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1  | INTRODUC TION

Hepatocellular carcinoma (HCC) acts as a heterogeneous disease 
of which the prognosis is dismal. However, recently, with the rapid 
development of gene sequencing technology, our understanding of 
the molecular pathogenesis of HCC has improved significantly.1,2 
Accumulated data from high-throughput analysis of a large number 

of samples suggest that it can be used to identify key biomarkers as-
sociated with HCC progression. However, the number of biomarkers 
known to be associated with HCC prognosis is limited.

CTNNB1 mutations have been reported in approximately 18% 
to 40% of HCC patients.3-7 The oncogenic Wnt/β-catenin pathway, 
activated by the mutated CTNNB1, plays a key role in the metabolic 
regulation in the liver.1,8 CTNNB1-mutated HCC has a distinctive 
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Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy closely related to 
metabolic reprogramming. We investigated how CTNNB1 mutation regulates the 
HCC metabolic phenotype and thus affects the prognosis of HCC. We obtained the 
mRNA expression profiles and clinicopathological data from The Cancer Genome 
Atlas (TCGA), the International Cancer Genomics Consortium (ICGC) and the Gene 
Expression Omnibus database (GSE14520 and GSE11 6174). We conducted gene set 
enrichment analysis on HCC patients with and without mutant CTNNB1 through 
TCGA dataset. The Kaplan-Meier analysis and univariate Cox regression analysis as-
sisted in screening metabolic genes related to prognosis, and the prognosis model 
was constructed using the Lasso and multivariate Cox regression analysis. The 
prognostic model showed good prediction performance in both the training cohort 
(TCGA) and the validation cohorts (ICGC, GSE14520, GSE11 6174), and the high-risk 
group presented obviously poorer overall survival compared with low-risk group. Cox 
regression analysis indicated that the risk score can be used as an independent pre-
dictor for the overall survival of HCC. The immune infiltration in different risk groups 
was also evaluated in this study to explore underlying mechanisms. This study is also 
the first to describe an metabolic prognostic model associated with CTNNB1 muta-
tions and could be implemented for determining the prognoses of individual patients 
in clinical practice.
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metabolic morphotype and is often cholestatic and infrequently 
steatotic.3,9,10 A recent report showed that proteins involved in dif-
ferent metabolic activities such as drug metabolism, amino acid me-
tabolism, glycolysis and gluconeogenesis are enriched in CTNNB1 
mutant tumours,11 indicating that it is closely related to metabolic 
reprogramming. However, the potential mechanism is not fully 
understood.

Metabolic reprogramming refers to the significant changes 
in metabolic patterns that occur during the process of cell car-
cinogenesis, which involves many processes such as glycolysis, 
oxidative phosphorylation, tricarboxylic acid cycle, amino acid me-
tabolism, nucleic acid metabolism and fatty acid metabolism.12-14 
Tumorigenesis is a multistep process involving modifications to 
pathways that promote uncontrolled proliferation and eliminate 
cell death, which requires metabolic reprogramming to provide 
large molecules for cell survival, growth and migration. In recent 
years, targeting metabolic reprogramming has become a promising 
novel treating strategy, but the metabolic reprogramming of HCC 
has not yet been deciphered.

The study conducted gene set enrichment analysis on the 
CTNNB1 mutant HCC and CTNNB1 wild-type HCC through the 

Cancer Genome Atlas (TCGA) database, finding that gene sets sig-
nificantly up-regulated in CTNNB1 mutant HCC were all related 
to metabolism, further confirming the close relationship between 
CTNNB1 mutation and metabolic reprogramming. We further ex-
plored the prognostic value of these genes in HCC and constructed a 
prognostic risk model consisting of five metabolic genes. The results 
of multiple datasets (including TCGA, ICGC, GSE14520 and GSE11 
6174; total of 876 HCC patients) indicate that this risk score is highly 
accurate in evaluating the prognosis of HCC. In addition, we found 
that the prognostic model may reflect the immune microenviron-
ment of the tumour and thus has high clinical application potential.

2  | MATERIAL S AND METHODS

2.1 | Data collection from TCGA

We obtained the sequence data for 374 samples with HCC from the 
TCGA website (https://portal.gdc.cancer.gov/repos itory). The cor-
responding clinical data including overall survival time, survival sta-
tus, sex, age, race, alpha-fetoprotein (AFP) level, body mass index 

F I G U R E  1   Gene set enrichment analysis between with and without CTNNB1 mutation HCC in TCGA
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(BMI), vascular invasion, histological grading, AJCC TNM stage, 
family history of cancer, tumour history, presence of new tumours 
after initial treatment and individual tumour status of the TCGA 
cohort were obtained from the UCSC Xena website (https://xenab 
rowser.net/). The CTNNB1 mutation sample list was obtained from 
the cBioPortal website (https://www.cbiop ortal.org/). We retained 
genes of which the average expression value is over 1 and mean-
while removed RNA-sequencing data with low abundance.15,16 This 
study meets the publication requirement of TCGA (http://cance 
rgeno me.nih.gov/publi catio ns/publi catio nguid elines).

2.2 | Data collection from ICGC and GEO

Three independent cohorts were used for external validation 
(ICGC-LIRI-JP, GSE14520 and GSE11 6174). We obtained the gene 
expression files (ICGC-LIRI-JP gene expression files from the 

Illumina HiSeq RNA-seq platform, GSE14520 gene expression 
files from the GPL571 platform and GSE11 6174 gene expression 
files from the GPL13158 platform) and corresponding clinical data 
from the Gene Expression Omnibus (GEO) database (https:// www.
ncbi.nlm.nih.gov/geo/) and the International Cancer Genomics 
Consortium (ICGC, https://icgc.org/). The batch effects of RNA-
seq data sets were eliminated via the combat function contained 
in the SVA R package (R Core Team, R Foundation for Statistical 
Computing, Vienna, Austria). The downloaded profiles all meet the 
GEO and ICGC data access rules.

