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a b s t r a c t 

Among children and adolescents in the United States (0 to 19 years old), brain and other central nervous system tu- 

mors are the second most common types of cancers, surpassed in incidence only by leukemias. Despite significant 

progress in the diagnosis and treatment modalities, brain cancer remains the leading cause of death in the pedi- 

atric population. There is an obvious unfulfilled need to streamline the therapeutic strategies and improve survival 

for these patients. For that purpose, preclinical models play a pivotal role. Numerous models are currently used 

in pediatric brain tumor research, including genetically engineered mouse models, patient-derived xenografts 

and cell lines, and newer models that utilize novel technologies such as genome engineering and organoids. 

Furthermore, extensive studies by the Children’s Brain Tumor Network (CBTN) researchers and others have re- 

vealed multiomic landscapes of variable pediatric brain tumors. Combined with such integrative data, these novel 

technologies have enabled numerous applicable models. Genome engineering, including CRISPR/Cas9, expanded 

the flexibility of modeling. Models generated through genome engineering enabled studying particular genetic 

alterations in clean isogenic backgrounds, facilitating the dissection of functional mechanisms of those muta- 

tions in tumor biology. Organoids have been applied to study tumor-to-tumor-microenvironment interactions 

and to address developmental aspects of tumorigenesis, which is essential in some pediatric brain tumors. Other 

modalities, such as humanized mouse models, could potentially be applied to pediatric brain tumors. In addition 

to current valuable models, such novel models are anticipated to expedite functional tumor biology study and 

establish effective therapeutics for pediatric brain tumors. 
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Despite an overall improvement in terms of survival for children and

dolescents with cancers over the past decades, brain and other central

ervous system (CNS) tumors maintain a dismal prognosis [1 , 2] . Pedi-

tric brain tumors are the most common types of solid cancers in chil-

ren and the leading cause of death [3] . In adolescents (ages 15 to 19

ears), cancers of the brain and other CNS tumors surpass leukemias

s the most common type of cancer in general. The incidence of pedi-

tric brain tumors differs among different geographical areas, with the

ighest rates reported in the United States [4] . In 2020, a Central Brain

umor Registry of the United States report estimated that the average

nnual age-adjusted incidence rate of CNS tumors among children aged

 to 14 was 5.83 per 100,000 individuals. The annual age-adjusted mor-

ality rate of CNS tumors in this age group was determined to be 0.71

er 100,000, with brain tumors being the number one cause of cancer

eath among 0 to 14 years of age [5] . 

Pediatric brain tumors are a diverse and continuously branching

ategory of tumors. The extensive research and progress over the past

ecades in imaging, molecular diagnostics, surgical techniques, and tai-
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ored therapy demonstrated that histological characteristics are insuffi-

ient to define different brain tumor entities, as even histologically simi-

ar tumors harbor distinct molecular features and consequently have dif-

erent prognoses and therapeutic responses. Starting in 2016, the World

ealth Organization (WHO) incorporated molecular diagnosis criteria

o characterize different brain and CNS tumors, opening a new chap-

er in the overall management of this class of disease [6] . This classi-

cation marked the transition from traditional diagnostic approaches

ased on histologic/microscopic findings and immunohistochemistry

IHC) to the newer platforms for molecular diagnosis based on tumor

enomics. Furthermore, the molecular diversity and the variability in

reatment response based on the genetic architecture of pediatric tu-

ors led to the development of the first WHO Classification of Pedi-

tric Tumors in 2021. The classification has a multilayered approach

hat includes morphological criteria, IHC, and molecular characteristics

7] . Except for a limited number of genetic predisposition syndromes,

ediatric brain tumors are considered sporadic events. The genes as-

ociated with these familial brain tumor predisposition syndromes in-

lude NF1 for neurofibromatosis type 1, NF2 for neurofibromatosis type

, TP53 for Li-Fraumeni syndrome, PTCH1 for Gorlin syndrome, and
ovember 2022 
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MARCB1 for rhabdoid tumor predisposition syndrome [8] . The genetic

ackgrounds of sporadic pediatric brain tumors have been extensively

tudied, in addition to these familial tumor predisposition syndromes

9] . For example, medulloblastomas are molecularly subclassified into

our groups driven by different mutations of genes, including CTNNB1,

TCH1, MYC , and MYCN [10] . Diffuse intrinsic pontine glioma, one

f the deadliest pediatric brain tumors, was also genetically subclassi-

ed, with the most common group driven by histone H3-K27M mutation

11] . More recently, an extensive work by researchers of the Children’s

rain Tumor Network and others revealed integrative genomic and pro-

eomic landscapes of a wide variety of pediatric brain tumors, including

ow-grade glioma, ependymoma, high-grade glioma, medulloblastoma,

anglioglioma, craniopharyngioma, and atypical teratoid rhabdoid tu-

or [12] . 

