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Abstract: This study aims to enable effective breast ultrasound image classification by combining deep
features with conventional handcrafted features to classify the tumors. In particular, the deep features
are extracted from a pre-trained convolutional neural network model, namely the VGG19 model,
at six different extraction levels. The deep features extracted at each level are analyzed using a features
selection algorithm to identify the deep feature combination that achieves the highest classification
performance. Furthermore, the extracted deep features are combined with handcrafted texture
and morphological features and processed using features selection to investigate the possibility
of improving the classification performance. The cross-validation analysis, which is performed
using 380 breast ultrasound images, shows that the best combination of deep features is obtained
using a feature set, denoted by CONV features that include convolution features extracted from all
convolution blocks of the VGG19 model. In particular, the CONV features achieved mean accuracy,
sensitivity, and specificity values of 94.2%, 93.3%, and 94.9%, respectively. The analysis also shows that
the performance of the CONV features degrades substantially when the features selection algorithm
is not applied. The classification performance of the CONV features is improved by combining
these features with handcrafted morphological features to achieve mean accuracy, sensitivity,
and specificity values of 96.1%, 95.7%, and 96.3%, respectively. Furthermore, the cross-validation
analysis demonstrates that the CONV features and the combined CONV and morphological features
outperform the handcrafted texture and morphological features as well as the fine-tuned VGG19
model. The generalization performance of the CONV features and the combined CONV and
morphological features is demonstrated by performing the training using the 380 breast ultrasound
images and the testing using another dataset that includes 163 images. The results suggest that
the combined CONV and morphological features can achieve effective breast ultrasound image
classifications that increase the capability of detecting malignant tumors and reduce the potential of
misclassifying benign tumors.

Keywords: breast cancer; cancer detection; computer-aided diagnosis; tumor classification; deep learning;
convolution neural networks; deep features; texture features; morphological features

1. Introduction

Breast cancer is the most common cancer in females and a major cause of cancer-related deaths
in women worldwide [1]. Ultrasound imaging is one of the widely used modalities for breast
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cancer diagnosis [2,3]. However, breast ultrasound (BUS) imaging is considered operator-dependent,
and hence the reading of BUS images is a subjective task that requires well-trained and experienced
radiologists [3,4]. Several studies, such as [5–9], proposed computer-aided diagnosis (CAD) systems
to analyze BUS images with the goal of achieving objective computer-based classifications of breast
tumors. In general, conventional CAD systems employ handcrafted features, such as the morphological
features [10–13] and texture features [11,14,15], to characterize the tumor. Hence, the performance of
conventional CAD systems depends mainly on the capability of the handcrafted features to capture
the differences between benign and malignant tumors [16].

Several recent studies investigated the possibility of employing deep learning technology,
and particularly convolutional neural networks (CNNs), to improve the performance of CAD
systems [17,18]. However, a major challenge that restricts the full exploitation of CNNs for developing
accurate CAD systems is the limited size of publicly available, well-annotated BUS image datasets
that are crucial to achieve effective learning process [17,19]. Hence, the development of CNN models
using limited BUS image datasets has become an important research challenge that was investigated
in many previous studies [8,9,16,20–25]. A large group of these studies were essentially focused on the
use of pre-trained CNNs to classify BUS images using two main strategies, namely the fine-tuning
strategy and the deep features extraction strategy. In the fine-tuning strategy, the last fully connected
layer of the pre-trained CNN model is modified to match the classes targeted by the BUS image
classification problem and the parameters of the modified pre-trained CNN model are fine-tuned using
the available BUS images. An example of this strategy is the study by Han et al. [9] who employed
a modified GoogLeNet CNN model [26] that is pre-trained on the ImageNet dataset and fine-tuned
using a BUS image dataset to classify the BUS images with a classification accuracy of 90%. In the study
by Xiao et al. [23], three ImageNet pre-trained CNN models, namely Xception [27], InceptionV3 [28],
and ResNet50 [29], were fine-tuned using a BUS image dataset to enable the classification of BUS
images. Moreover, the classification performance achieved using these three fine-tuned CNN models
was compared with the classification performance obtained using a dedicated CNN model that was
developed specifically for the BUS image classification problem and trained using the same BUS image
dataset. The results reported in [23] showed that the fine-tuned InceptionV3 CNN model achieved
the highest classification performance with accuracy value of 85%. Tanaka et al. [24] compared the
classification performance obtained using the ImageNet pre-trained VGG19 [30] and ResNet152 [29]
CNN models, which were fine-tuned using a BUS image dataset, with the performance achieved by
combining these two fine-tuned CNN models. The process of combining the two fine-tuned CNN
models is achieved by averaging the class likelihoods achieved individually by each model. The results
provided in [24] showed that the combined VGG19 and ResNet152 models achieved classification
accuracy of 89%, which is higher than the accuracy obtained using each model alone. Despite the
effective classification performance obtained using the fine-tuning strategy, this strategy involves
several challenges, such as the selection of the parameters of the pre-trained model that are included
in the fine-tuning process, configuring the learning rates, and ensuring that the available BUS images
are sufficient to perform the fine-tuning process.