2.3 | Gene set enrichment analysis (GSEA)

Gene set enrichment analysis was utilized in this study to un-
covering the differences in the metabolic-related genes be-
tween the CTNNB1 mutant group (n = 98) and the non-mutant 

NAME NES
NOM 
P-value

KEGG_METABOLISM_OF_XENOBIOTICS_BY_
CYTOCHROME_P450

1.914358 0.002132

KEGG_DRUG_METABOLISM_CYTOCHROME_P450 1.81373 0.006383

KEGG_PEROXISOME 1.767487 0.02439

KEGG_TYROSINE_METABOLISM 1.758547 0.012876

KEGG_PORPHYRIN_AND_CHLOROPHYLL_
METABOLISM

1.745985 0.026477

KEGG_STEROID_HORMONE_BIOSYNTHESIS 1.725979 0.015317

KEGG_PRIMARY_BILE_ACID_BIOSYNTHESIS 1.710733 0.010331

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 1.707652 0.025052

KEGG_FATTY_ACID_METABOLISM 1.707306 0.046939

KEGG_ASCORBATE_AND_ALDARATE_METABOLISM 1.700901 0.014737

KEGG_PHENYLALANINE_METABOLISM 1.627591 0.028509

TA B L E  1   Gene set enrichment analysis 
between with and without CTNNB1 
mutant HCC

Gene K-M HR HR.95L HR.95H
Cox 
P-value

CYP27A1 0.004001 0.995377 0.992811 0.99795 0.000435

AGPS 0.002754 1.14859 1.083584 1.217495 3.15E-06

CYP3A5 0.000394 0.994496 0.991012 0.997993 0.002057

HMBS 0.005014 1.085504 1.021233 1.15382 0.008422

ADH1A 0.001722 0.997199 0.995436 0.998966 0.001897

SRM 0.00237 1.015787 1.00748 1.024162 0.000185

ACSL3 0.002632 1.047003 1.024575 1.069922 3.22E-05

ALAS1 0.009778 0.992547 0.988309 0.996803 0.000611

PRDX1 0.002291 1.004368 1.002789 1.00595 5.63E-08

GOT2 0.003586 0.983121 0.974783 0.99153 8.95E-05

HCCS 0.000666 1.113809 1.047345 1.184489 0.000596

AMD1 4.61E-06 1.110299 1.068779 1.153433 7.42E-08

CYP2C9 0.00024 0.99541 0.992975 0.997852 0.000233

SMS 3.01E-06 1.035489 1.022567 1.048574 5.23E-08

TA B L E  2   The prognostic gene list 
related to overall survival in TCGA cohort
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group (n = 276) in the TCGA cohort. An annotated gene set file 
(c2.cp.kegg.v7.0.symbols.gmt) was selected as the reference. The 
threshold was confirmed as NOM P-value < 0.05.

2.4 | Construction and validation of a metabolic-
related prognostic model

We first used univariate Cox regression and the Kaplan-Meier 
(K-M) for survival analysis of each gene and selected genes with 

P < 0.05 in both algorithms as candidate genes to construct the 
model.17 Next, the Lasso regression analysis assisted in further 
narrowing down the candidate gene number. Finally, we con-
structed a risk score system, multiplying the normalized expres-
sion level exhibited by each metabolic gene by virtue of the 
regression coefficients that were obtained from the multivariate 
Cox regression analysis. The median risk score of the TCGA co-
hort (n = 343) was used to classify the group with a high risk and 
group with a low risk. The Kaplan-Meier (K-M) survival analysis 
(log-rank test), together with the time-related receiver operating 

F I G U R E  2   Construction of the prognostic model in TCGA cohort (A) The Kaplan-Meier survival analysis for overall survival (OS) of 
patients in TCGA cohort. (B) The time-dependent ROC analysis for risk score in the TCGA cohort. (C-E) The heat map of the five genes and 
the distribution of risk score and the survival status of patients in the TCGA cohort. (F-G) Forest plot of the univariate and multivariate Cox 
regression analysis in HCC regarding OS (green represents univariate analysis, and red represents multivariate analysis)
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feature curve (ROC) analysis applied assessing the predictive 
ability exhibited by the prognostic model in above-mentioned 
four independent cohorts (TCGA, ICGC, GSE14520 and GSE11 
6174). Univariate and multivariate Cox regression analyses were 
performed in this study to confirm whether the risk score could 
independently predict the prognosis. P < 0.05 was considered 
with statistical significance. K-M method in the R package ‘sur-
vminer’ was used to generate the survival curves, and R package 
‘survivalROC’ was used to generate ROC curves. What needs to 
be pointed out is that in order to avoid the impact of other factors 

on the prognosis of patients, we excluded patients with a survival 
time of less than one month.

2.5 | Correlation analysis between 
clinicopathological parameters and risk score

We used the Wilcoxon signed-rank test (2 groups) or the Kruskal-
Wallis test (>=2 groups) for analysing the correlation between clin-
icopathology (including AJCC TNM stage, Barcelona stage, CLIP 

F I G U R E  3   Internal validation of the prognostic model in TCGA cohort based on clinical features (A) AFP. (B) Histopathological grade. (C) 
New tumour event after initiate treatment. (D) AJCC TNM stage. (E) Cancer status. (F) Vascular tumour cell type. (G-H) Recurrence
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stage, main tumour size, tumour differentiation, AFP and vascu-
lar tumour cell type) and the risk score. P < 0.05 was considered 
with statistical significance, and box plots were generated via the 
beeswarm packages implemented in R software.

2.6 | Identification of differentially expressed genes 
(DEGs) between different risk groups

DEGs in the tissues of the two HCC groups were examined using 
the Wilcoxon test method in R package ‘limma’. The thresholds were 
confirmed to be |log2-fold change (FC)| > 1.0 and FDR < 0.05. Gene 

ontology (GO) enrichment analysis was further used for biological 
function annotation of the DEGs using the R package ‘clusterProfiler’.

