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In the 40 years since the discovery of natural killer (NK) cells, it has been well established 
that these innate lymphocytes are important for early and effective immune responses 
against transformed cells and infections with different pathogens. In addition to these 
classical functions of NK cells, we now know that they are part of a larger family of innate 
lymphoid cells and that they can even mediate memory-like responses. Additionally, 
tissue-resident NK cells with distinct phenotypical and functional characteristics have 
been identified. Here, we focus on the phenotype of different NK cell subpopulations 
that can be found in the liver and summarize the current knowledge about the functional 
role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can 
contribute to liver damage in different forms of liver disease. However, NK cells can limit 
liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in 
this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to 
balance these beneficial and pathological effects.
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inTRODUCTiOn

Natural killer (NK) cells are innate lymphoid cells (ILC) that can kill virus-infected or transformed 
cells. Additionally, they regulate adaptive immune responses via contact-dependent signals and the 
secretion of cytokines (1). NK cell cytotoxicity is regulated by activating and inhibitory surface 
receptors and is additionally modulated by cytokines (2). Inhibitory NK cell receptors include killer 
cell Ig-like receptors (KIR) in humans and Ly49 family members in mice, both of which interact with 
MHC I to ensure the self-tolerance against healthy cells. NK cell activation can be mediated by a 
variety of different surface receptors, such as NKG2D, NKp46, and NKp30 (3). Initially, human NK 
cells have been divided into two functionally distinct subpopulations based on the expression level of 
CD56. In recent years, more subpopulations of NK cells have been identified, and we now know that 
in addition to conventional circulating NK cells, there are also tissue-resident NK cells with distinct 
phenotypical and functional characteristics (4). Here, we summarize the current knowledge about 
NK cells in the liver and focus on the role of these immune cells in liver fibrosis.

nK CeLLS in THe LiveR

The liver mainly consists of hepatocytes, which make up approximately 80% of liver cells. Non-
hepatocytes include about 20% lymphocytes, 20% Kupffer cells, 40% endothelial cells, 20% stellate 
cells, and biliary cells (5). NK cells in the liver were first described by electron microscopy of rat 
liver and initially named “pit cells” (6). They reside in liver sinusoids and can make up to 50% 
of the liver  lymphocyte population in humans (7, 8). This is in contrast to the frequency of NK 
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cells in peripheral blood, where they only account for 5–15% of 
lymphocytes. It remains unclear what regulates this enrichment 
of NK cells in the liver. It is believed that cell-to-cell and cell-
to-matrix interactions play an important role in this process (9). 
For example, NK cell infiltration in the liver can be blocked by 
neutralizing antibodies against CD2, CD11a, CD18, and ICAM-1 
(CD54) (10), suggesting that adhesion to sinusoidal endothelial 
cells is an important step in their recruitment. Endothelial cells 
also express vascular adhesion protein-1 (VAP-1) (11), which can 
be recognized by Siglec-9 and could represent another mecha-
nism of liver NK cell enrichment (12).

Liver NK cells have been extensively compared to peripheral 
blood NK cells and differ in activation level, cytotoxicity, and 
maturation (13). In general, liver NK cells are more activated 
as they express high levels of the activation marker CD69, more 
perforin, and granzyme B (8, 14–17). As a consequence, they 
show higher cytotoxicity compared to peripheral blood NK cells. 
However, they are also less mature compared to peripheral blood 
NK cells (15, 16, 18, 19).

In humans, NK cells are grouped into CD56dim and CD56bright 
cells with CD56dim NK cells accounting for up to 90% of all NK 
cells in peripheral blood and spleen. In contrast, equal numbers 
of CD56dim and CD56bright NK cells are found in the liver (16, 20). 
The CD56dim NK cell population in the liver seems to resemble 
circulating conventional NK cells (cNKs). However, recent 
evidence suggests that liver CD56bright NK cells differ from cNK 
and represent a distinct, liver-resident NK cell (lrNK) popula-
tion dependent on the chemokine receptor CXCR6 (Figure  1) 
(20). lrNKs show increased expression of CD69 and the homing 
markers CXCR6 and CCR5. Engagement of these receptors by 
CXCL16 from hepatic sinusoidal endothelial cells (21) and CCL3 
from Kupffer cells as well as CCL5 from T and NK cells, respec-
tively, retains lrNK cells in a unique chemokine environment. 
The development and differentiation of lrNK cells is incompletely 
understood. Cells corresponding to all described developmental 
intermediates of NK cells have been identified in the adult human 
liver (16), indicating that NK cell precursors are recruited from 
peripheral blood and that lrNK cells may differentiate in the liver.