The second strategy, which involves the use of pre-trained CNNs to extract deep features from
the BUS images and classify the extracted features using a computer classifier, was studied by several
research groups. For instance, Byra et al. [21] employed the individual convolution layers of the
ImageNet pre-trained VGG19 CNN model to extract deep features from the BUS image. The deep
features were analyzed using Fisher linear discriminant analysis [31] to classify the BUS images
with accuracy values as high as 80%. Antropova et al. [25] used the max-pooling layers and the
first fully connected layer of the ImageNet pre-trained VGG19 CNN model to extract deep features
for quantifying the BUS images. The extracted deep features were classified using a support vector
machine (SVM) classifier [32]. The results reported in [25] showed that the deep features extracted from
the max pooling layers were able to achieve the highest classification performance with area under the
curve (AUC) of 0.87. In a recent study, Byra et al. [22] worked to improve the method proposed in [25]
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by adding a matching layer to interface the gray-scale BUS image with the three channels of the input
layer of the ImageNet pre-trained VGG19 CNN model. Moreover, they compared the classification
performance obtained by using the pre-trained VGG19 CNN model as a deep features extractor
with the performance achieved by fine-tuning the pre-trained VGG19 model using a dataset of BUS
images. The results reported in [22] showed that the matching layer was able to improve the BUS
image classification performance. Furthermore, the results provided in [22] indicated that fine-tuning
the pre-trained VGG19 CNN model using the BUS image dataset obtained the highest performance
with classification accuracy of 88.7%, which is higher than the accuracies achieved by using the
pre-trained VGG19 CNN model as a deep features extractor. A major drawback in the previous
studies that employed the deep features extraction strategy is that the extracted deep features were not
processed using feature selection algorithms to select the deep feature combinations that optimize the
classification performance. In fact, the use of features selection algorithms is crucial to identify the most
effective features and eliminate irrelevant features that might degrade the classification performance.

The main goal of the current study is to improve the classification performance obtained using
the deep features extraction strategy. In addition, the current study aims to investigate the possibility
of combining the deep features with conventional handcrafted features to achieve higher classification
performance. The pre-trained CNN model considered in the current study for extracting the deep
features is the ImageNet pre-trained VGG19 model since this model was commonly used in several
previous studies [21,22,25] that employed the deep features extraction strategy. In fact, the main
contributions of our study can be summarized as follows:

• Employ a two-phase optimization procedure to select the best deep feature combination that
maximizes the BUS image classification performance as well as identify the components of the
pre-trained VGG19 model that correspond to the optimized deep feature combination. In the first
phase, we extracted deep features from the pre-trained VGG19 model at six different extraction
levels. In the second phase, the deep features extracted at each extraction level are processed
using a features selection algorithm and classified using a SVM classifier to identify the feature
combinations that maximize the BUS image classification performance at that level. Furthermore,
the deep feature combinations that are identified at all extraction levels are analyzed to find the
best deep feature combination that enables the highest classification performance across all levels.

• Investigate the possibility of improving the BUS image classification performance by combining the
deep features extracted from the pre-trained VGG19 model with the handcrafted features that were
introduced in previous studies. In fact, the handcrafted features considered in the current study are
the texture and morphological features. The features selection algorithm is used to select the best
combination of deep and handcrafted features that maximizes the classification performance.

• Perform cross-validation analysis using a dataset that includes 380 BUS images to evaluate the
classification performance obtained using the optimized combinations of deep features and
combined deep and handcrafted features. Moreover, the classification performance obtained using
the optimized combinations of deep features and combined deep and handcrafted features was
compared with the results achieved using the optimized combinations of handcrafted features as
well as the fine-tuned VGG19 model. Furthermore, the cross-validation analysis investigates the
effect of classifying the deep features without applying the features selection algorithm.

• Evaluate the generalization performance of the optimized combination of deep features
and the optimized combination of combined deep and handcrafted features. In particular,
the 380 breast ultrasound images were used to train two SVM classifiers that employ the optimized
combination of deep features and the optimized combination of combined deep and handcrafted
features. The performance of the trained classifiers were evaluated using another dataset that
includes 163 BUS images.