2.7 | Evaluation of immune cell infiltration in 
different risk groups

Relevant data about the infiltration level exhibited by immune cells 
of HCC patients were downloaded from the tumour immune as-
sessment resource (TIMER) website to compare the immune cell 
infiltration level between different risk groups in the TCGA data-
set. The single sample gene set enrichment analysis (ssGSEA, the 

F I G U R E  4   External validation of the prognostic model in three independent cohort (A-C) The Kaplan-Meier curve of overall survival 
(OS) in ICGC cohort, GSE14520 cohort and GSE11 6174 cohort, respectively. (D-F) The time-dependent ROC analysis for risk score in ICGC 
cohort, GSE14520 cohort and GSE11 6174 cohort, respectively. (G-I) Forest plot of the univariate and multivariate Cox regression analysis 
regarding OS in ICGC cohort, GSE1452 cohort and GSE11 6174 cohort, respectively (green represents univariate analysis, and red represents 
multivariate analysis)
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immune cell type, function and pathway represented by 29 im-
mune-related gene sets) was employed to quantify the activity or 
enrichment levels of immune cells, functions or pathways in the 
high- and low-risk samples from the four independent cohorts. 
The normalized enrichment score (NES) that calculated from the 
ssGSEA was used in the ‘GSVA’ and ‘GSEABase’ R package. The 
independent-samples t tests were used for comparing the differ-
ences in immune infiltration levels and immune function between 
high- and low-risk groups, and P-values < 0.05 were suggested to 
exhibit statistical significance.

2.8 | Statistical analyses

R software v3.6.1 (R Foundation for Statistical Computing, Vienna, 
Austria) together with GraphPad Prism v7.00 (GraphPad Software 
Inc, USA) assisted in performing statistical analyses. Fisher's exact 
test or Pearson's chi-square test helped to analyse qualitative vari-
ables. Analysis on quantitative variables relied on a non-parametric 
Wilcoxon rank-sum test (for unpaired samples). The Kruskal-Wallis 
test was applied for normalizing multiple groups. If not specified 
above, P < 0.05 was considered with statistical significance.

3  | RESULTS

3.1 | Identification of differential metabolic 
gene sets between HCC samples with and without 
CTNNB1 mutations

Although CTNNB1 mutant HCC has been reported to have unique 
metabolic characteristics, the associated metabolic genes are 

still unknown.3 GSEA showed that the gene sets significantly 
up-regulated in CTNNB1 mutant HCCs were all associated with 
metabolic pathways (NOM P < 0.05) (Figure 1). These included ‘me-
tabolism of xenobiotics by cytochrome P450’ (NES = 1.914, NOM 
P = 0.002), ‘drug metabolism—cytochrome P450’ (NES = 1.813, 
NOM P = 0.006), ‘peroxisome’ (NES = 1.767, NOM P = 0.02), ‘ty-
rosine metabolism’ (NES = 1.758, NOM P = 0.01), ‘porphyrin and 
chlorophyll metabolism’ (NES = 1.745, NOM P = 0.002), ‘steroid 
hormone biosynthesis’ (NES = 1.725, NOM P = 0.015), ‘primary bile 
acid biosynthesis’ (NES = 1.710, NOM P = 0.01), ‘aminoacyl-tRNA 
biosynthesis’ (NES = 1.707, NOM P = 0.02), ‘fatty acid metabo-
lism’ (NES = 1.707, NOM P = 0.04), ‘ascorbate and aldarate me-
tabolism’ (NES = 1.700, NOM P = 0.01), ‘phenylalanine metabolism’ 
(NES = 1.62, NOM P = 0.02) and ‘arginine and proline metabolism’ 
(NES = 162, NOM P = 0.04) (Table 1). In contrast, no gene sets 
related to metabolic pathways were significantly enriched in wild-
type CTNNB1 HCC.

3.2 | Construction of prognostic model in the 
TCGA cohort

Although CTNNB1 has been confirmed to be one of the genes with the 
highest mutation frequency in HCC,1-4,7,18 whether the significantly 
enriched metabolic gene set in CTNNB1 mutant HCC affects the prog-
nosis of HCC is still unclear. Through univariate Cox regression analy-
sis and K-M survival analysis, we identified 14 genes most associated 
with overall survival of HCC (Table 2). We used the Lasso regression 
and multi–Cox regression to further narrow down the range of model 
genes to optimize the model. Finally, a risk score consisting of five met-
abolic genes was constructed: risk score (RS) = normalized expression 
level of CYP3A5 * −0.00248 + normalized expression level of ALAS1 * 

F I G U R E  5   Correlation analysis between risk score and clinicopathological characteristics (A) AFP. B, AJCC stage. C, CLIP stage. D, Main 
tumour size. E, Histopathological grade. F, BCLC stage. G, Vascular tumour cell type
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−0.00445 + normalized expression level of PRDX1 * 0.003267 + nor-
malized expression level of GOT2 * −0.00887 + normalized expression 
level of AMD1 * 0.078805. The median risk score of the TCGA cohort 
was used as the unified cut-off for dividing the group with a high risk 
(RS > 1) and the group with a low risk (RS < 1). The group with a high 
risk presented an obviously lower OS relative to the group with a low 

risk (Figure 2A), and the area under the ROC curve of the prognosis 
model at 0.5, 1, 3 and 5 years was 0.834, 0.779, 0.724 and 0.731, re-
spectively (Figure 2B). The expression levels of ALAS1, CYP3A5 and 
GOT2 were higher in the low-risk group, whereas the expression levels 
of AMD1 and PRDX1 were higher in the high-risk group (Figure 2C). 
The risk of death in HCC patients increased with the increase in risk 

Clinical features

Risk score

χ2 P-valueLow risk n (%) High risk n (%)

AFP

>300 ng/mL 28 (20.00%) 34 (28.57%) 2.596 0.1072

≤300 ng/mL 112 (80.00%) 85 (71.43%)

Age

>65 64 (37.21%) 63 (36.84%) 0.004959 0.9439

≤65 108 (62.79%) 108 (63.16%)

Gender

Female 51 (29.65%) 59 (34.50%) 0.9266 0.3358

Male 121 (70.35%) 112 (65.50%)

