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ABSTRACT

MEME and many other popular motif finders use
the expectation–maximization (EM) algorithm to
optimize their parameters. Unfortunately, the
running time of EM is linear in the length of the
input sequences. This can prohibit its application
to data sets of the size commonly generated by
high-throughput biological techniques. A suffix
tree is a data structure that can efficiently index a
set of sequences. We describe an algorithm, Suffix
Tree EM for Motif Elicitation (STEME), that approxi-
mates EM using suffix trees. To the best of our
knowledge, this is the first application of suffix
trees to EM. We provide an analysis of the
expected running time of the algorithm and demon-
strate that STEME runs an order of magnitude more
quickly than the implementation of EM used by
MEME. We give theoretical bounds for the quality
of the approximation and show that, in practice,
the approximation has a negligible effect on the
outcome. We provide an open source implementa-
tion of the algorithm that we hope will be used to
speed up existing and future motif search
algorithms.

INTRODUCTION

Reverse-engineering transcriptional regulatory networks is
a major challenge for today’s molecular cell biology.
High-throughput methodologies such as ChIP-seq (1),
ChIP-chip (2) and DamID (3) are generating ever larger
data sets on the binding locations of transcription factors
(TFs). However, the resolution of these techniques is still
an order of magnitude or two larger than a typical tran-
scription factor binding site (TFBS) (4). There remains a
need to determine the binding sequence preferences of TFs
and hence the exact locations of TFBSs from these data
sets. For example, knowledge of these sequence

preferences can be used to computationally predict
binding sites in different cell types or in different organ-
isms. In addition, understanding the exact locations of
TFBSs for cooperating TFs can help us understand com-
binatorial transcriptional regulation (5). This task of
inferring the sequence preferences of a TF is termed
‘motif finding’.
A typical high-throughput experiment might generate a

data set of thousands of sequence fragments. Each
fragment could be hundreds of base pairs long. The
sequence preferences of a TF are relatively short, typically
8–12 bp. Mismatches to the preferred bases are common in
TFBSs. Determining these sequence preferences from the
few binding sites in the fragments is a difficult problem.
However, much effort has been dedicated to this motif
finding problem and many algorithms and softwares
exist for this purpose. The area has been reviewed
several times (6–9).
Most motif finders can be broadly categorized as either

combinatorial or probabilistic. Combinatorial motif
finders search for consensus sequences. TFBSs are pre-
dicted on the basis of the number of mismatches with
these consensus sequences. Probabilistic motif finders
infer position weight matrices (PWMs) that specify a dis-
tribution of bases for each position in a TFBS. PWMs are
more flexible models of TFBSs than consensus sequences
and are typically preferred. Most of the probabilistic motif
finders use either the expectation–maximization (EM) al-
gorithm (10) or a Gibbs sampling algorithm (11) for in-
ference. Examples of motif finders that use the EM
algorithm include Refs (12–20).
The volume of available TF binding location data is

rapidly increasing. Both the number and the size of data
sets generated by techniques such as ChIP-chip, ChIP-seq
and DamID continues to grow. Unfortunately, the
runtime of most motif finders is at least linear in the size
of the data. In our experience, most motif finders are far
too slow for such large data sets of sequences. While it
may be possible to let the motif finder run for several days,
invariably the user would like to fine-tune parameters.
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This may involve several runs which makes motif finding
impractical.
MEME (13) is one of the most popular motif finders. It

has a long pedigree: the original version was published in
1994. MEME was one of the best performing motif finders
in a comparative benchmark review (21). MEME has a
large user-base that understand its parameters and trust its
results: the primary paper describing its algorithm is cited
more than 300 times on PubMed. Unfortunately, MEME
takes a prohibitively long time to run on large data sets.
The MEME authors acknowledge this and recommend
discarding data from large data sets in order to make
runtimes practical. They suggest a limit of 200 000 bp on
the size of input data set. In our experience, the users of
MEME are not always aware of this advice and can be
frustrated when using MEME on large data sets. In any
event, discarding data is a far from ideal work around as it
necessarily detracts from the power of the method. Hence
there is a need to make MEME and other motif finders
more efficient. This article focuses on speeding up the EM
algorithm that is a core component of MEME and many
other motif finders.
Various attempts have been made to speed up MEME