Conventional NK and lrNK cells have also been identified in 
mice (Figure 1), where NK cells make up only 5–10% of the liver 
lymphocytes. About half of these murine liver NK cells resem-
ble cNKs, but they are DX5− and express high levels of TRAIL 
(22–24). In mice, there is clear evidence that cNK and lrNK 
originate from different developmental programs. lrNK rely on 
the transcription factors T-bet and PLZF for their development 
(25, 26), but they are independent of Eomes (27), which is critical 
for the development of cNKs (28–30). Mouse lrNK are CD49a+, 
DX5− and show expression of homing markers (13). They are 
similar in their phenotype and development to mucosal group 1 
innate lymphoid cells (ILC1) (19).

Interestingly, a hepatic NK cell population has been reported 
that can display adaptive-like immune memory against haptens or 
viral antigens (31). This antigen-specific type of NK cell memory 
is confined to CXCR6-positive hepatic NK cells, which were 
identified as the CD49a+, DX5− lrNK population (32). Recently, 
a human intrahepatic CD49a+ NK cell population was identified 
that was not detectable in afferent or efferent hepatic venous or 

peripheral blood (33). These NK cells express KIR and NKG2C, 
indicative of having undergone clonal-like expansion. They are 
CD56bright and express low levels of CD16, CD57, and perforin. 
Because this population was only detected at low frequencies 
(2.3% of hepatic NK cells) and not in every donor, it might rep-
resent a subpopulation of lrNKs. It is interesting to speculate that 
these cells can also mediate certain kinds of adaptive memory 
(3). In support of this, antigen-specific memory of hepatic NK 
cells has recently been shown in macaques following infection 
and vaccination (34).

The fact that NK cells represent the major lymphocyte popu-
lation in human liver suggests relevant functions. Indeed, liver 
NK cells have been shown to influence many physiological and 
pathophysiological processes, such as viral infections, liver tumo-
rigenesis, liver injury, and inflammation (13). In the following 
section, we will focus on their role in liver fibrosis.

LiveR FiBROSiS AnD nK CeLLS

An outstanding feature of the liver is its enormous regeneration 
capacity that has evolved to protect animals from liver loss by 
hepatotoxic plants (35, 36). Acute destruction of more than 50% of 
the liver tissue can be regenerated within a relatively short period 
of time leading to the perfect restoration of tissue architecture and 
function (37–39). However, repeated destruction of hepatocytes 
leads to scar formation and fibrosis (40). Fibrosis is character-
ized by excess extracellular matrix, which initially compromises 
liver function only to a minor degree (41). However, fibrosis may 
progress to cirrhosis, where normal liver architecture is replaced 
by nodules of hepatocytes surrounded by wide streets of fibrotic 
tissues, which massively constrict blood flow and reduce liver 
function. Fibrosis and cirrhosis can, in principle, be caused by any 
condition that repeatedly kills a critical fraction of hepatocytes, 
such as alcohol abuse, repeated administration of hepatotoxic 
drugs, viral hepatitis, cholestatic disorders, or hereditary meta-
bolic liver diseases (42, 43).

Hepatic stellate cells (HSCs) play a key role in pathogenesis of 
liver fibrosis (44–46). They were described by Karl Wilhelm von 
Kupffer in 1876, but their role in liver disease was only identified 
in the 1980s (47). HSCs are located between hepatocytes and the 
endothelial cells of the sinusoids in the 0.2–1-μm wide extracel-
lular matrix-filled Disse space (Figure 2) (48). Activation of HSCs  
and transdifferentiation to myofibroblasts, the major extracellular 
matrix-producing cell in fibrotic liver, represents a critical step on 
the path to fibrosis. Typically, cell death of hepatocytes creates 
an inflammatory microenvironment, which activates HSCs. Key 
factors driving HSC activation are transforming growth factor 
beta1 (TGFbeta1) and platelet-derived growth factor (PDGF) 
family members. Moreover, numerous cytokines and chemokines 
released by infiltrating immune cells modify this process (42, 44, 
49). Finally, this leads to a situation where extracellular matrix 
formation by activated HSCs outbalances the mechanisms of 
collagen degradation by matrix metalloproteases.

The molecular mechanisms of liver fibrosis and HSC acti-
vation have been reviewed comprehensively (40, 42, 43). The 
present article focuses on a specific mechanism, which antago-
nizes fibrosis formation, namely NK cell-mediated cytotoxic 
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FiGURe 1 | Major phenotypic differences between cnKs and lrnKs. Human cNKs are mostly CD56dim and express CD16, whereas lrNKs show a 
CD56bright phenotype and are negative for CD16, but express homing markers, such as CXCR6 and CCR5. Possible ligands for these homing-associated 
receptors are expressed by endothelial cells, Kupffer cells, and circulating cNKs. In mice, lrNKs are CD49a+DX5− and depend on the transcription factors T-bet and 
PLZF, while cNK are CD49−DX5+ and need the transcription factor Eomes for their development.
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activity against HSC-derived myofibroblasts, which has been 
described in numerous articles since its first descriptions in 
2006 (50, 51).