However, the prognoses of many pediatric brain tumors are dismal.

or example, in the case of diffuse midline gliomas with histone H3-

27M mutation, half of the children survive less than one year from

iagnosis, and only 10% survive two years from diagnosis, making it

ne of the deadliest types of cancers [2] . To understand the tumor bi-

logy in these huge varieties of tumors and to test potential therapeu-

ics, preclinical pediatric brain tumor models are essential. Integrating

 tremendous amount of knowledge obtained from previous research,

ncluding the genomic and proteomic landscape of different pediatric

rain tumors, into preclinical models is essential to understanding can-

er biology and establishing more effective treatment for each tumor. In

his review, we will summarize and discuss the current strategies used

o model different types of pediatric brain tumors, including the canon-

cal and widely utilized models, as well as explore the more recently

eveloped models using cutting-edge technologies such as genome en-

ineering and organoids. We will further discuss the potentials these

odels could have in narrowing the gap between preclinical findings

nd clinical translation in pediatric brain tumor research. 

odalities for modeling pediatric brain tumors 

Next generation sequencing and large-scale multiomic studies, in-

luding single-cell analyses have shifted the research paradigm and the

verall understanding of childhood brain tumors, especially with regard

o tumor heterogeneity and the associations between tumorigenesis and

eural development [12–18] . The most common and widely studied pe-

iatric brain tumors are gliomas and medulloblastomas. For example,

nstead of looking at histologically similar tumors as single entities, dif-

erent tumor groups have been shown to include multiple subgroups,

ach with distinct patterns of genetic alterations, clinical behavior, and

n some cases, cellular origin [10 , 11] . Widely used pediatric brain tu-

or models include genetically engineered mouse models (GEMMs),

nd xenografts (cell line-based and patient-derived) [19] . In vitro stud-

es are useful tools to explore the underlying biological mechanisms of

umor cells, and can identify the genetic and epigenetic changes in can-

er cells that contribute to tumor initiation and progression, as well as

o predict the response and resistance to different treatments [20] . The

ajor models used for in vitro research are mouse and human derived

ell lines, neurospheres, and tumor stem cells. There are over 60 pe-

iatric brain cancer cell lines largely used that cover a vast majority

f the pediatric tumor types [21–23] . Biologically relevant tumor cell

ines have the potential to enhance the success of exploratory drug dis-

overy studies, especially in the light of more large scale comprehensive

nitiatives such as the Therapeutically Applicable Research to Generate

ffective Treatments initiative, that aims to identify the one cell line

r cell lines that best represents a specific cancer subtype [24 , 25] . A

ore recent and promising new avenue of in vitro modeling is the three-

imensional (3D) growth. For neuroblastoma, 3D prototypes better re-

apitulate the tumor physiology compared to two-dimensional (2D) cul-

ures [26] . An emerging promising cell-derived tool for preclinical ther-

peutic research are organoid cultures, specifically cerebral organoids

27] . Organoids are used to study physiological processes closely re-
2 
embling endogenous cell organization and organ architecture. Ogawa

t al. demonstrated that a cerebral organoid could recapitulate glioblas-

oma development via clustered regularly interspaced short palindromic

epeats (CRISPR)/CRISPR-associated protein 9 (Cas9) [28] . Bian et al.

ntroduced multiple combinations of genetic alterations using transpo-

on and CRISPR/Cas9 to model varieties of tumors, including pedi-

tric glioblastoma, medulloblastoma, atypical teratoid rhabdoid tumor

AT/RT), and CNS primitive neuroectodermal tumor (CNS-PNET) [29] .

n vivo models are still the first line platforms for drug safety and efficacy

uestions to support human testing. Many models are used in different

elds, and by far for pediatric brain research, the most utilized organism

s the mouse. Like in vitro models, in vivo systems have both advantages

nd limitations, all of which require consideration when designing pre-

linical studies. As previously mentioned, the two major categories of

urine models used in pediatric brain tumor studies are patient-derived

enografts (PDXs) and GEMMs. We will review these different platforms

f models for pediatric gliomas and medulloblastomas, which have been

xtensively studied, as well as other pediatric brain tumors. 

odeling pediatric gliomas 

Gliomas are the most common brain tumor type in children [3] . The

ubtypes of gliomas that are commonly diagnosed in the pediatric pop-

lation are astrocytoma, brain stem gliomas, ependymoma, and optic

erve gliomas. Pediatric gliomas are a heterogeneous category of tu-

ors and they pose a great challenge for therapy. Based on their his-

ological grade, gliomas can be subdivided into low-grade gliomas and

igh-grade gliomas; the latter tumors include the distinct subtype of Dif-

use Midline Glioma H3-K27 altered, that is usually treated as a separate

ategory given its molecular features, clinical presentation, and progno-

is. The latest WHO Classification of Tumors of the CNS shed light on

ntegrated diagnosis for brain tumor classification with an emphasis on

olecular criteria [7 , 30] . The common pathways that are affected in

ediatric gliomas are cell proliferation, mitosis, and neo angiogenesis

athways, such as MAPK, EGFR, and VEGF pathways. The most com-

on altered genes in pediatric gliomas are BRAF, TP53 , histone H3,

GFR , and MYB/MYBL1 [31–42] . 

n vitro models 

In vitro models remain key tools to explore the underlying biological

echanisms of tumor development, to identify the genetic and epige-

etic changes in cancer cells, and are very useful tools to predict the

esponse and resistance of cancers to different treatments. The basic in

itro models utilized in pediatric brain tumors include mouse or human-

erived cell lines and primary cells such as tumor stem cells or neuro-

phere cultures. The most critical feature for reliable in vitro models is

he ability of the respective cell lines to recapitulate the genetic charac-

eristics of the primary tumors from which they were derived or which

hey’re purposed to model. The major advantage that these established

lioma cell lines offer is the fact that they have defined molecular char-

cteristics, offering reliable, subtype-specific, large scale, easily repro-

ucible information with regards to drug sensitivity, and are useful in

dentifying novel therapeutic targets. However, the major disadvantages

f these models are the fact that they fail to recapitulate tumor hetero-

eneity [20] , and they cannot incorporate the tumor microenvironment

hat drives a critical part of tumor biology. Chemically induced brain

umors have been historically used to study gliomas and other tumor

ypes. The most used methods to generate brain tumor formation are

-nitrosurea and carcinogenic viruses such as RSV-1 and human aden-

virus [22] . The cell lines isolated from brain tumors induced in mice

nd rats have been largely used and these include RG2, BT7C, CNS1,

6, and 9L [43–51] . These cell lines in general have been passaged

or long time. The genomic deviation from the original tumors, and

henotypic homogeneity to some extent are major drawbacks of these

odels [52 , 53] . Patient-derived cell lines are the models that overcome
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hese rodent cell lines, with which inter- and intra-tumor heterogene-