in recognition of its poor performance on large data sets.
The authors of MEME have implemented a parallel
version of MEME, ParaMEME (22). Other approaches
use specialized hardware such as parallel pattern
matching chips on PCI cards (23) or off-loading the com-
putations onto powerful GPUs (24). All these techniques
require hardware that is not commonly available to the
typical researcher.
In this article, we propose an alternative route to accel-

erate MEME by using suffix trees. A suffix tree (25) is a
data structure that represents a sequence or set of se-
quences. Suffix trees are well suited to algorithms that
require efficient access to subsequences by content rather
than by position. They have been used in several areas of
bioinformatics: sequence alignment (26), indexing
genome-scale sequences (27) and short read mapping
(28). They have also been used for combinatorial motif
finding (29–31) and scanning for PWMs (32). To the
best of our knowledge, the work presented here is the
first application of suffix trees to probabilistic motif
finding and the EM algorithm in particular.
In the ‘Materials and Methods’ section, we describe

MEME’s probabilistic model and how MEME uses the
EM algorithm to optimize its parameters. We describe
an approximation to EM and show how suffix trees can
be used to implement this approximation (the STEME
algorithm). We analyse the expected efficiency gains we
expect to achieve with this approximation. We describe
our open source implementation of the STEME algo-
rithm. In the ‘Results’ section, we describe the tests we
undertook to establish the accuracy and efficiency of
STEME in practice. We examine the effect of varying
the motif width and the main parameter in our algorithm
on the accuracy and efficiency. In the ‘Discussion’ section,
we look at the implications of the results and suggest how
our algorithm can be best used. We conclude with an
outlook for future work.

MATERIALS AND METHODS

MEME

MEME uses the EM algorithm to improve a model of
the motif iteratively. In each iteration, the locations of
the binding sites are estimated using the current
model of the motif and the motif is updated using
the predicted sites weighted by their likelihoods. The
EM algorithm is guaranteed to converge to a local
maximum of the likelihood function but is very sensitive
to initial conditions. To mitigate this sensitivity, MEME
runs the EM algorithm many times from different starting
points.

MEME’s model. For a particular motif width,W, MEME
treats every subsequence of length W (henceforth W-mer)
in the data independently. Given a motif width, W,
MEME models each W-mer in the sequences as an inde-
pendent draw from a two-component mixture. One
mixture component models the background sequence
composition, the other models binding sites. The binary
latent variables, Z={Z1, . . . ,ZN}, indicate whether each
W-mer, Xn, is drawn from the background component or
the binding site component. MEME has several different
variants of its model which the user can choose between.
They vary in how the sites are distributed among the se-
quences. The oops variant insists that there is exactly One
Occurrence Per Sequence. For most experimental data,
this is not a realistic assumption and those sequences
that do not contain a site can reduce MEME’s ability to
find the motif. The zoops variant allows Zero or One
Occurrences Per Sequence. This is more plausible for
most experimental data sets but will not take statistical
strength from more than one site in a sequence. The anr
variant allows any number of binding sites in each
sequence. This variant is the most flexible and is the
most suitable for most applications. However, it is also
the most computationally demanding: care must be
taken in the algorithm when sites overlap otherwise
MEME will tend to converge on self-overlapping motifs.
This is because MEME’s assumption that the W-mers are
independent breaks down as eachW-mer will overlap with
up to 2(W� 1) other W-mers. Nevertheless, as homotypic
clusters of binding sites are common in transcriptional
networks, we will focus on this anr variant in the rest of
this article.

In the anr variant, the background component is
modelled using a Markov model parameterized by yBG,
the binding site component is modelled by a PWM
parameterized by yBS, and � parameterizes the probability
that any given W-mer is drawn from the binding site com-
ponent. Thus the model is

pðZn ¼ 1j�Þ ¼ � ð1Þ

pðXnjZn; �BG; �BSÞ ¼ pðXnj�BSÞ
ZnpðXnj�BGÞ

1�Zn ð2Þ

where {X1, . . . ,XN} are the W-mers and {Z1, . . . ,ZN} are
latent variables indicating whether the W-mers are drawn
from the background or binding site model. This gives the
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joint distribution

pðX;Zj�; �BG; �BSÞ

¼
YN
n¼1

pðZnj�ÞpðXnjZn; �BG; �BSÞ

¼
YN
n¼1

½�pðXnj�BSÞ�
Zn ½ð1� �ÞpðXnj�BGÞ�

1�Zn

ð3Þ

The model is depicted in plate notation in Figure 1.