To study interactions between NK cells and HSCs as well as 
their role for liver fibrosis, the most frequently applied experi-
mental tools are the mouse models of liver damage and cultivated 
human and rodent HSC. In mice, liver fibrosis can be induced by 
repeated administration of hepatotoxic compounds, such as CCl4. 
In this experimental scenario, additional interventions can be 
performed, such as the elimination of NK cells by antibodies and 
the genetic deletion of specific receptors and ligands. Alternatively, 
HSCs can be isolated from liver tissue and brought into culture, 
where they spontaneously differentiate to alpha-SMA-positive 
myofibroblasts, which can be tested in killing assays with NK 
cells. Based on such experimental models, we now have a detailed 
picture of the interaction between NK cells and HSCs.

In general, the activation of HSCs in response to hepatocyte 
damage results in changes that increase NK cell stimulation and 
decrease NK cell inhibition. A key mechanism is that early-
activated HSCs produce increased amounts of retinoic acid, 
which leads to elevated expression of RAE-1 (52). RAE-1 is a 
ligand for the activating NK cell receptor NKG2D and together 
with MICA (53) triggers killing of activated HSCs by NK cells. 
Human and mouse HSCs additionally express a ligand for the 
activating NKp46 receptor. This also causes HSC killing by NK 
cells, which ameliorates liver fibrosis (54). Recent data suggest 
a role of the activating receptor NKp30 in this process (55). In 
addition to the increased activation of NK cells, reduced inhibi-
tion also plays a role in the cytotoxic attack of NK cells against 

HSCs. Upon activation of HSCs, MHC class I is downregulated, 
resulting in the reduced engagement of inhibitory NK cell 
receptors and enhanced killing (50, 56). Experimentally, reduc-
ing inhibitory Ly49 receptor expression on mouse NK cells by 
siRNA-mediated silencing, therefore, increases HSC killing by 
NK cells and ameliorates liver fibrosis. Inflammatory cytokines 
can further influence this process. NK cell-derived IFN-γ has 
antifibrotic effects by inducing HSC apoptosis and cell cycle arrest 
(57, 58). However, clinical trials with IFN-γ led to disappointing 
results, and it has been reported that HSC-specific delivery is 
critical for its antifibrotic effect (59). IFNα has been shown to 
increase expression of TRAIL on the surface of NK cells (60, 61). 
Simultaneously, activation of HSCs leads to increased expression 
of the TRAIL receptor on the HSC surface, resulting in enhanced 
NK cell-mediated HSC killing. Recombinant expression of 
human TRAIL on HSCs has been shown to induce HSC apop-
tosis and blocking TRAIL by antibodies antagonized this effect 
(62). In contrast, TGF-β levels are elevated during chronic liver 
injury and suppress the antifibrotic function of NK cells through 
downregulation of NKG2D and 2B4 surface expression (63–65).

While the mechanisms mentioned above give some insight 
into the molecular mechanisms about how NK cells antagonize 
fibrosis, open questions remain. It is unclear which population of 
liver NK cells is responsible for limiting fibrosis. lrNK may already 
be in place to directly interact with HSCs. However, the role of 
lrNK cells in liver fibrosis has not been addressed in detail. In vitro 
experiments mostly use NK cells from human peripheral blood 
or mouse spleen to study the killing of HSCs. For in vivo depletion 
experiments using antibodies, it is unclear if the tissue-resident 
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FiGURe 2 | (A) Schedule of a liver lobule and (B) sinusoid; (C) reconstructed liver lobule showing the sinusoidal endothelial cells (LSEC) in red, bile canaliculi in 
green, and nuclei in blue. (D) Damage and regeneration process after administration of a hepatotoxic dose of CCl4 to mice. The initial pericentral damage (day 1) is 
completely regenerated until day 8 after intoxication. (e) Necrotic area 2 days after CCl4 administration, illustrating a pericentral nuclear dense region with 
compromised microvessels. (F) Alpha-smooth muscle actin staining of activated HSC in a necrotic region 2 days after CCl4 administration. (G) Reconstruction of a 
necrotic region 2 days after CCl4 administration, visualizing stellate cells in white, LSEC in red, and nuclei in blue. (H) Collagen staining to visualize a fibrotic street 
after repeated CCl4 doses. Imaging was performed with livers of male C57BL6/N mice as described in Ref. (48); (D) from Ref. (37).
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lrNK cells can be efficiently depleted. Therefore, it remains elusive 
what role lrNK cells play during fibrosis.