ty can be studied [54 , 55] . The Brain Tumor Resource Lab (BTRL) of-

ers a very useful and up-to-date platform that provides patient- derived

ell lines and mouse models with a focus on studying pediatric brain

umors [56] . The platform offers 18 characterized high-grade glioma

ell lines. PBT04-FHTC, PBT05-FHT are MYCN amplified, ID2 amplified

ell lines, while GBM-511FHTC and GBM-110FHTC have CDKN2A alter-

tion with the latter harboring the BRAF mutation [56 , 57] . The Child-

ood Cancer Repository it’s another major cancer cell line bank and one

f the highly utilized stable high grade glioma cell lines is CHLA-200

hat harbors the MYC mutation. For diffuse midline glioma and diffuse

emispheric gliomas with histone H3 alterations, there are a series of

argely used stable cell lines, most of which harbor different histone

utations. SF7761, SF8628, PED8, PED17, PED36, HSJ-DIPG017, SU-

IPG-VI, VUMC-DIPGA, and JHH-DIPG-1 have H3.3 K27M mutation;

UMC-DIPG-B, and SU-DIPG-IV have H3.1 K27M; and GBM002 has H3-

34R mutation [23 , 58-60] . Despite the usefulness and practicality of

hese stable cell lines, there are some disadvantages that ought to be

ddressed, such as the high passage number that drives inherent phe-

otypic changes [52] , the 2D culture conditions fail to recapitulate the

ctual tumor 3D architecture, and the lack of heterogeneity of the cell

opulations, which is another important characteristic of in vivo tumors.

o some extent, neurosphere cultures are superior when it comes to the

bove-mentioned limitations, given the serum-free culture media and

he maintenance of tumor heterogeneity, making them more attractive

odels, although they lack tumor to tumor microenvironment interac-

ions [61–64] . Neurosphere cultures, due to the serum-free culturing en-

ironment favor the growth of glioma stem cells (GSC), defined by their

umor-initiating capacity following serial transplantation, self-renewal,

nd the ability to recapitulate tumor heterogeneity. Neurospheres have

lso been used for in vivo engraftment, and have been shown to suc-

essfully recapitulate the pathways of the original tumor behavior [65] .

owever, while extremely important in the overall tumor biology, GSC

epresent only a minority of the tumor cell populations; therefore, by fa-

oring the selective growth of these cells, neurosphere cultures fall short

n representing the more differentiated cancer cell populations that con-

titute the bulk of tumors in patients. 

atient-derived xenograft models 

While in vitro models remain valuable, cost-efficient, versatile tools

or high throughput drug screening and discovery of novel cancer

iomarkers, in vivo pediatric brain tumor models that closely recapit-

late the tumor molecular and histopathological features remain the

old standard in research of pediatric brain tumors [16 , 66] . The two

ajor lines of in vivo models are PDX and GEMMs. Cancer cell lines de-

ived from patient tumors or animal models can be engrafted into model

nimals to generate xenograft models. The patient samples can be en-

rafted with or without previous culture in vitro . The major advantage of

he method is that it retains the molecular architecture of the original

umors making them more representative models than in vitro models

52 , 67] . Xenograft models are generally established in immunocompro-

ised rodents, with various strains used. BALB/c mice and severe com-

ined immunodeficient mice [9] , as well as Rag1-deficient mice are the

ommonly used strains. These models, however, have different suscep-

ibilities based on their genetic background. For example, BALB/c mice

re notoriously sensitive to radiation, making them unsuitable for ra-

iation efficiency studies [68] . The immunodeficient models have the

bvious disadvantage of abolishing the interactions between tumor and

umor immune microenvironment, which play essential roles in shap-

ng tumor biology [69] . A potential way of addressing this limitation

s a more recent and promising model in which immunodeficient mice

eceive human bone marrow to reconstitute a human immune response.

hese humanized mice provide an opportunity to recapitulate human

rain tumors and test the efficiency of various immunotherapies [70–

2] . This model addresses the immune microenvironment and tumor
3 
eterogeneity issues that fall short with the canonical models with the

otential for better drug response prediction. The limitations of these

odels, like with any murine model, is that they are expensive and

echnically complicated by the risk of xenogeneic graft-versus-host re-

ponses; however, they are a step closer to recapitulating human cancers

n animals [73] . 