EM. In the E-step of EM, MEME derives the expected
value of the log likelihood, LL, w.r.t. the latent variables,
Z, given the current parameter estimates, y={yBS,
yBG, �}. All expectations, h.iZjy, are w.r.t. Zjy unless
specified.

hLLi ¼ hlog pðX;Zj�; �BG; �BSÞi ð4Þ

¼
XN
n¼1

hZni log½�pðXnj�BSÞ�

þ ð1� hZniÞ log½ð1� �ÞpðXnj�BGÞ�

ð5Þ

From Equation (3) and an application of Bayes’ theorem

hZni ¼
�pðXnj�BSÞ

�pðXnj�BSÞ þ ð1� �ÞpðXnj�BGÞ
ð6Þ

The M-step maximizes the expected log likelihood w.r.t.
each parameter in turn to calculate their new estimates.
On inspection of (5), we can see

�� argmax
�

X
n

hZni log �þ ð1� hZniÞ logð1� �Þ

¼

P
nhZni

N

ð7Þ

�BS � argmax
�BS

X
n

hZni log pðXnj�BSÞ ð8Þ

�BG � argmax
�BG

X
n

ð1� hZniÞ log pðXnj�BGÞ ð9Þ

MEME uses a PWM model for binding sites where
yBS={fwb}. fwb parameterizes the probability of seeing
base b at position w in a TFBS.

pðXnj�BSÞ ¼
Y
w

fwXnw
ð10Þ

Here Xnw is the w-th base of the n-th W-mer. The update
equations are

fwb �

P
nhZniIðXnw ¼ bÞP

nhZni
¼

cwb
S

ð11Þ

where cwb is the expected number of times we see base b at
position w in a binding site and S is the expected number
of binding sites.
By default, MEME uses a 0-order Markov model for

yBG. This is updated by the expected counts of the bases
which are not in binding sites.
At the end of each iteration of EM, MEME adjusts its

estimates for the Zn. This accounts for the fact that the
model does not prohibit overlapping binding sites. By way
of explanation, suppose that there are 12 consecutive ‘A’s
in the data and the current estimate of the motif models
binding sites of eight consecutive ‘A’s. Without this ad-
justment, MEME would assign hZni& 1 to the 5 W-mers
in the consecutive ‘A’s. The sum of the hZni represents the
number of binding events we expect in that window.
Sterically, five TFs cannot bind to sites of width 8 in a
12 bp window. MEME’s algorithm leaves the highest hZni

unchanged and scales the others down so that they sum to
at most 1. Without this adjustment, repetitive sections in
the input sequences can cause MEME to converge on
motifs of low complexity that have frequently overlapping
binding sites.

Expected running time. Each iteration of MEME’s EM
algorithm evaluates the current estimate of the motif on
each W-mer. The algorithm to adjust for overlaps also
runs in O(NW) time hence an iteration of EM completes
in O(NW) time. However, it should be noted MEME’s
algorithm as a whole is quadratic in N as the number of
seeds is proportional to N.

Approximation to EM

The updates in the M-step of the EM algorithm all involve
sums of the form

P
n hZni. . . where n ranges over all

W-mers in the data set. In any given iteration of EM,
depending largely on the current yBS, most of these hZni

will be negligible. We can make an approximate M-step by
ignoring those n for which hZni is small. We formalize this
by defining a subset of the n thresholded by hZni:

T� ¼ fn : hZni � �; 1 � n � Ng ð12Þ

Intuitively, Td indexes those W-mers that match our
current motif estimate. As an approximation to
Equation (11), we define f̂wb; ĉwb; Ŝ

f̂wb ¼

P
n2T�
hZniIðXnw ¼ bÞP
n2T�
hZni

¼
ĉwb

Ŝ
ð13Þ

For convenience of notation, we define
�cwb ¼

P
n=2T�
hZniIðXnw ¼ bÞ, �S ¼

P
n=2T�
hZni and

�N ¼ N� jT�j so that cwb ¼ ĉwb þ �cwb, S ¼ Ŝþ �S and

Figure 1. MEME’s model: �, the prior probability of a binding site;
Zn, the hidden variable representing whether the n-th W-mer is an
instance of the motif; Xn, the n-th W-mer; yBS, the parameters of the
motif; yBG, the parameters of the background distribution.
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N ¼ jT�j þ �N. The relative error, ed, in our approximation
f̂wb of fwb is

�� ¼
fwb � f̂wb

fwb
¼

cwb �
S
Ŝ
ĉwb

cwb

cwb�� ¼ �cwb �

�
S

Ŝ
� 1

�
ĉwb ¼ �cwb �

�S

Ŝ
ĉwb

Noting that
�S

Ŝ
and all the counts, c, are positive

j��j � max

�
�cwb
cwb

;
�Sĉwb

Ŝcwb

�
ð14Þ

We know from the definition of Td that �S � � �N and that
�cwb � � �N

j��j � max

�
� �N

ĉwb
;
� �N

Ŝ

�
�
�N

ĉwb
ð15Þ

So � � j��jĉwbN . If we knew ĉwb we would know which d
would guarantee our desired bound in the motif estima-
tion relative error. Unfortunately, at the beginning of an
EM iteration when we want to choose d we do not know
ĉwb. In practice, this is not a problem. Given � and the
current motif parameters, we can estimate ĉwb fairly ac-
curately. When the EM iteration has completed, ĉwb is
available. We can check the above equations to ensure
that the relative error is less than jedj. If it is not, we can
calculate a new d for which the relative error is guaranteed
to be small enough and re-run the iteration. In our tests,
this was never necessary. Also ĉwb tends to change slowly
over iterations, making its estimation straightforward in
all but the first iteration.

Suffix trees

A suffix tree is a data structure that stores a sequence or a
set of sequences. Typically, sequences are stored as con-
tiguous buffers. This permits fast access to subsequences
indexed by their position. Suffix trees are alternative data
structures that allow efficient access to subsequences by
their content. Re-writing algorithms to use suffix trees
can often achieve significant efficiencies.
Suppose we have a sequence, Y= y1. . . yT. A suffix of Y

is any subsequence, yt. . . yT, that ends at yT. A suffix tree
stores every suffix of the given sequence(s) in a tree struc-
ture. An example of a suffix tree is shown in Figure 2.
Now we show how to iterate over all the subsequences
of length W in Y (the W-mers). Each such W-mer is the
start of a suffix. Hence, descending the tree to depth W
iterates over all the W-mers. If two W-mers have the same
content, they will be represented once by the same path in
the tree. Contrast this with the random access of a typical
contiguous buffer data structure for sequence storage. A
contiguous buffer permits fast random access to a W-mer
at a given position but takes no account of identical or
similar W-mers. If we have an application where we are
not interested in the position of the W-mers, a suffix tree
can be a more efficient data structure to iterate over them.
Another attractive property of suffix trees is that they can
be constructed in linear time and space (33).

Suffix tree EM efficiencies. The EM algorithm must visit
every W-mer in the sequences once on each iteration. By
using a suffix tree to enumerate all the W-mers, we imme-
diately achieve two efficiency improvements. First, if any
twoW-mers are identical, the hZni calculations are equiva-
lent and we do not repeat them. Second, as we descend the
suffix tree to enumerate the W-mers, we make partial
evaluations of our current motif on what we have seen
of the W-mer so far. These partial evaluations are
shared across all the W-mers below the current node in
the tree. In contrast, MEME evaluates every base in each
W-mer once.

Branch-and-bound

Recall from Equation (12) that we need to identify all n
with hZni� d for a given d. We iterate over the W-mers by
descending the suffix tree. Suppose we have an upper
bound on the hZni of all the W-mers below any node. If
this bound is below d, then we can ignore the entire branch
of the suffix tree below the node. In this way, we avoid
evaluating large parts of the tree that do not fit the current
estimate of the motif well. We illustrate the idea in
Figure 3.