The remainder of the paper is organized as follows. Section 2 presents the BUS image datasets
that are employed in the current study, the two-phase optimization procedure that is used to selected
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the best combination of deep features, and the handcrafted texture and morphological features that
were combined with the deep features. Moreover, Section 2 introduces the procedures employed to
evaluate the performance of the deep features, the combined deep features and handcrafted texture
and morphological features, the handcrafted texture and morphological features, and the fine-tuned
VGG19 model. The results are provided and discussed in Section 3. Finally, the conclusions are
presented in Section 4.

2. Materials and Methods

2.1. BUS Image Datasets

Two BUS image datasets were employed in the current study. The first dataset, denoted by Dataset
1, was collected during the period between 2015 and 2019 at the Jordan University Hospital, Amman,
Jordan. The dataset is composed of 380 BUS images (217 benign tumors and 163 malignant tumors).
BUS image acquisition was carried out during routine breast cancer screening procedures using an
Acuson S2000 system (Siemens AG, Munich, Germany) equipped with a 14L5 linear ultrasound
transducer that has a bandwidth of 5–14 MHz. During imaging, the radiologist was free to adjust the
parameters of the ultrasound imaging system, including the gain, depth, and focal length, to achieve
the best view of the tumor. All acquired BUS images were resampled to have a uniform resolution of
0.1 mm× 0.1 mm. The tumors were labeled as benign or malignant based on biopsy findings. The mean
± standard deviation diameter of the tumors is 14.5 ± 5.8 mm. All participating patients were
females. The mean ± standard deviation age of the patients was 47.8 ± 11.9 years. For each patient,
one BUS image was acquired. The tumor in each BUS image was outlined by asking a radiologist
(fourth author) with more than 15 years of experience to segment the tumor for three times and the
gold standard segmentation was taken as the mean of the three manual segmentations. The study
protocol was approved by the Ethics Committee at the Jordan University Hospital. Furthermore,
each participating patient was asked to sign informed consent to the study protocol.

The second BUS dataset, denoted by Dataset 2, was provided by the authors of [33]. The dataset
was acquired in 2012 at the UDIAT Diagnostic Centre of the Parc Tauli Corporation, Sabadell,
Spain. The dataset is composed of 163 BUS images (110 benign tumors and 53 malignant tumors).
As described in [33], the tumors in the BUS images were outlined by experienced radiologists.
Detailed description of the dataset is provided in [33].

2.2. BUS Image Classification Using the Deep Features

A two-phase procedure is used to identify the best combination of deep features, which are
extracted using the ImageNet pre-trained VGG19 model that maximizes the BUS image classification
performance as well as the components of the pre-trained VGG19 model that correspond to the best
deep feature combination. This two-phase procedure is applied using the BUS images included
in Dataset 1. The first phase of this procedure, which is described in Section 2.2.1, aims to extract
deep features from the pre-trained VGG19 model at six different extraction levels. The second phase,
which is described in Section 2.2.2, aims to process the deep features that are extracted at each level
using features selection and classification to identify the feature combinations that maximize the
classification performance at that extraction level. The deep feature combination that achieves the
highest classification performance across all six deep features extraction levels is denoted as the
best-performing combination of deep features.

2.2.1. Deep Features Extraction

Each BUS image in Dataset 1 is processed to define a region of interest (ROI) around the tumor.
As suggested in [22], the ROI is obtained by computing the smallest box that contains the tumor
and adding 30 pixels to each side of the box to include the surrounding tissue. For each image,
the pre-trained VGG19 model [30] is used to extract deep features from the ROI that includes the tumor,
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as illustrated in Figure 1. As shown in the figure, the VGG19 model is composed of five convolution
blocks, where each block includes a group of convolution layers followed by a max-pooling layer,
and three fully connected layers. The first two convolution blocks comprise two convolution layers that
use 64 kernels with a size of 3× 3. The third convolution block is composed of four convolution layers
that employ 256 kernels with a size of 3× 3. The last two convolution blocks include four convolution
layers that use 512 kernels with a size of 3× 3. The first two fully connected layers (FC6 and FC7)
have 4096 units and the last fully connected layer (FC8) includes 1000 units that correspond to the
1000 classes of the ImageNet dataset [34].

Figure 1. Graphical illustration of the process of extracting deep features from the ROI in the BUS
image using the pre-trained VGG19 model.