Based on the mode of implantation, PDX can be subdivided as ortho-

opic or intracranial engraftment and heterotopic or subcutaneous en-

raftment. Arguably, intracranial models are superior in replicating the

rain tumor microenvironment, however, subcutaneous models were

hown to recapitulate the histopathological features and stromal devel-

pment as accurately as intracranial models. There are several useful

ediatric brain tumor xenograft repositories that offer a very useful,

n some cases subtype specific, repertoire of PDX. St. Jude Children’s

esearch Hospital has 37 novel patient-derived orthotopic xenograft

PDOX) models generated from pediatric brain tumor patients comple-

ented by readily available analyses of histopathology, whole-genome

nd whole-exome sequencing, RNA-sequencing, and DNA methylation

rrays [74] . This repository covers the main molecular subtypes includ-

ng H3.3 K27M and H3.1 K27M mutations. This repository, along with

he BTRL resource and other large scale, broadly available reposito-

ies, offers a very useful study platform for pediatric brain tumor re-

earch. The Children’s Oncology Group ACNS02B3 study, characterized

0 patient-derived orthotopic xenograft models and seven cell lines rep-

esenting 14 molecular subgroups of pediatric brain tumors. PDOX mod-

ls were found to be representative of the tumors found in patients in

erms of histology, IHC, gene expression, DNA methylation, copy num-

er, and mutational profiles. In vivo drug sensitivity of targeted ther-

peutics was associated with distinct molecular tumor subgroups and

pecific genetic alterations [57] . The unprecedented initiative proved

he usefulness of PDX models as a key resource for pediatric brain tu-

or research. There are, however, limitations in PDX models as well,

s it’s the case with virtually any models. Again, the main disadvan-

age with immunodeficient mice is the inability to study the tumor to

mmune system interactions; another limitation is the fact that not any

iven passaged cell lines or patient sample can successfully be engrafted.

 debatable aspect of PDX, is the degree to which the engrafted tumors

ecapitulate and maintain the stromal characteristics of patient samples

ith multiple passages as multiple passages select the most aggressive

ells, depleting the characteristic heterogeneity of the tumors. Another

onsideration with PDX is its inability of recapitulating the early tumori-

enesis, since the engrafted cells have already reached their malignant

otential, therefore the model is not suitable to study the initial tumori-

enesis mechanisms [52] . 

enetically engineered mouse models and viral delivery models 

The other major types of in vivo models used in pediatric glioma

tudies are GEMMs and viral delivery models. GEMMs recapitulate the

arly stages of tumor initiation in animals with native immune system

nd intact blood brain barrier and undisrupted microenvironment [75] .

his makes GEMMs the first line models for tumor mechanism and drug

iscovery studies. Most mouse models of glioma are generated by alter-

ng key signaling pathways disrupted in human gliomas, including Ras,

GFR, Akt, Rb, PTEN, NF1 and PDGF pathways [76 , 77] . Some of the

arly GEMMs for pediatric gliomas used the tumor suppressor Nf1 and

rp53 mutations. The modeling strategy uses crossbreeding of mice with

ifferent genetic backgrounds resulting in the final combined knockout

f Nf1 and Trp53 , that spontaneously develop brain tumors over a period

f 13 months for some of the models. While the crossbreeding is labo-

ious and tumor formation latency is long, the model shows a range of

strocytoma stages, from low-grade astrocytoma to glioblastoma, with

ccurate histopathological features [78 , 79] . A derivative model from

he Nf1 / Trp53 knockout background was obtained by introducing CNS

eterozygosity of Pten into the Nf1/p53 astrocytoma model. Resulting

ice had accelerated morbidity, shortened survival, and full penetrance
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f high-grade astrocytomas. Haploinsufficiency of Pten accelerated for-

ation of grade 3 astrocytomas, whereas loss of Pten heterozygosity

nd Akt activation with subsequent progression into grade 4 tumors

78] . One of the precautions that are involved with these models is the

argeting of “general ” tumor suppressor, such as Ttp53 , which is not a

lioma specific event and mandates the exclusion of the scenario that

he formed brain lesions are potential metastases. An elegant solution

or the non-selective silencing of tumor suppressors came with the in-

roduction of conditional or inducible conditional knockout, in which

he target gene can be edited in a tissue specific and/or time-dependent

ay. The most common method to make conditional knockout mice

s the Cre-loxP system. To achieve precise temporal specificity in the

re-loxP system, Cre can be fused with a hormone responsive element,

nd induced by the exogenous inducers tamoxifen or tetracycline [80] .

nother transgenic mouse model uses the glial fibrillary acidic protein

 GFAP ) promoter to express oncogenic V12Ha -Ras in astrocytes. Acti-

ation of the p21-ras signaling pathway from aberrantly expressed re-

eptors promotes the growth of malignant human astrocytomas. These

ransgenic astrocytomas are pathologically like human astrocytomas,

ith a high mitotic index, nuclear pleomorphism, infiltration, necrosis,

nd increased vascularity. The transgenic tumor model exhibits addi-

ional molecular features associated with human astrocytomas, includ-

ng a decreased or absent expression of p16, p19, and PTEN as well

s overexpression of EGFR, MDM2, and CDK4. Cytogenetic analysis re-

ealed consistent clonal aneuploidies of chromosomal regions syntenic

ith comparable loci altered in human astrocytomas [81–83] . More re-

ently, Larson et al. established a meticulous model of H3-K27M glioma

ith inducible H3.3 K27M cooperated with activating PDGFRA muta-

ion and Trp53 loss and successfully dissected the mechanisms how

he oncohistone transform neural stem cells (NSCs) [84] . Viral deliv-

ry models bypass the laborious and expensive steps of crossbreeding of

raditional GEMMs. With the establishment of the versatile replication-

ompetent avian sarcoma-leukosis virus long terminal repeat with splice

cceptor/tumor virus A (RCAS/t-va) RCAS/t-va virus mediated gene de-

ivery model Cre recombinase is delivered to somatic cells to establish

on-germline GEMMs [85] . RCAS/t-va marked a new era in brain tumor

odeling in general, offering valuable tools for the pediatric CNS tumor

tudy. The RCAS virus is selectively delivered into cells via binding to

ts specific cell surface receptor t-va. T-va is only expressed in avian

ells, but mammalian cells can gain the expression through genetic en-

ineering. RACS/t-va based GEMMs have some advantages over Cre-

oxP based models. The virus penetrance into receptor expressing cells

s low, so only a small fraction of cells can acquire the expression of tar-

et genes. This makes the model closer to actual tumor initiation where

nly a small number of transforming cells are key players in tumor ini-

iation. Genetically engineered mammalian cells that express the t-va

eceptor for the virus can get multiple RCAS infections simultaneously

r sequentially, which makes this model suitable to study the effect of

ultiple genes on tumorigenesis in a very precise fashion. There are sev-

ral established pediatric brain tumor models using the RCAS platform.