We define Xw�
n as the prefix of Xn of length w and Xwþ

n
as the suffix of length W�w (so that Xn ¼ Xw�

n Xwþ
n ). We

can write the likelihoods of the Xn in terms of their prefixes
and suffixes

pðXnj�BSÞ ¼ pðXw�
n j�BSÞpðX

wþ
n j�BSÞ

pðXnj�BGÞ ¼ pðXw�
n j�BGÞpðX

wþ
n j�BGÞ

We can enumerate the W-mers in the data by descending a
suffix tree. Each node we visit represents the prefix of all
the W-mers below it. Given our binding site and back-
ground models, we can calculate the pðXw�

n j�BSÞ and
pðXw�

n j�BGÞ exactly. Suppose we can also bound

Figure 2. A suffix tree that represents the sequence ‘BANANA’. The
beginning of the sequence is represented by the symbol 6 and $ is a
termination symbol. Note that the subsequence ‘ANA’ occurs twice in
the sequence but is represented once in the tree.
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pðXwþ
n j�BSÞ from above and pðXwþ

n j�BGÞ from below.
Recalling (6) we can use these bounds to bound hZni

above. In more detail, suppose pðXwþ
n j�BSÞ � pðXwþ

n j�BSÞ
and pðXwþ

n j�BGÞ � pðXwþ
n j�BGÞ then using 0 as a lower

bound for pðXwþ
n j�BSÞ we have

hZni � hZni ¼
�pðXw�

n j�BSÞpðX
wþ
n j�BSÞ

ð1� �ÞpðXw�
n j�BGÞpðX

wþ
n j�BGÞ

ð16Þ

The upper bounds, pðXwþ
n j�BSÞ are easy to calculate

from yBS. In practice, the background model does not
change very much over the course of the EM algorithm
as only a small fraction of the base pairs are explained as
binding sites. Therefore, we keep the background model
fixed and pre-compute the lower bounds, pðXwþ

n j�BGÞ, in
an initialization step.

Expected efficiencies

In order to understand the computational savings this ap-
proximation makes, we give an analysis of a simplified
example. We investigate the expected fraction of nodes
we ignore at each depth in our descent of the suffix tree.

Suppose our current estimate of the PWM has a
preferred base at each position. Each preferred base has
probability a and the other three bases at each position are
equally likely with probability 1�a

3 . When a=1, our PWM
is equivalent to a consensus sequence, when a ¼ 1

3 our
PWM has a uniform distribution. As ĉwb& �Na we set
d= e�a where e is the maximum relative error we will
tolerate. Suppose also our background model is a

uniform 0-order Markov model, then p(XnjyBG)=4�W.
As 1& 1� � and recalling (16), we want to know when
the following holds

hZni � hZni ¼
�pðXw�

n j�BSÞa
W�w

4�W
� � ¼ ��a

Let Y be the number of preferred bases in Xw�
n .

Assuming that Xw�
n is drawn from our background

distribution, we have Y � Binomial(w, 14). Now
log pðXw�

n j�BSÞ ¼ Y log aþ ðw� YÞ log 1�a
3 . Hence

whenever

Y �
log ��W log 4� ðW� 1Þ log a

log a� logð1� aÞ þ log 3
þ w ð17Þ

we can ignore all the nodes with prefix Xw�
n . For any given

values of e, W and a, the expected fraction of nodes
ignored at depth w is the probability that Equation (17)
holds. As Y is distributed according to a binomial distri-
bution, these values can be read directly from the binomial
cumulative distribution function. We plot these expected
fractions for some parameter values in Figure 4.

Open source implementation

We have implemented the STEME algorithm in C++ as
an open source library. For the suffix tree implementation,
we used the SeqAn library (34). In addition to the C++
interface we have implemented a Python scripting inter-
face to make it more accessible. The codes are tested on
Linux with GCC 4.4 and Python 2.6 but should work with
any modern C++compiler and version of Python 2 newer
than 2.5. Our implementation is available at http://sysbio.
mrc-bsu.cam.ac.uk/johns/STEME/. Our implementation
requires 500Mb of memory to work with data sets of up
to 13Mb, which is well within the range of modern
desktop or laptop machines. Building the suffix tree for

Figure 3. An illustration of how the STEME branch-and-bound algo-
rithm works. Top: the current estimate of the motif in the EM algo-
rithm. This is actually the motif for Stat5 from the TRANSFAC
database (M00223). Bottom: part of the suffix tree representing the
sequences. We can see that if we have descended the tree to the node
that represents the prefix, GCAT, our match to the motif is poor. If the
bound for the hZni of all the nodes below this is small enough, we can
stop our descent here.