BMI

>25 82 (51.25%) 71 (45.51%) 1.041 0.3076

≤25 78 (48.75%) 85 (54.49%)

Histological grade

G1-2 121 (72.02%) 93 (54.71%) 10.91 0.001

G3-4 47 (27.98%) 77 (45.29%)

New tumour event after initiate treatment

Yes 75 (45.45%) 93 (56.36%) 3.929 0.0475

No 90 (54.55%) 72 (43.64%)

Prior malignancy

Yes 18 (10.47%) 13 (7.60%) 0.8548 0.3552

No 154 (89.53%) 158 (92.40%)

Race

White 80 (50.63%) 89 (55.97%) 0.9086 0.3405

Asian 78 (49.37%) 70 (44.03%)

Family cancer history

Yes 44 (38.60%) 29 (35.37%) 0.213 0.6444

No 70 (61.40%) 53 (64.63%)

AJCC TNM stage

I-II 132 (83.02%) 106 (65.43%) 12.95 0.0003

III-IV 27 (16.98%) 56 (34.57%)

Cancer status

With tumour 64 (38.10%) 85 (53.13%) 7.467 0.0063

Tumour free 104 (61.90%) 75 (46.88%)

Vascular invasion

None 105 (68.63%) 83 (61.03%) 1.828 0.1763

Yes 48 (31.37%) 53 (38.97%)

Survival status

Alive 90 (70.31%) 134 (62.33%) 2.259 0.1328

Dead 38 (29.69%) 81 (37.67%)

TA B L E  3   The chi-square test of the 
relation between risk score and clinical 
features in TCGA cohort
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score (Figure 2D-E). As found by the univariate and multivariate Cox 
regression analyses, the risk score could independently predict the 
prognosis (Figure 2F-G).

3.3 | Internal validation of the prognostic model in 
TCGA cohort

Patients fell into 12 subgroups for survival analysis according to their 
clinical characteristics such as AFP levels, vascular invasion, histo-
logical grade, AJCC TNM stage, new tumour after initial treatment 
and individual tumour status. In each subgroup, the OS rate of the 
group with a high risk appeared lower relative to the group with a 
low risk (Figure 3A-F). Also, the prognostic model accurately evalu-
ated the prognosis of 134 patients with recurrence (including 65 
cases of intrahepatic recurrence, 46 cases of local recurrence and 23 
cases of extrahepatic recurrence). The area under the ROC curve at 
0.5, 1, 3 and 5 years was 0.824, 0.692, 0.746 and 0.780, respectively 
(Figure 3H).

3.4 | External validation of the prognostic model in 
three different independent cohort

For verifying whether the prognostic model is robust, we used 
three independent cohorts (ICGC (n = 230), GSE14520 (n = 239) 
and GSE11 6174 (n = 64)) for external validation. Using the same 
formula and cut-off obtained from the TCGA-HCC cohort, patients 
were assigned to the group with a high risk and group with a low 
risk. Consistent with the results of TCGA, the group with a high risk 
showed significantly poorer OS relative to the group with a low risk 
(Figure 4A-C). In the ICGC cohort, the areas under the ROC curve 
at 0.5, 1, 3 and 5 years were 0.705, 0.759, 0.718 and 0.750, respec-
tively (Figure 4D). In the GSE14520 cohort, the area under the ROC 
curve at 0.5, 1, 3 and 5 years was 0.762, 0.712, 0.687 and 0.663, 
respectively (Figure 4E). In the GSE11 6174 cohort, the areas under 
the ROC curve at 0.5, 1, 3 and 5 years were 0.722, 0.662, 0.601 and 
0.647, respectively (Figure 4F). As demonstrated in the univariate 
and multivariate Cox regression analysis, the risk score could inde-
pendently predict the prognosis in each cohort (Figure 4G-I). These 
results indicate that the prognostic model we constructed was capa-
ble of general application.

3.5 | Relationship between risk score and 
clinicopathological characteristics

Previous studies have shown that AFP levels, histological grade, 
clinical stage (TNM, BCLC and CLIP), tumour diameter and vascular 
invasion are correlated with the prognosis of HCC.19-22 The present 
study analysed the correlation between risk score and the prognos-
tic factors by making use of the clinical data of the four independent 
cohorts. Results showed that higher-risk scores were significantly 

associated with higher AFP levels, higher histological grade, larger 
tumour diameter, vascular invasion and advanced clinical staging 
(TNM, BCLC and CLIP) (Figure 5). We also performed the chi-square 
tests on different risk groups for correlation analysis of clinical fea-
tures. The results showed that the two groups were remarkably 
different regarding the clinical stage, histological grade, number of 
tumours, AFP levels and survival status (Tables 3-6).

3.6 | Gene Ontology functional enrichment analysis

We used Gene Ontology (GO) functional enrichment analysis to an-
notate the function of DEGs (Figure 6A) in the group with a high risk 
and the group with a low risk. As found, the genes significantly up-
regulated in the group with a high risk were associated with a variety 
of immune regulatory processes including regulation of lymphocyte 
activation, regulation of immune effector processes and humoral im-
mune response (Figure 6B). The estimation of immune cell infiltra-
tion used by TIMER method showed that the infiltration level of six 
types of immune cells in high-risk group was all higher than that in 
low-risk group (Figure 6C), indicating that the prognostic signature 
may affect the prognosis of HCC patients through regulating im-
mune microenvironment of tumour.