DGFB overexpression in Nestin expressing cells of the neonatal brain-

tem, along with Ink4a-ARF deletion, leads to brain stem gliomas for-

ation [86–91] . More recently, pediatric gliomas were successfully in-

uced by using in utero electroporation (IUE) [92 , 93] . The method uses a

argeted delivery of oncogenic plasmids into the developing mouse em-

ryonal brain. Successfully targeted mice develop fully penetrant brain-

tem gliomas with different latencies, histological and molecular fea-

ures, based on the plasmids delivered [94] . These models are particu-

arly useful for modeling gliomas of the brain stem and H3K27M mutant

liomas – given the anatomical location and the young age of the pa-

ients who present with these tumors that make it particularly suitable.

atel et al. successfully generated diffuse brain stem gliomas by deliver-

ng a combination of PDGFB ligand along with dominant negative Trp53

DNp53) and either H3.3 K27M or H3.3 WT . In the IUE models by Pathania

t al ., transposable H3.3 K27M and Trp53 loss using a non-transposable

RNA/Cas9 targeting the Trp53 locus (K27M-P, 2-hit), were sufficient
4 
o induce tumorigenesis in either hindbrain or cortex [95] . Another IUE

odel established by Miklja et al. uses the simultaneous delivery of three

ncogenic plasmids: DNp53, H3-K27M and PDGFRA 

D842V on a PiggyBac

ase [96] . Another genetically driven model uses blastocyst in utero in-

ection. The model, however, has the inherent limitations of extensive

nd complex cross breeding and can be technically challenging for large

cale experiments. These models can be useful to study the early stages

f tumorigenesis and to study driver events that lead to tumorigenesis

97] . Transposon mediated delivery is a versatile platform that allows

lasmid delivery into cells [98–101] . The Sleeping Beauty transposon

elivery model is widely used in adult and pediatric gliomas modeling.

hile the system is fast and offers inducible, controllable targeted gene

xpression, there is some evidence of off-target effects induced by the

arrier system itself, namely it was suggested that the construct might

nfluence gene expression [102] . Pediatric high grade gliomas have suc-

essfully been induced by using transposon-mediated integration of plas-

id DNA into cells of the subventricular zone of neonatal mouse brain

101 , 103-105] . This model system is particularly useful in identifying

ovel genetic tumor drivers and the effect of different genetic alteration

n tumor phenotype [106 , 107] . 

enome-engineered stem cell-based and organoid models 

Genome engineering using CRISPR/Cas9 contributed to the flexi-

ility of tumor modeling with the feasible introduction of bona fide

enetic alterations observed in patient tumors [108] . Single-cell RNA-

equencing of adult glioblastoma models derived from human induced

luripotent stem cells (iPSCs) demonstrated that these models recapit-

late inter- and intra-tumor heterogeneity observed in glioblastoma pa-

ient samples [109] . This approach is essential in pediatric brain tu-

or research as well. Chen et al . presented Notch activation as a shared

haracteristic in H3-K27M and G34R cells using astrocytes introduced

ith H3.3 K27M and G34R mutations using CRISPR/Cas9 [34] . Fur-

her, the effect of Notch activation was reversible upon editing H3-K27M

ack to wildtype [110] . The strength of these models includes that they

an facilitate investigations on particular genes or genetic alterations in

therwise isogenic clean backgrounds. Haag et al. introduced the H3.3

27M mutation in human iPSCs and found that the H3.3 K27M mutation

rives tumorigenesis in NSCs, but not in oligodendrocyte precursor cells

111] . Similarly, Funato et al. introduced H3.3 G34R mutation into hu-

an embryonic stem cells and demonstrated intriguing findings, where

his particular mutation can transform forebrain precursor cells, but not

indbrain precursor cells [112] . Genome engineering technologies have

ccelerated the accumulation of such insightful knowledge in the field

f pediatric brain tumor research. 

odeling medulloblastomas and other pediatric brain tumors 

The current hypothesis with regards to the development of em-

ryonal tumors in the CNS is that tumor formation starts in embry-

nic or fetal cells that remain in the brain after birth [113] . The dif-

erent types of CNS embryonal tumors include medulloblastomas and

on-medulloblastoma embryonal tumors. The latter include embryonal

umors with multilayered rosettes, medulloblastomas, CNS neuroblas-

oma, CNS ganglioneuroblastomas, CNS embryonal tumors not other-

ise specified, CNS embryonal tumors with rhabdoid features. CNS

T/RT is also a type of embryonal tumor, but it is treated differently

han other childhood CNS embryonal tumors. Medulloblastoma is the

ost common embryonal tumor of the CNS. Compared to pediatric

igh-grade gliomas, medulloblastoma has a better prognosis. The 5-year

urvival rate for this this type of tumor is over 70% [5] . The most re-

ent 2021 WHO Classification of Tumors of the CNS stratified medul-

oblastoma into four molecular subgroups with four and eight further

ubgroups for SHH and non-WNT/non-SHH medulloblastoma, respec-

ively. The WNT group is characterized by the activation of the WNT/ 𝛽-

atenin signaling pathway and has the best prognosis. The SHH group
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l  
s characterized by deregulation of the SHH signaling pathway and has

n intermediate prognosis while Group 3 and Group 4 are less charac-

erized subtypes. There are several established cell lines and PDX cell

ines frequently used in the medulloblastoma research field. The differ-

nt groups of medulloblastoma have been also modeled in vivo either by

EMMs or by orthotopic transplantation of modified mouse cerebellar

rogenitor cells engineered to overexpress oncogenes and/or to inacti-

ate tumor suppressors. More recently spheroids and organoid-derived

odels of human medulloblastoma subgroups have been reported. Un-

ike glioblastoma, primary cultures from patient samples can be main-

ained for only very short term in medulloblastoma and are not used as

requently [114–116] . 