Figure 4. The probability of discarding a W-mer drawn from a
uniform 0-order Markov background at different depths, w, in the
suffix tree. Here we used e=0.4. As explained in the text, a represents
how sharp the current estimate of the motif is. The higher a is, the
sharper the motif. Examining the graph reveals that with a moderately
sharp motif (a=0.7) of width 8, we can expect to discard over half the
nodes in the tree at depth w=6.
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such a data set takes 19 s on our laptop. These space and
time requirements scale linearly in the size of the input.

Test data sets

We used data from two sources for our tests (Table 1): a
set of six smaller ChIP-chip and ChIP-seq data sets we had
previously worked with (35); and five larger data sets from
the ENCODE project (36).
The six data sets we had previously worked with were

prepared as follows. The data for Sp1 were extracted from
TRANSFAC Professional 11.4 and the flanking bases
added by TRANSFAC were removed. The data sets for
GABP, Stat1, Stat5a and Stat5b were processed to extract
the binding site sequences using the cisGenome software
suite v1.0 (41). In every case, both sequences and controls
were used. Binding region boundary refinement was used
and then the region extended on each side by 30 bp. GABP
peaks were selected if there were more than 18 reads in a
rolling 100 bp sequence window compared with the
control. This higher figure was selected to remove
visually noisy peaks and 10 767 peaks were detected.
Cut-offs of 30 and 20 reads were used for the Stat5a and
Stat5b data, respectively, yielding 814 and 154 peaks.
RepeatMasker was used on all the test data sets to mask
repetitive elements using the genomic context for each
sequence. We provide the sequences as part of the
Supplementary Data. These files give data for sequences
and genomic coordinates. The results in the article are
based on the masked data, but the unmasked data are
given for completeness. The sequences are given in
FASTA format and notes about the files for genomic co-
ordinates (including assembly versions) are given within
the files.
The five larger data sets from the ENCODE project

were produced by the Myers Lab at the HudsonAlpha
Institute for Biotechnology. We downloaded the data for
SRF, ZBTB33, RXRA, TCF12 and CTCF from the
ENCODE Data Coordination Center at UCSC.

Tests

In order to test the accuracy and efficiency of the STEME
approximation, we ran our STEME implementation and
MEME’s EM implementation to completion on the data
sets.

We wanted to try a range of typical parameters so we
ran MEME’s seed searching algorithm with the default
arguments. We used motif widths of 8, 11, 15 and 20.
The number of site parameters took values of 2, 4, 8, 16,
32, 64, 128, 256 and 500. MEME uses the number of sites
parameter to initialize � and also to look for the best seed
(consensus sequence) for the motif. This gave us 6 data
sets, 4 motif widths and 6 different number of sites par-
ameters for a total of 144 separate test cases. Additionally,
we wanted to test the effect of varying the permitted
relative error so when we ran STEME, we used es of 0,
0.2, 0.4, 0.6 and 0.8.

Once we had run the test cases, we needed some way of
comparing the results of the different implementations
and the different settings for the permitted relative error,
e. Comparison of the resulting PWMs would have been
possible but we chose to perform a simplified analysis by
converting the resulting PWMs into consensus sequences
and using the Hamming distance as a distance metric. To
test the accuracy of the STEME approximation, we
calculated two statistics: the mismatch rate, that is, how
often the resulting consensus sequences from the same
starting point differed in any base; and the mismatch
fraction, that is, what proportion of the bases of the re-
sulting consensus sequences differed.

We ran the tests using version 4.5.0 of MEME which
was released on 8 October 2010. We modified the MEME
source code in order to obtain precise timing information
for its EM algorithm. The modifications are available as a
patch included with the STEME source code.