Hepatic stellate cells play an important role during the 
regeneration of liver damage, when they infiltrate the wound and 
by secretion of cytokines, such as HGF, help to orchestrate the 
regeneration process (66). However, as soon as hepatocytes have 
repopulated the dead cell area of the wound, the further presence 
of activated HSCs is deleterious and acts profibrotic. It is therefore 
important that NK cells remove activated HSCs after they have 
accomplished their mission in regeneration. Indeed, in vivo and 
in vitro experiments show that NK cells kill early activated, but 
not quiescent or fully activated, HSCs (52, 67). This may be due 
to an increase of the ratio of activating versus inhibiting mecha-
nisms in early activated HSCs (62). However, so far little attention 

has been paid to the massive architectural changes during liver 
damage and regeneration, which may impact NK cell/HSC inter-
actions. In the healthy liver, NK cells float in the sinusoidal blood 
or roll along sinusoids (Figures 2A,B). In this situation, HSCs are 
shielded from NK cells by endothelial cells (LSEC) (Figure 2B). 
Cytotoxic T cells may overcome the endothelial barrier and probe 
antigens on subsinusoidal cells by extending cytoplasmic protru-
sions through sinusoidal endothelial fenestrae (68). However, any 
shielding function of LSEC is transiently lost during liver damage 
induction and regeneration (Figures 2D–G). Most hepatotoxic 
compounds that require activation by cytochrome P450 enzymes 
induce necrosis in the center of liver lobules, visible as a pale region 
in Figure  2D. Numerous immune cells infiltrate the necrotic 
area leading to high nuclear density (Figure  2E). Additionally, 
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activated alpha-smooth muscle actin-positive HSCs form an 
alveolar scaffold in the necrotic area between days 2 and 4 after 
damage induction (Figure  2F). In this period, activated HSCs 
are no longer shielded from immune cells by endothelial cells. 
With their long delicate protrusions, they get into direct contact 
with several types of immune cells (Figure 2G). Only 8 days after 
damage induction, all activated HSCs disappear from the tissue. 
It has not yet been studied whether the direct accessibility of 
HSCs in damaged regions of the liver to NK and other immune 
cells is the reason for their abrupt disappearance. Additionally, 
in liver fibrosis, activated HSCs persist for longer periods. In this 
situation, they are immured by collagen fibers (Figure 2H), which 
may prevent access of NK cells to their target.

The interaction between NK cells and HSCs is addition-
ally regulated by other cells and processes. Kupffer cells and 
dendritic cells can enhance NK cell activation under immune 
stimulatory conditions, such as Toll-like receptor stimulation or 
viral liver disease (69–71). Regulatory T cells can inhibit NK cell 
activity and thereby limit their antifibrotic function during viral 
hepatitis (72, 73).

While NK cell activity may be beneficial for the regulation 
of liver fibrosis, it can also have negative effects. Indeed, very 
similar molecular mechanisms by which activated HSCs are 
removed have also been described for NK cell-mediated killing 
of hepatocytes. Importantly, RAE-1, MICA/B, B7-H6, TRAIL-
receptor, and Fas on hepatocytes, as well as NKG2D, NKp30, and 
TRAIL ligand on NK cells have been reported to play a role in NK 
cell-induced hepatocyte death (14, 23, 55, 74–77). This illustrates 
that NK cell-activating therapeutic strategies (78, 79) should be 
considered with care, since the tightly controlled mechanisms of 
selectively killing-activated HSC may easily switch to a situation 
where also hepatocytes become targeted, which would promote 
liver damage and aggravate the profibrotic pressure.

When studying the function of NK cells in liver, it is impor-
tant to mention a potential experimental pitfall. A well-studied 
example is the misinterpretation of experimental data that NK 

and NKT cells enhance acetaminophen (APAP)-induced liver 
damage in mice (80). Since others could not reproduce the result, 
the experiments have been carefully revisited (81). It was shown 
that the DMSO used in the original study to dissolve the APAP 
has adjuvant-like functions and stimulates the activity of NK and 
NKT cells to enhance APAP-induced liver damage. Interestingly, 
a solvent control would not be sufficient to avoid this misinter-
pretation as the adjuvant function of DMSO does not result in 
liver damage alone, but only in combination with APAP. This has 
to be taken into account when investigating the role of NK cells 
in drug-induced liver damage.

OUTLOOK

Natural killer cell cytotoxicity limits HSC-mediated liver fibrosis, 
and in recent years, we have learned much about the molecular 
details of this interaction. However, careful in vivo analysis will 
still need to address several important questions, such as the 
spatiotemporal details of NK–HSC interaction and the role of 
the different subpopulations of liver NK cells in this process. 
Additionally, NK cells are part of a larger group of ILC. ILCs are 
mostly tissue-resident cells with important functions in tissue 
homeostasis and immunity against pathogens. There are first 
indications that these novel immune cells can also influence the 
process of liver fibrosis (82, 83), which may lead to an exciting 
research field in the future.
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