TA B L E  4   The chi-square test of the relation between risk score 
and clinical features in ICGC cohort

Clinical feature

Risk score

χ2
P-
value

High risk 
n (%)

Low risk 
n (%)

Survival status

Alive 91 (48.15%) 98 
(51.85%)

6.886 0.009

Dead 29 (70.73%) 12 
(29.27%)

Gender

Male 85 (50.30%) 84 
(49.70%)

0.901 0.343

Female 35 (57.38%) 26 
(42.62%)

Age

>65 75 (53.19%) 66 
(46.81%)

0.151 0.698

≤65 45 (50.56%) 44 
(49.43%)

Prior malignancy

Yes 18 (60%) 12 (40%) 0.847 0.357

No 102 (51%) 98 (49%)

Stage

I-II 66 (46.48%) 76 
(53.52%)

4.824 0.028

III-IV 54 (61.36%) 34 
(38.64%)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
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3.7 | Relationship between risk score and immune 
cell infiltration

We further analysed the correlation between the prognos-
tic model and immune cells’ infiltration, and found that the risk 
score exhibited a positive relation to the infiltration of six types 
of immune cells: CD4 T cells (r = 0.175, P = 0.001), CD8 T cells 
(r = 0.295, P < 0.001), B cells (r = 0.256, P < 0.001), macrophages 
(r = 0.472, P < 0.001), dendritic cells (r = 0.412, P < 0.001) and 
neutrophils (r = 0.448, P < 0.001) (Figure 7A). CTNNB1-mutated 
HCC is characterized by immune rejection,23 and a recent clinical 
study showed that this subgroup is not sensitive to the treatment 

of immune-checkpoint inhibitors.8 Our study found that the risk 
score positively corrected with the expression levels of six major 
immune checkpoints (PDL1, LAG3, CTLA4, CD276, PDCD1 and 
TIGIT) (Figure 7B), which were consistent with the risk score of 
the CTNNB1-mutated subgroup, which was lower than that of the 
non-mutated subgroup (Figure 7C).

3.8 | Relationship between risk score and tumour 
immune microenvironment

We used ssGSEA to further explore the internal relationship between 
prognostic model and tumour immune microenvironment (TIME). In 

Clinical feature

Risk score

χ2 P-valueHigh risk n (%) Low risk n (%)

Survival status

Alive 54 (46.24%) 78 (53.76%) 8.5 0.004

Dead 52 (49.59%) 33 (50.41%)

Gender

Male 91 (50.30%) 98 (49.70%) 0.287 0.592

Female 15 (57.38%) 13 (42.62%)

Age

>65 4 (53.19%) 15 (46.81%) 7.715 0.005

≤65 102 (50.56%) 96 (49.43%)

ALT

>50 U/L 50 (56.18%) 39 (53.82%) 3.471 0.062

≤50 U/L 55 (43.31%) 72 (56.69%)

AFP

>300 ng/mL 65 (67.01%) 32 (32.99%) 23.157 <0.001

≤300 ng/mL 41 (34.17%) 79 (65.83%)

Stage_TNM

I-II 72 (46.48%) 96 (53.52%) 10.686 0.001

III-IV 34 (61.36%) 15 (38.64%)

Main tumour size

>5 cm 44 (57.14%) 33 (42.86%) 3.487 0.062

≤5 cm 61 (43.88%) 78 (56.12%)

Multitumour

Solitary 75 (44.38%) 94 (55.62%) 5.569 0.018

Multiple 30 (63.83%) 17 (36.17%)

Cirrhosis

Yes 100 (50.25%) 99 (49.75%) 2.723 0.099

No 5 (29.41%) 12 (70.59%)

Stage_BCLC

0-A 70 (42.68%) 94 (57.32%) 9.584 0.002

B-C 35 (67.31%) 17 (32.69%)

CLIP_Score

≥2 35 (72.92%) 13 (27.08%) 14.595 <0.01

<2 70 (41.67%) 98 (58.33%)

TA B L E  5   The chi-square test of the 
relation between risk score and clinical 
features in GSE14520 cohort

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
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terms of immune cell infiltration, the abundance of Tregs, aDCs, Th2 
cells and macrophages of the high-risk group was significantly higher 
than those of the low-risk group in the four independent cohorts (Figure 
S1A-D). In terms of immune function, the results revealed that the type 
II IFN response in the low-risk group was significantly stronger than 
that in the low-risk group (Figure S1A-D). In addition, the expression of 
immune checkpoint-related gene set was up-regulated in the high-risk 
group, which was consistent with the previous results (Figure S1A-B).

4  | DISCUSSION

In the past few decades, considerable progress has been made in un-
derstanding the risk factors and molecular characteristics of HCC.24-

26 However, morbidity and cancer-specific mortality continue to 
increase in many countries.26,27 The existing prognostic staging 
system still has many limitations in guiding accurate treatment and 
predicting more accurate clinical outcome.28,29 We need to further 
improve the existing prognostic staging system using gene sequenc-
ing technology, so that patients can benefit from the accurate treat-
ment.8 There is increasing evidence that metabolic reprogramming 
can remarkably affect HCC development and may be related to ad-
vanced diseases and adverse clinical outcome30,31; hence, it seems 

that targeting tumour metabolism can promisingly assist in effec-
tively treating HCC.

A recent report found that proteins involved in different 
metabolic activities such as drug metabolism, gluconeogenesis, 
glycolysis and amino acid metabolism are enriched in CTNNB1 
mutant HCC.11 NRF2 mutation is an early event in the carcino-
genesis of HCC and is considered to be an important factor in 
promoting the progression of precancerous hepatocytes to 
HCC.32 Existing studies have found that the abnormal transduc-
tion of NRF2 signal pathway is associated with simvastatin.33,34 
In contrast, CTNNB1 mutation usually occurs in the later stage 
of HCC progression, and the relevant research on its specific 
mechanism is still lacking. Considering this, we conducted GSEA 
of mRNA expression profiles in the TCGA database. According 
to whether CTNNB1 was mutated, 374 tumour tissues were di-
vided into two groups, among which 98 were mutated and 276 
were not mutated. Interestingly, the significantly enriched genes 
in the mutant group were associated with 12 metabolic path-
ways. We used univariate Cox regression, K-M survival analysis, 
Lasso regression and multi–Cox regression to analyse metabolic 
genes step by step, and ultimately constructed a five-metabolic 
gene (including AMD1, PRDX1, ALAS1, CYP3A5 and GOT2) risk 
score model. The unified risk score formula and the threshold 
value of risk classification were taken into account for dividing 
all included patients in group with a high risk and in group with a 
low risk. We first conducted internal validation of the prognostic 
model based on the clinical characteristics of the TCGA cohort 
such as the presence of a new tumour after initial treatment, in-
dividual tumour status, AJCC stage, histological grade, vascular 
invasion and AFP levels. The patients were then divided into 12 
subgroups. Based on the K-M survival curve, in each subgroup, 
the group with a high risk exhibited an obviously lower OS rel-
ative to the group with a low risk. Subsequently, we conducted 
external verification of the prognostic model by using three inde-
pendent queues, namely ICGC (n = 230), GSE14520 (n = 239) and 
GSE11 6174 (n = 64). Consistent with the TCGA results, the group 
with a high risk showed an obviously worse prognosis relative to 
the group with a low risk. As demonstrated by the univariate and 
multivariate Cox regression analysis, this prognostic model could 
independently predict the prognosis of HCC. These results sup-
port that our prognostic model has a strong general applicabil-
ity. GO enrichment analysis showed that genes with up-regulated 
expression in the group with a high risk showed a close relation 
to the immune regulation. The correlation between tumours with 
infiltrating macrophages and risk score was the most prominent. It 
is well known that macrophages are the most abundant in tumour 
tissues and significantly regulate tumours, which is be capable of 
promoting tumour cells in terms of the proliferation, invasion and 
metastasis as well as inducing immune tolerance in these cells.35-