RESULTS

How e affects STEME’s accuracy

We compared the accuracy of STEME when using differ-
ent bounds on the relative error, e. When e=0, no ap-
proximations are made and we used this as a baseline
for comparison. The average mismatch rate and
mismatch fraction statistics are plotted in Figure 5. Even
when a very large relative error of 0.8 is permitted, only 1
in 6 of the resulting consensus sequences differ and less
than 1 in 20 bases differ. When using a reasonable value of
e=0.4, only around 1 in 8 of the test cases differed from
the baseline and only 1 in 30 of the resulting bases differed.

STEME’s accuracy relative to MEME

We also analysed the accuracy of STEME relative to
MEME. We had hoped that the STEME algorithm with
the approximation turned off (e=0) would produce iden-
tical results to MEME. For reasons we present in the
‘Discussion’ section, this is not the case. These results
are presented in Figure 6. When e=0, less than 1 in 4
of the test cases had a different outcome but only about 1
in 20 of the bases in the resulting consensus sequences
differed. As an example, when the seed ‘ATCCTGTTC
TC’ is used with 16 sites on the Sp1 data set, MEME
converges to ‘CTTCCTTCTCT’ and STEME converges
to ‘CTCCCTTCTCT’.

Table 1. The test data sets

TF Sequences Base pairs Publication

Stat5b 144 19 379 (37)
Stat5a 737 94 250 (37)
Sp1 296 207 325 (38)
GABP 2275 500 203 (39)
Stat1 2360 500 409 (40)
SRF 2155 674 443 (36)
ZBTB33 3342 1 589 893 (36)
RXRA 19 126 8 118 061 (36)
TCF12 35 714 12 540 202 (36)
CTCF 41 069 13 214 001 (36)
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Efficiency

We compared the runtime for an iteration of STEME to
an iteration of the MEME EM algorithm. The relative
speeds are dependent on the value of e chosen and on
the width of the motif, as shown in Figure 7. STEME is
significantly quicker than MEME for reasonable values of
e and typical motif widths.

DISCUSSION

Accuracy

Examining Figure 5 we can see that when e=0.4 about 1
in 8 of our applications of EM had some discrepancy with
the exact algorithm and about 1 base in 30 differed
overall. In our experience, this represents a satisfactory
compromise of speed and accuracy. In any case, it is not
clear if all the differences introduced by the approximation
have a negative effect. Our approximation ignores those
putative binding sites that are not a good match to the
motif rather than discounting them. It could be that by
only examining the higher quality binding sites, our algo-
rithm builds a better model of the motif. We hope to in-
vestigate this possibility in further work integrating our
STEME algorithm in a motif finder.

We also compared STEME without any approximation
to MEME’s EM implementation (Figure 6). We had
hoped the implementations would agree. Unfortunately,
there were some discrepancies. We spent some time reverse
engineering the MEME source code and discovered some
inconsistencies between the published MEME algorithm
(42) and the latest implementation. In particular, the
handling of reverse complements is not discussed in the
published algorithm. STEME treats each draw as a 50/50
mixture between a binding site on the positive strand and
a binding site on the negative strand. The MEME imple-
mentation essentially doubles the size of the data by
adding a reverse-complemented copy of the data.
Despite this, STEME and MEME converge on essentially
the same motifs. On average, only 1 base in 20 differs.
Interestingly, it appears that there is significant overlap

between the test cases for which STEME without any ap-
proximation differs from MEME and those test cases for
which the result of the STEME changes as the permitted
error is allowed to grow. This can be seen in Figure 6 as
the difference between e=0 and e=0.4 is smaller than
the analogous difference in Figure 5.

Efficiency

Figure 7 shows that the speed-up possible through the
STEME approximation is dependent both on the width

A

B

Figure 5. An analysis of how increasing the permitted relative error, e,
affects the outcome of STEME. The STEME algorithm was run from
the initializations described in the text for various values of e. (A) The
mismatch rate: The fraction of resulting consensus sequences that
differed from those when e=0. (B) The mismatch fraction: The
fraction of bases in the resulting consensus sequences that differed
from those when e=0.