n vitro models 

There are over 40 medulloblastoma cell lines, the majority of which

ave been well characterized. Most cell lines pertain to the aggressive

roup 3 medulloblastomas with MYC amplification. These established

uman tumor lines are versatile and easy to grow in culture as monolay-

rs or spheres in stem cell conditions, and are commonly used to assess

he effect of drug treatments in preclinical trials. However, molecular

nalysis by next generation sequencing has revealed that they do not

lways faithfully recapitulate primary tumors and in some cases these

ines have acquired additional mutations and/or have partially lost ge-

etic material [117] . Around half SHH medulloblastoma cell lines have

utations in TP53 , and almost all Group 3 cell lines bear MYC ampli-

cation, while only a small part of SHH and Group 3 medulloblastoma

atients typically have these mutations. This points to the limitations

f these models, where these in vitro models transform through serial

assages. 

MED5R is the most utilized cell line for the WNT subgroup, and

AOY, UW228, UW426 are the ones for the SHH subtype. There are a

arger number of available cell line models for the Group 3: D341Med,

384Med, D425Med, and D458. These are widely available cell lines,

s well as the cells that are available through the BTRL platform, in-

luding Med-411FHTC, Med-2112FHTC. All the Group 3 cell lines have

YC amplifications. For the Group 4, CHLA-01-MED, CHLA-01R-MED

re available through ATCC [23 , 118-126] . Given the limitations men-

ioned above of traditional in vitro models, organoids and other 3D cul-

uring models are additional potential platforms to study medulloblas-

oma. 3D spheroid models have been shown to be more reflective of

uman disease and outcomes by mimicking tumor biology and drug re-

ponse [114 , 115] . 

atient-derived xenograft models 

GEMMs of medulloblastoma are precise platforms that prove valu-

ble tools for in vivo testing but fail to recapitulate the accentuated het-

rogeneity or microenvironment of human tumors. PDX models address

hese limitations and have become increasingly prevalent in preclinical

esearch. PDXs are generated by implanting tissues from medulloblas-

oma patients’ tumors into immunocompromised mice. In the case of

cute PDX, during the initial processing of the tumor sample, there are

o intermediate in vitro steps, eliminating the risk of culturing related

enetic changes [75] . The most utilized approach of medulloblastoma

DXs is orthotopic engraftment, expanding tumors intracranially in vivo .

he presence of stromal environmental components and the heterogene-

ty of the tumor cell population provide a significant advantage, partic-

larly concerning preclinical evaluation of small molecules or other in-

erventions [122 , 127] . Single-cell RNA-sequencing of PDX models con-

inues to provide insights into tumor evolution, while analysis of the ge-

etic and epigenetic landscape reveals new insights into tumorigenesis

nd progression. PDXs from patient tumors have limitations in terms of

he amount of available material and variable engraftment rates [128] .

s with any xenograft, implantation can disrupt the cell–matrix interac-

ions and the blood brain barrier and lack of tumor initiation. In recent
5 
ears, biobanks have been established allowing the availability of 15

DXs, including one WNT, four SHH, seven Group 3, and three Group

. Five out of the seven Group 3 PDXs harbor MYC amplification. The es-

ablishment rate for medulloblastoma was around 35% [75 , 129] . When

ompared to subcutaneous grafting, orthotopic engraftment in the cere-

ellum may be more efficient and might allow a better grafting effi-

iency for less aggressive tumors. Important information is provided on

hese PDXs including transcriptomic and whole-exome sequencing data.

enetically engineered mouse models and viral delivery models 

In a similar fashion to pediatric gliomas, the major directions of

n vivo modeling for medulloblastomas are GEMMs and PDX models.

EMMs for medulloblastoma are generated by recapitulating precise

enetic alterations seen in patient samples [130 , 131] . The Patched 1

odel ( Ptch1 + / − ) is the first mouse model of medulloblastoma, and

as been extensively used to assess the role of genes that drive tu-

origenesis in the SHH subtype [132] . Since the establishment of this

odel, many conditional and inducible knockout models have been de-

eloped, enabling precise temporal and spatial gene manipulations with

ifferent combinations of Ptch1 + / − , Trp53 − / − , and Cdkn2c − / − [133–

38] . GEMMs of medulloblastoma can also be obtained through so-

atic gene transfer using polyethylenimine-mediated transfection and

UE. Kawauchi et al. introduced DNp53 and Myc plasmids in embryonal

rains through IUE and established models of group 3 medulloblastoma

139] , and Forget et al. established group 4 medulloblastoma models

hrough overexpression of constitutively active SRC and DNp53 [A For-

et et al, PMID: 30205043]. As another example of medulloblastoma

odels, Zuckermann et al. introduced somatic CRISPR/Cas9 deletion

f Ptch1 by IUE into wild type E13.5 mouse embryos ( “CRISPR-Ptch1 ”)

nd successfully obtained SHH medulloblastoma with complete pene-

rance by 16 weeks of age [140] . 

