 1 shows precision (Prec), recall (Rec), F1-score, false positives

(FP), true positives (TP), false negatives (FN), and mAP at two different network sizes (320, 416)

with IoU threshold 0.5, 0.75 and 0.5:0.95. To calculate precision and recall we use the TP, FP, and

FN as shown in Eqs (8) and (9) whereas, F1-score is calculated by the resultant values of precision

and recall as described in Eq (10). By summarizing the evaluation results based on the mAP, we

Fig 7. Visualization of classification and localization results of YOLO v4.

https://doi.org/10.1371/journal.pone.0247440.g007

Table 2. YOLO v4 performance evaluation results towards real-time person detection under various low light con-

ditions from Fig 7.

Frames TP FP FN Prec. Rec.

1 5 0 3 1 0.62

2 7 0 3 1 0.7

3 6 0 1 1 0.86

4 6 0 1 1 0.86

5 8 0 1 1 0.89

6 7 0 0 1 1

7 7 0 0 1 1

8 4 0 1 1 0.8

9 5 0 0 1 1

10 5 0 0 1 1

11 9 0 2 1 0.82

12 9 0 1 1 0.9

13 9 0 0 1 1

14 8 0 1 1 0.89

15 7 0 2 1 0.78

https://doi.org/10.1371/journal.pone.0247440.t002
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can see that the model exhibited overall good performance, network size 416 with IoU threshold

0.5 have the highest mAP value of 97.84%. The Precision-recall curve (PR-curve) of COCO evalu-

ation at the IoU threshold ranges from 0.5 to 0.95 at two network sizes is shown in Fig 6.

Precision ¼
TP

TP þ FP
ð8Þ

Recall ¼
TP

TP þ FN
ð9Þ

F1 ¼ 2�
Precision� Recall
Precisionþ Recall

ð10Þ

Detection results

We have tested our trained model on a custom dataset. Detection results per frame extracted

from the video are shown in Fig 7. Table 2 shows TP, FP, FN, precision, and recall values for

detected objects per frame. The model exhibited overall good performance in low light envi-

ronments, from Table 2 it can be observed that no false positive is detected in any of the

frames; whereas, the number of false-negatives is also low. PR-curve from precision-recall val-

ues of Table 2 is shown in Fig 8, we noticed that the precision values remained constant from

Frame1 to Frame15.

Experimental results

To evaluate the performance of our social distance monitoring solution, we perform few tests

at three different fixed camera distances 400 cm, 500 cm, and 600 cm. Test frames are collected

from the motionless ToF camera of Samsung galaxy note 10+ placed 4.5 feet above the ground

where Cp is 0˚ (a regular camera view). At each specific fixed camera distance, we tested 2 sce-

narios one above the specified safety threshold (100 cm) at 140 cm and one below the specified

safety threshold at 52 cm. Qualitative results are shown in Fig 9; whereas, Table 3 shows the

Fig 8. PR-curve for PR values of tested frames shown in Table 2.

https://doi.org/10.1371/journal.pone.0247440.g008
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Fig 9. Test visualizations of our social distance monitoring approach at various Cd values. (a) Cd = 400 cm (b) Test 1 (c) Test 2 (d) Cd = 500 cm (e) Test 3 (f) Test 4

(g) Cd = 600 cm (h) Test 5 (i) Test 6.

https://doi.org/10.1371/journal.pone.0247440.g009

Table 3. Social distancing measure tests at different Cd values as shown in Fig 10. Where PD is calculated distance in pixels, Du is measured distance in cm and Ad is

actual distance in cm.

Test Cd k PD (pixels) Du (cm) Ad (cm) AE (cm)

DT1T2 = 100 cm 400 cm 0.34236 292.098 - - -

1 - - 153.0 52.3 52 0.3

2 - - 414.1 141.8 140 1.8

DT1T2 = 100 cm 500 cm 0.40635 246.099 - - -

3 - - 131.1 53.3 52 1.3

4 - - 340.3 138.3 140 -1.7

DT1T2 = 100 cm 600 cm 0.49022 203.994 - - -

5 - - 107.5 52.7 52 0.7

6 - - 285.0 139.7 140 -0.3

Mean Absolute Error (MAE) = 1.01 cm

https://doi.org/10.1371/journal.pone.0247440.t003
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quantitative results in terms of the distance between objects in pixels and cm, actual known

distance in cm, and per test error rate. We can see that model exhibited overall good perfor-

mance. People violating the safety distance are highlighted by red bounding boxes; whereas,

green bounding boxes show people following safety distance criteria. The Absolute Error (AE)

is calculated for all tests, between actual distance in units (Ad) and measured distance in units

(Du) by using Eq (11) and based on AE mean absolute error (MAE) is calculated by Eq (12).

The Ad and Du plot is shown in Fig 10, where the blue color shows the actual known distance

in cm and the red line shows the measured distance in cm.

AE ¼ Dui � Adi ð11Þ

MAE ¼
1

n

Xn

i¼1

jDui � Adij ð12Þ

Limitations and discussion

This application is meant to be used in a real-time environment so, precision and accuracy are

highly required to serve the motive. The proposed model shows efficient results during the

evaluation of the YOLO v4 model in low light conditions where no single FP is detected, as the

accuracy and reliability of the model is highly dependent on FP. To evaluate the performance

of the social distance monitoring strategy few Tests are performed, as shown in Table 3. The

proposed deep learning and motionless ToF camera-based social distance monitoring tech-

nique at Cd shows a good speed-accuracy tradeoff in monitoring social distancing during the

night. The technique is limited to a few scenarios, social distance among people can be only

monitored at fixed Cd values. Secondly, in order to initialize the monitoring process, we have

to place two temporary target objects in an environment.

Conclusion

This article proposes an efficient solution for real-time social distance monitoring in low light

environments. For real-time person detection, the YOLO v4 algorithm is trained on the

Fig 10. Graph plot of measured vs actual object distance values from Table 3 to highlight monitored error rate.

https://doi.org/10.1371/journal.pone.0247440.g010

PLOS ONE COVID-19: Monitoring social distancing under various low light conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0247440 February 25, 2021 15 / 19

https://doi.org/10.1371/journal.pone.0247440.g010
https://doi.org/10.1371/journal.pone.0247440


ExDARK dataset. For monitoring social distance, a motionless ToF camera is used to observe

people at fixed camera distance and show resultant distance in real-world units. Safety distance

violations are highlighted. The proposed YOLO v4 based real-time social distance monitoring

solution is evaluated by COCO detection metrics. Experimental analysis shows that the YOLO

v4 algorithm achieved the best results in different low light environments with 97.84% mAP

score and the observed MAE value during the test of our social distance monitoring approach

is 1.01 cm. The FPS score can be more enhanced by fine-tuning the same approach on GPUs

like Volta, Tesla V100, or Titan Volta.

The proposed technique can be easily applied in real-world scenarios because of high preci-

sion and the low error rate, e.g., in banks to help the cashier to monitor people standing in

front of him, in shops to help shopkeepers to observe customers, in train stations to help ticket

giver to keep track of people violating safe distance, etc. In the future, we will extend our sys-

tem to monitor social distance at varying camera distances by managing objects varying cam-

era angles.
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