A

B

Figure 6. An analysis of the accuracy of STEME for various values of
e relative to MEME. The STEME algorithm was run from from the
initializations described in the text for various values of e. (A) The
mismatch rate: the fraction of resulting consensus sequences that
differed from the results of MEME. (B) The mismatch fraction: the
fraction of bases in the resulting consensus sequences that differed from
the results of MEME.
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of the motif considered and the relative error tolerated in
the estimation of the motif. For motifs of reasonable size
(W=8 or 11), an order of magnitude increase in speed
over MEME can be expected when using a relative error
of e=0.4. Our approximation is consistently quicker than
MEME’s implementation of EM which is already highly
optimized. STEME achieves an order of magnitude
increase in speed on data sets of moderate size for a
wide range of reasonable parameters. In the coming
years, we expect the average size of data sets to continue
increasing.

Applicability

We have not presented a complete motif finder but we
have shown how any motif finder that uses the EM algo-
rithm on a compatible model can be adapted to handle
larger data sets. We would have liked to have presented an
efficient drop-in replacement for MEME but were pre-
vented from doing so for some technical reasons that we
elaborate on here.

The EM algorithm is not a motif finder on its own. The
result of EM is dependent on how the parameters are
seeded. Hence to find motifs, suitable seeds must be
found. MEME’s search for seeds is inefficient on large
data sets. Integrating our fast EM algorithm with
MEME’s slow search for seeds would offer little benefit
as runtimes would be dominated by the seed search. We
are working on using suffix trees to re-implement
MEME’s search for seeds more efficiently; however, this
is a major undertaking in its own right. We have included
an implementation of our work-in-progress with the
source code for STEME. It is of practical value for
motifs of up to width 8 on large data sets (over 500Kb);
however, the efficiencies tail off quickly as the motif width
increases (Table 2). For example, on the 674 Kb SRF
data set, MEME took over 4 h to find a motif of width
8. In contrast, our implementation with STEME finished
in 13min, 18 times quicker.

In addition, the way that MEME calculates the signifi-
cance of the motifs involves a preprocessing step that does
not scale well to large numbers of sites. Typically, a user
will want to choose the number of sites proportionally to
the number of sequences in the data set. Hence for
large data sets, the significance calculation needs to be
re-implemented more efficiently. We are working on this
using approximations to the LLR P-value calculations.

CONCLUSION

Reverse engineering transcriptional networks remains an
important in silico challenge. Modern biology continues to
generate ever larger data sets and this trend can be
expected to continue. Hence there exists a need for good
motif finders that can handle large data sets. MEME is
well trusted but does not handle these data sets well. We
have presented an approximation to EM for models of the
type used in the MEME algorithm. We have demonstrated
that this approximation has a minor effect on the outcome
on the algorithm and is an order of magnitude faster. We

A

B

C

Figure 7. A comparison of the speed of STEME and MEME on one
iteration of the EM algorithm. (A) Using e=0.4 as a typical setting,
the iteration speeds across all the data sets are plotted on a log 10 scale.
The error bars represent the standard deviations. (B) A violin plot of
the relative speeds of MEME and STEME grouped by e. With e=0,
STEME can be slower than MEME although we would expect this to
reverse on larger data sets. As e grows, STEME’s advantage grows. The
contours of the violin plots are kernel density estimates that are
truncated at the minimum and maximum values. The y-axes are on a
log 10 scale. (C) Using e=0.4 as a typical setting, the relative speeds
grouped by motif width. For motifs of width 8, STEME is between
10.3 . 2 and 102.1 . 125 times quicker than MEME.

Table 2. Timings for STEME with search for seeds and complete

MEME algorithm

TF Base pairs (kb) W STEME (s) MEME (s) Speed-up

SRF 674 8 792 14 760 18
ZBTB33 1 590 8 933 78 339 84
TCF12 12 540 8 2122 4 928 532 2322
TCF12 12 540 10 27 424 5 176 744 189
TCF12 12 540 12 379 891 4 597 053 12

The times to run MEME on the TCF12 data set are estimated from
partial runs as otherwise they would have taken months to complete.

e126 Nucleic Acids Research, 2011, Vol. 39, No. 18 PAGE 8 OF 10



have supplied an implementation of this algorithm and
hope that it will be incorporated into existing and novel
motif finders.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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