The RCAS/t-va system is used for medulloblastoma modeling as well

130 , 141-143] . This robust system relies on the use of an avian retro-

iral vector, RCAS, to target gene expression to neuronal progenitors

n transgenic mice in which the Nestin gene promoter drives expression

f the viral receptor. Several SHH models were developed by infection

ith RCAS virus expressing Shh , alone or in combination with genes that

nclude MYCN , activated Akt, HGF, WIP1, BCL2 , all of which accelerate

he onset of SHH medulloblastoma. GEMMs of Group 3 medulloblas-

oma were also generated through overexpression of Myc and Bcl2 in

ddition to RCAS-Shh [134 , 141 , 144] . Another approach uses mutage-

esis with the Sleeping Beauty transposon in Nestin-Cre mice with the

ackgrounds of Trp53 mutation Pten knockout, where SHH or Group

/Group 4 medulloblastomas were induced [106] . 

enome-engineered stem cell-based and organoid models 

NSCs have been utilized to assess the role of potential drivers of

edulloblastoma, including Myc and Gfi1. Transplantation of NSCs that

verexpressed Myc alone, or with oncogene Gfi1 or Gfi1b into the cere-

ella of immunocompromised mice induced Group 3 medulloblastoma.

his approach uses retroviral or lentiviral vectors that can condition-

lly express or repress genes of interest to modify mouse neuronal pro-

enitors or human iPSC-derived NSCs. Marked progenitors are then im-

lanted into the cerebellum of naïve immunocompromised mice or of

aïve syngeneic animals, giving rise to tumors consistent with Group 3

ased on histopathological and molecular analyses [145–147] . Huang et

l. differentiated iPSCs derived from patients with Gorlin syndrome, a

umor predisposition syndrome caused by mutations in PTCH1 , into neu-

oepithelial stem cells. In this model, CRISPR/Cas9 disruption of GSE1 ,

hich is commonly co-mutated in adult medulloblastoma, resulted in

ccelerated tumorigenesis, suggesting GSE1 as a candidate tumor sup-

ressor in medulloblastoma [148] . As discussed above, organoid mod-

ls serve as robust ex vivo models for pediatric brain tumors [29] . Bal-

abio et al . overexpressed Otx2 and c-Myc in cerebellar organoids, con-
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Table 1 

Major in vivo models utilized for pediatric brain tumor research. Summary of preclinical models utilized for research on pediatric gliomas, medulloblastomas, and 

other pediatric brain tumors. 

SOME OF THE MAJOR IN VIVO MODELS UTILIZED FOR PEDIATRIC BRAIN TUMOR RESEARCH 

TUMOR MODEL SYSTEM GENETIC BACKGROUND 

VARIATIONS 

PATHWAYS REFERENCE BENEFITS LIMITATION 

GLIOMAS RCAS-TVA viral 

delivery model 

Nestin-t-va; RCAS Kras and Akt RAS; AKT [90] • Highly controllable 

model systems 
• Versatile 
• Can recapitulate early 

stages of tumor 

formation 
• Tend to be well 

characterized 
• Are largely available 

compared to newer 

models 

• Mouse analogue 

evaluation only – not 

suitable for the study of 

human immunotherapies 
• Can be laborious and 

expensive -some models 

require extensive 

cross-breeding 
• Potential side effects of 

the system itself 

Nestin-t-va; Pten fl/fl; RCAS Kras ; 

RCAS Cre 

PTEN; RAS [91] 

Nestin-t-va; Trp53 fl/fl; 

RCAS- Pdgfb ; RCAS 

Cre 

Gfap -t-va; Trp53 fl/fl; RCAS- Pdgfb ; 

RCAS Cre 

P53 

PDGFB 

[88] 

Nestin-t-va; Ink4a/Arf − / − PDGFB 

Ink4a-Arf 

AKT 

[86 , 89] 

GEMM Trp53 − / − ; Nf1 fl/fl; GFAP-Cre P53 

NF1 

RAS 

[77] 

Trp53 + / − ; Nf1 + /fl; Pten fl/ + ; 

GFAP-Cre 

P53 

PTEN 

NF1 

[78] 

Gfap-V12 Ha-ras ; Gfap-V12 Ha-ras 

Gfap- 

EGFRvIII 

RAS 

ERBB 

[81–83] 

H3K27M; Trp53 cKO H3 

P53 

[84] 

Transposon delivery 

models and IUE 

Erbb V664E Piggybac transposon ERBB [76] 

Hras/Kras -G12V Piggybac 

transposon 

RAS [76] 

PDGFRA D842V - Piggybac 

transposon 

PDGFR [76] 

H3K27M-DNP53 H3 

P53 

[95] 

H3K27M-DNP53- PDGFRA D842V H3 

P53 

PDGFRA 

[96] 

Genome engineered 

stem cell-based/ ex 

vivo organoids 

HRAS G12V and TP53 mutated 

H3-K27M 

H3-G34R 

RAS 

P53 

H3 

[111 , 112] • Inexpensive and easy to 

use 
• Can be used for immune 

studies 

• Extensive genome 

editing can result in 

off-target effects 

PDX Various backgounds Various 

genetic 

alterations 

[52] • Maintain original tumor 

features 
• Can be passaged 

indefinitely 
• Useful for large scale 

experiments 

• The 

immunocompromised 

status of the host makes 

them unsuitable for 

immune studies 
• Repeated passaging 

favor the selection of the 

more aggressive clones 

MEDULLOBLASTOMA 

RCAS/t-va viral 

delivery model 

Nestin-t-va; RCAS- Shh + N-Myc SHH 

Myc 

[130] • Highly controllable 

model systems 
• Versatile 
• Can recapitulate early 

stages of tumor 

formation 
• Tend to be well 

characterized 
• Are largely available 

compared to newer 

models 

• Mouse analogue 

evaluation only – not 

suitable for the study of 

human immunotherapies 
• Can be laborious and 

expensive -some models 

require extensive 

cross-breeding 
• Potential side effects of 

the system itself 

Nestin-t-va; RCAS- Shh SHH [130] 