37 As expected, the risk score presented a positive relation to 
the expression levels of six commonly used immune checkpoints 
(PDL1, LAG3, CTLA4, CD276, PDCD1 and TIGIT). We conclude 
that the immunosuppressive tumour microenvironment may be 

TA B L E  6   The chi-square test of the relation between risk score 
and clinical features in GSE11 6174 cohort

Clinical feature

Risk score

χ2
P-
value

High risk 
n (%)

Low risk n 
(%)

Survival status

Alive 14 (37.84%) 23 (62.16%) 5.189 0.023

Dead 18 (66.67%) 9 (33.33%)

Gender

Male 3 (50%) 3 (50%) 0.184 0.668

Female 29 (50%) 29 (50%)

Age

>65 3 (33.33%) 6 (66.67%) 2.283 0.131

≤65 29 (52.73%) 26 (47.27%)

HBV

+ 21 (44.68%) 26 (55.32%) 2.003 0.157

− 11 (64.71%) 6 (35.29%)

Clinical stage

I-II 24 (45.28%) 29 (54.72%) 3.952 0.047

III 8 (72.73%) 3 (27.27%)

Alcohol

Yes 4 (30.77%) 9 (69.23%) 3.475 0.062

No 28 (54.90%) 23 (45.10%)

Invasion

Yes 14 (48.28%) 15 (51.72%) 0.063 0.802

No 18 (51.43%) 17 (48.57%)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174
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a major factor contributing to poor prognosis in the group with 
a high risk. It is noteworthy that the risk score is most strongly 
associated with the emerging immune checkpoint CD276 (B7-H3), 
which has recently been reported to be highly overexpressed in 
a variety of human solid cancers and is often associated with ad-
verse clinical outcome in patients, making it a potential target for 
tumour immunotherapy.38,39 Besides, high-risk score could reflect 
adverse survival outcome-related clinical characteristics, such as 
AFP levels (>300 ng/mL), tumour vascular invasion, low tumour 
differentiation, advanced AJCC stage, advanced BCLC stage, ad-
vanced CLIP stage, new tumour after initial treatment, main tu-
mour size > 5 cm and multiple tumours, which may also help to 
explain the reason for the poor prognosis of high-risk patients.

Adenosylmethionine decarboxylase 1 (AMD1) acts as an essen-
tial enzyme that affects the biosynthesis of polyamines including 

spermine. Zabala-Letona found that the up-regulation of AMD1 
could activate the PTEN-PI3K-mTORC1 pathway to maintain the 
growth and proliferation of prostate cancer cells.40 Furthermore, 
Xu reported that AMD1 has tumorigenic effects on the prognosis of 
human gastric cancer, but the potential function of AMD1 in HCC is 
still unclear.41 Peroxiredoxin 1 (PRDX1) acts as a peroxidase family 
member of the antioxidant enzymes. Fang Y and Sun et al found that 
high expression of PRDX1 in HCC tissues corresponds to adverse 
clinical outcome, and the mechanism may be related to promoting 
tumour angiogenesis and regulating cell migration and invasion.42,43 
5′-Aminolevulinate synthase 1 (ALAS1) plays the role of an rate-lim-
iting enzyme during haem biosynthesis. As demonstrated by studies 
performed recently, ALAS1 can affect many cellular functions and 
has important effects on non–small cell lung cancer, colorectal can-
cer and oral cancer.44,45 However, the role of ALAS1 in HCC remains 

F I G U R E  6   Identification of differentially expressed genes in high-risk and low-risk HCC patients. A, Heat map of differentially expressed 
genes samples between high-risk and low-risk groups. B, GO circle plot of immune pathways differentially enriched in patients with different 
risk scores. C, Violin plot of relationships between the risk score and infiltration abundances of six types of immune cells (red represents 
high-risk group, and blue represents low-risk group)



     |  1163HUO et al.

not well known. CYP3A5 is a cytochrome P450 protein that plays a 
role in the metabolism of many carcinogens and anticancer drugs in 
the liver. Jiang et al found that CYP3A5 plays an antitumour role in 
HCC by regulating the mTORC2/Akt signalling pathway.46 Glutamate 
oxaloacetate transaminase 2 (GOT2) has been repeatedly reported 
in recent years to be associated with the progression of pancreatic 
cancer,47,48 but its role in HCC remains unclear.

Although the above studies support that our prognostic model 
has a high potential for clinical application, the study faces some lim-
itations. Although the accumulated data of high-throughput analysis 

from a large number of samples have been optimally applied, further 
verification through prospective studies is necessary. Furthermore, 
the specific biological functions of the five genes in HCC need to be 
explored experimentally.

5  | CONCLUSIONS

We constructed a novel prognostic model that is useful for further 
improving the prognostic evaluation system of patients with HCC, 

F I G U R E  7   The landscape of immune infiltration in high- and low-risk HCC patients. A, Correlation analysis of risk score and immune cell 
infiltration. B, The relationship between risk score and expression level of immune checkpoint. C, The relationship between risk score and 
CTNNB1 status (P-value significant codes: 0 ≤ *** < 0.001 ≤ ** < 0.01 ≤ * < 0.05 ≤ . < 0.1)
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and the five metabolic genes in this model are expected to become 
potential targets for the treatment of HCC.

CONFLIC T OF INTERE S T
The authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTION
Junyu Huo: Conceptualization (equal); Data curation (equal); Formal 
analysis (lead); Investigation (lead); Methodology (lead); Resources 
(lead); Software (lead); Supervision (equal); Validation (equal); 
Visualization (lead); Writing-original draft (lead); Writing-review 
& editing (equal). Liqun Wu: Conceptualization (equal); Project 
administration (equal); Supervision (equal); Validation (equal); 
Writing-review & editing (equal). Yunjin Zang: Conceptualization 
(supporting); Data curation (supporting); Project administration 
(supporting); Writing-review & editing (supporting).

DATA AVAIL ABILIT Y S TATEMENT
The data sets analysed for this study were obtained from The 
Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/), the 
International Cancer Genome Consortium (ICGC) (https://icgc.org/), 
the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) and UCSC Xena website (https://xenab rowser.net/).

ORCID
Junyu Huo  https://orcid.org/0000-0002-1345-1893 

R E FE R E N C E S
 1. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic land-

scape and biomarkers of hepatocellular carcinoma. Gastroenterology. 
2015;149(5):1226-1239.e4.

 2. Nakagawa H, Fujita M, Fujimoto A. Genome sequencing anal-
ysis of liver cancer for precision medicine. Semin Cancer Biol. 
2019;55:120-127.

 3. Senni N, Savall M, Cabrerizo Granados D, et al. beta-catenin-acti-
vated hepatocellular carcinomas are addicted to fatty acids. Gut. 
2019;68(2):322-334.

 4. Cleary SP, Jeck WR, Zhao X, et al. Identification of driver genes 
in hepatocellular carcinoma by exome sequencing. Hepatology 
(Baltimore, MD). 2013;58(5):1693-1702.

 5. Hlady RA, Sathyanarayan A, Thompson JJ, et al. Integrating 
the epigenome to identify drivers of hepatocellular carcinoma. 
Hepatology (Baltimore, MD). 2019;69(2):639-652.

 6. Bayo J, Fiore EJ, Dominguez LM, et al. A comprehensive study of 
epigenetic alterations in hepatocellular carcinoma identifies poten-
tial therapeutic targets. J Hepatol. 2019;71(1):78-90.

 7. Nakagawa H, Shibata T. Comprehensive genome sequencing of the 
liver cancer genome. Cancer Lett. 2013;340(2):234-240.

 8. Rebouissou S, Nault JC. Advances in molecular classification 
and precision oncology in hepatocellular carcinoma. J Hepatol. 
2020;72(2):215-229.

 9. Rebouissou S, Franconi A, Calderaro J, et al. Genotype-phenotype 
correlation of CTNNB1 mutations reveals different ss-catenin activ-
ity associated with liver tumor progression. Hepatology (Baltimore, 
MD). 2016;64(6):2047-2061.

 10. Calderaro J, Couchy G, Imbeaud S, et al. Histological subtypes of 
hepatocellular carcinoma are related to gene mutations and molec-
ular tumour classification. J Hepatol. 2017;67(4):727-738.

 11. Gao Q, Zhu H, Dong L, et al. Integrated proteogenomic char-
acterization of HBV-related hepatocellular carcinoma. Cell. 
2019;179(2):561-577.e22.

 12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next genera-
tion. Cell. 2011;144(5):646-674.

 13. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark 
even warburg did not anticipate. Cancer Cell. 2012;21(3):297-308.

 14. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How 
the Warburg effect supports aggressiveness and drug resistance of 
cancer cells? Drug Resist Updat. 2018;38:1-11.

 15. Long J, Wang A, Bai Y, et al. Development and validation of a TP53-
associated immune prognostic model for hepatocellular carcinoma. 
EBioMedicine. 2019;42:363-374.

 16. Li G, Xu W, Zhang L, et al. Development and validation of a 
CIMP-associated prognostic model for hepatocellular carcinoma. 
EBioMedicine. 2019;47:128-141.

 17. Liu F, Liao Z, Song J, et al. Genome-wide screening diagnostic bio-
markers and the construction of prognostic model of hepatocellular 
carcinoma. J Cell Biochem. 2020;121(3):2582-2594.

 18. Harding JJ, Nandakumar S, Armenia J, et al. Prospective genotyp-
ing of hepatocellular carcinoma: clinical implications of next-gen-
eration sequencing for matching patients to targeted and immune 
therapies. Clin Cancer Res. 2019;25(7):2116-2126.

 19. Hanazaki K, Kajikawa S, Koide N, Adachi W, Amano J. Prognostic 
factors after hepatic resection for hepatocellular carcinoma with 
hepatitis C viral infection: univariate and multivariate analysis. Am J 
Gastroenterol. 2001;96(4):1243-1250.

 20. Cillo U, Vitale A, Grigoletto F, et al. Prospective validation of 
the Barcelona Clinic Liver Cancer staging system. J Hepatol. 
2006;44(4):723-731.

 21. Llovet JM, Bruix JJH. Prospective validation of the Cancer of the 
Liver Italian Program (CLIP) score: a new prognostic system for 
patients with cirrhosis and hepatocellular carcinoma. Hepatology. 
2000;32(3):679-680.

 22. Leung TW, Tang AM, Zee B, et al. Construction of the Chinese 
University Prognostic Index for hepatocellular carcinoma and com-
parison with the TNM staging system, the Okuda staging system, 
and the Cancer of the Liver Italian Program staging system: a study 
based on 926 patients. Cancer. 2002;94(6):1760-1769.