Nestin-t-va Trp53 − / − RCAS- Myc GROUP3 

Myc 

P53 

[130] 

( continued on next page ) 

6 
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Table 1 ( continued ) 

SOME OF THE MAJOR IN VIVO MODELS UTILIZED FOR PEDIATRIC BRAIN TUMOR RESEARCH 

TUMOR MODEL SYSTEM GENETIC BACKGROUND 

VARIATIONS 

PATHWAYS REFERENCE BENEFITS LIMITATION 

Nestin-t-va RCAS- Myc , RCAS- Bcl2 GROUP3 

Myc 

[130] 

GEMM BlbP-Cre + /-: Ctnnb1 + /lo xex3- 

Trp53 flx/flx 

WNT [131] 

Ptch1 + / − ; Math1 -Cre 

Ptch1 + / − ; Gfap -Cre 

Ptch1 + / − ; Trp53 -/- 

Ptch1 + / − ; Ink4c − /- 

Ptch1 + / − ; Kip1 − /- 

Ptch1 + / − ; Ptch2 − / − 

SHH [132–136] 

Trp53 − / − ; Pten − / − P53 

PTEN 

SHH 

[137 , 138] 

Transposon delivery 

models and IUE 

Co-electroporation of Myc and 

trp53DN into embryonic 

cerebellar progenitor cells 

Group 3 

Myc 

P53 

[139] 

Co-electroporation of SRC-CA 

and DNp53 into E13.5 

developing cerebella 

Group 4 

P53 

Genome engineered 

stem cell-based/ ex 

vivo organoids 

MYCN transduction 

DDX3X mutation 

GSE1 loss 

MYC [148] • can provide information 

with regards to genetic 

causation 
• relatively easy to 

manipulate 
• suitable for large scale 

experiments 

• risk of off target effects 

inherent with genome 

editing 
• clonal selection favors 

the more aggressive cells 

PDX Various genetic backgrounds Variable [56 , 57] • Maintain original tumor 

features 
• Can be passaged 

indefinitely 
• Useful for large scale 

experiments 

• The 

immunocompromised 

status of the host makes 

them unsuitable for 

immune studies 
• Repeated passaging 

favor the selection of the 

more aggressive clones 

Figure 1. Graphical summary. Summary of modeling modalities utilized for research on pediatric brain tumors. 
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rmed that these models recapitulated the formation of Group 3 medul-

oblastoma, and further evaluated the efficacy of Tazemetostat in their

x vivo models [114] . Organoid models with or without genome engi-

eering technologies can serve as a robust platform for modeling tu-

origenesis and preclinical drug testing. Similar approaches have been

aken for modeling other pediatric brain tumors. For example, Terada

t al. knockout SMARCB1 in combination with TP53 in human iPSCs

nd generated models resembling AT/RT [149] . Further, Parisian et

l. induced SMARCB1 knockdown during the differentiation of cere-

ral organoids and found that there is a narrow developmental window

here SMARCB1 loss could take effect for the transformation of the neu-

al lineage cells [150] . This suggests that organoid models are useful not

nly for preclinical testing but also for dissecting the tumor biology in

he context of neural development, which will shed light on the research

n pediatric brain tumors, especially embryonal tumors [151] . 

onclusions 

There is no doubt that a wide variety of preclinical models of pedi-

tric brain tumors have contributed to our understanding of the tumor

iology of these difficult-to-treat tumors and to therapeutic develop-

ent. PDX models or cell lines derived from them can serve as a robust

latform for testing therapeutic efficacy with their feasibility in han-

ling and their nature of preserved inter- and intra-tumor heterogene-

ty, which should always be taken into account when considering cancer

reatment. GEMMs and viral delivery models are essential in dissecting

unctions of particular genes and genetic alterations in tumor biology.

he variety of these mouse models is still expanding based on the accu-

ulated knowledge about the multiomic landscape of pediatric brain tu-

ors. Genome engineering technologies have expanded the flexibility of

umor modeling and contributed to tumor models with authentic patho-

iology observed in patients, enabling examination of gene functions in

sogenic backgrounds. Organoid models paved the way to investigate

nteractions between tumor and tumor microenvironment and further

issect tumorigenesis in the context of neural development, which is

 critical aspect in the research of pediatric brain tumors. There are

ovel approaches that can be practically applied to pediatric brain tu-

or models, including humanized mouse models. Multiple options of

odels became available and can be chosen depending on the purpose

f the research ( Table 1 , Figure 1 ). Considering the rarity of each tumor

ype as a nature of pediatric brain tumors, integrative and collabora-

ive efforts, together with such available clinical models are necessary

o develop novel and effective treatment. As an example, CBTN has es-

ablished more than 80 preclinical models and the largest multiomic

ataset derived from patient tumors and those models [152] , which will

ead to thorough biological understanding of each tumor. In these con-

exts, such robust tumor models established so far and addition of novel

nes will continue to contribute to the accelerated discovery of effective

herapeutics for pediatric brain tumor patients. 
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