 23. Kurebayashi Y, Ojima H, Tsujikawa H, et al. Landscape of immune 
microenvironment in hepatocellular carcinoma and its additional 
impact on histological and molecular classification. Hepatology 
(Baltimore, MD). 2018;68(3):1025-1041.

 24. Zheng R, Qu C, Zhang S, et al. Liver cancer incidence and mortality 
in China: temporal trends and projections to 2030. Chin J Cancer 
Res. 2018;30(6):571-579.

 25. Bruix J, da Fonseca LG, Reig M. Insights into the success and fail-
ure of systemic therapy for hepatocellular carcinoma. Nat Rev 
Gastroenterol Hepatol. 2019;16(10):617-630.

 26. Park JW, Chen M, Colombo M, et al. Global patterns of hepatocel-
lular carcinoma management from diagnosis to death: the BRIDGE 
Study. Liver Int. 2015;35(9):2155-2166.

 27. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts 
LR. A global view of hepatocellular carcinoma: trends, risk, 
prevention and management. Nat Rev Gastroenterol Hepatol. 
2019;16(10):589-604.

 28. Hoshida Y, Moeini A, Alsinet C, Kojima K, Villanueva A. Gene signa-
tures in the management of hepatocellular carcinoma. Semin Oncol. 
2012;39(4):473-485.

 29. Huitzil-Melendez FD, Capanu M, O'Reilly EM, et al. Advanced he-
patocellular carcinoma: which staging systems best predict progno-
sis? J Clin Oncol. 2010;28(17):2889-2895.

 30. Lee NCW, Carella MA, Papa S, Bubici C. High expression of glyco-
lytic genes in cirrhosis correlates with the risk of developing liver 
cancer. Front Cell Dev Biol. 2018;6:138.

https://portal.gdc.cancer.gov/
https://icgc.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/
https://orcid.org/0000-0002-1345-1893
https://orcid.org/0000-0002-1345-1893


     |  1165HUO et al.

 31. Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. 
Metabolic rearrangements in primary liver cancers: cause and con-
sequences. Nat Rev Gastroenterol Hepatol. 2019;16(12):748-766.

 32. Zavattari P, Perra A, Menegon S, et al. Nrf2, but not β-catenin, 
mutation represents an early event in rat hepatocarcinogenesis. 
Hepatology. 2015;62(3):851-862.

 33. Jang HJ, Hong EM, Kim M, et al. Simvastatin induces heme oxygen-
ase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and 
PI3K/Akt pathway in colon cancer. Oncotarget. 2016;7(29):46219.

 34. Habeos IG, Ziros PG, Chartoumpekis D, Psyrogiannis A, 
Kyriazopoulou V, Papavassiliou AG. Simvastatin activates Keap1/
Nrf2 signaling in rat liver. J Mol Med. 2008;86(11):1279.

 35. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-
associated macrophages as treatment targets in oncology. Nat Rev 
Clin Oncol. 2017;14(7):399-416.

 36. Degroote H, Van Dierendonck A, Geerts A, Van Vlierberghe H, 
Devisscher L. Preclinical and clinical therapeutic strategies affect-
ing tumor-associated macrophages in hepatocellular carcinoma. J 
Immunol Res. 2018;2018:7819520.

 37. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in 
the tumor microenvironment. Nat Immunol. 2013;14(10):1014-1022.

 38. Picarda E, Ohaegbulam KC, Zang X. Molecular pathways: targeting 
B7–H3 (CD276) for human cancer immunotherapy. Clin Cancer Res. 
2016;22(14):3425-3431.

 39. Brown ZJ, Greten TF, Heinrich B. Adjuvant treatment of hepatocel-
lular carcinoma: prospect of immunotherapy. Hepatology (Baltimore, 
MD). 2019;70(4):1437-1442.

 40. Zabala-Letona A, Arruabarrena-Aristorena A, Martin-Martin N, 
et al. mTORC1-dependent AMD1 regulation sustains polyamine 
metabolism in prostate cancer. Nature. 2017;547(7661):109-113.

 41. Xu L, You X, Cao Q, et al. Polyamine synthesis enzyme AMD1 is 
closely associated with tumorigenesis and prognosis of human gas-
tric cancers. Carcinogenesis. 2019;41(2):214-222.

 42. Fang Y, He J, Janssen H, Wu J, Dong L, Shen XZ. Peroxiredoxin 1, 
restraining cell migration and invasion, is involved in hepatocellular 
carcinoma recurrence. J Dig Dis. 2018;19(3):155.

 43. Sun Q-K, Zhu J-Y, Wang W, et al. Diagnostic and prognostic signifi-
cance of peroxiredoxin 1 expression in human hepatocellular carci-
noma. Med Oncol. 2014;31(1):786.

 44. Zhao Y, Zhang X, Liu Y, et al. Inhibition of ALAS1 activity exerts an-
ti-tumour effects on colorectal cancer in vitro. Saudi J Gastroenterol. 
2020;26(3):144-152.

 45. Sarkar R, Kishida S, Kishida M, et al. Effect of cigarette smoke ex-
tract on mitochondrial heme-metabolism: an in vitro model of oral 
cancer progression. Toxicol In Vitro. 2019;60:336-346.

 46. Jiang F, Chen L, Yang Y-C, et al. CYP3A5 functions as a tumor sup-
pressor in hepatocellular carcinoma by regulating mTORC2/Akt sig-
naling. Cancer Res. 2015;75(7):1470-1481.

 47. Yang H, Zhou L, Shi Q, et al. SIRT3-dependent GOT2 acetylation 
status affects the malate-aspartate NADH shuttle activity and pan-
creatic tumor growth. EMBO J. 2015;34(8):1110-1125.

 48. Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic 
cancer growth through a KRAS-regulated metabolic pathway. 
Nature. 2013;496(7443):101-105.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Huo J, Wu L, Zang Y. Development 
and validation of a CTNNB1-associated metabolic prognostic 
model for hepatocellular carcinoma. J Cell Mol Med. 
2021;25:1151–1165. https://doi.org/10.1111/jcmm.16181

https://doi.org/10.1111/jcmm.16181