The deep features extracted using the VGG19 model can be grouped into two main categories:
convolution features and fully connected features. The convolution features are extracted from the
convolution layers based on the method described in [35]. In particular, consider a convolution layer,
denoted by CL, with a size of W × H × N, where W, H, and N are the width, height, and number of
convolution kernels of the layer. The convolution layer, CL, can be processed to extract N convolution
features, denoted by CLmax, using the maximum pooling operation as follows [35]:

CLmax = [CLmax(1), CLmax(2), ..., CLmax(N)], where (1)

CLmax(k) = max
{

CL(., ., k)
}

, k = 1, 2, 3, ..., N

In addition, the CL can be processed to extract N convolution features, denoted by CLavg, using the
average pooling operation, as expressed below [35]:
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CLavg = [CLavg(1), CLavg(2), ..., CLavg(N)], where (2)

CLavg(k) =
1

W × H ∑ CL(., ., k), k = 1, 2, 3, ..., N

In the current study, a three-level convolution features extraction approach is employed. In the
first level, denoted as convolution features extraction level 1 (CF Extraction Level 1), the convolution
features, i.e., CLavg and CLavg, extracted from each convolution layer are concatenated to form a
feature set with a size of 2N and this set is normalized using l2-normalization [36]. As illustrated in
Figure 1, eighteen feature sets were extracted at CF Extraction Level 1, where each set includes between
128 and 1024 convolution features. In the second level, denoted as convolution features extraction
level 2 (CF Extraction Level 2), the feature sets extracted from all layers of each convolution block of the
VGG19 model are concatenated to form a feature set and this set is normalized using l2-normalization.
As shown in Figure 1, five feature sets were extracted at CF Extraction Level 2, where each set
includes between 256 and 4096 convolution features. In the third level, called convolution features
extraction level 3 (CF Extraction Level 3), the feature sets extracted from all convolution blocks of the
VGG19 model are concatenated to form a feature set and this set is normalized using l2-normalization.
As shown in Figure 1, the feature set extracted at CF Extraction Level 3 is composed of 11,008
convolution features.

The VGG19 model is also used to extract fully connected features from the ROI that includes the
tumor. Particularity, a two-level fully connected features extraction approach is employed. In the first
level, denoted as fully connected features extraction level 1 (FCF Extraction Level 1), the activations of each
fully connected layer are extracted and normalized using l2-normalization to form a feature set. As shown
in Figure 1, two fully connected feature sets were extracted at FCF Extraction Level 1, where each set
includes 4096 fully connected features. In the second level, called fully connected features extraction
level 2 (FCF Extraction Level 2), the two feature sets extracted at FCF Extraction Level 1 are concatenated
and normalized using l2-normalization to form one feature set. As shown in Figure 1, the feature set
extracted at FCF Extraction Level 2 is composed of 8192 fully connected features.

In addition to the five deep features extraction levels described above, an additional deep features
extraction level, called combined convolution and fully connected features extraction (Combined CF
FCF Extraction), is used to extract deep features from all convolution blocks and all fully connected
layers of the VGG19 model. The features extracted at Combined CF FCF Extraction are concatenated
and normalized using l2-normalization to form one feature set. As shown in Figure 1, the feature set
computed at Combined CF FCF Extraction includes 19,200 convolution and fully connected features.
The six deep features extraction levels that are employed in the current study are summarized in
Table 1.
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Table 1. The six levels that are employed to extract the deep feature sets from the BUS image.

Deep Features Extraction Level Feature Sets Description

CF Extraction Level 1 CONV1_1, CONV1_2, CONV2_1,
CONV2_2, CONV3_1, CONV3_2,
CONV3_3, CONV3_4, CONV4_1,
CONV4_2, CONV4_3, CONV4_4,
CONV5_1, CONV5_2, CONV5_3,
CONV5_4

A total of 11,008 convolution features
organized into 16 feature sets are extracted
from the ROI that includes the tumor,
where each feature set corresponds to one of
the convolution layers of the VGG19 model.
To generate a given feature set,
the convolution features CLavg and CLavg
extracted from the convolution layer that
corresponds to the feature set are
concatenated and normalized.

CF Extraction Level 2 CONV1, CONV2, CONV3,
CONV4, CONV5

A total of 11,008 convolution features
organized into 5 feature sets are extracted
from the ROI that includes the tumor,
where each feature set corresponds to one of
the convolution blocks of the VGG19 model.
To generate a given feature set, the feature
sets extracted from the layers of the
convolution block that corresponds to the
feature set are concatenated
and normalized.

CF Extraction Level 3 CONV A total of 11,008 convolution features
organized into 1 feature set are extracted
from the ROI that includes the tumor.
To generate the feature set, the feature sets
extracted from all convolution blocks of the
VGG19 model are concatenated
and normalized.

FCF Extraction Level 1 FC6 and FC7 Two feature sets, where each set includes
4096 fully connected features, are extracted
from the ROI that includes the
tumor. The computation of the two feature
sets is achieved by extracting and
normalizing the activations of first and
second fully connected layers of the
VGG19 model.

FCF Extraction Level 2 FC A feature set that includes 8192 fully
connected features is extracted from the ROI
that includes the tumor. The computation of
the feature set is achieved by concatenating
and normalizing the two feature sets
extracted from the first and second fully
connected layers of the VGG19 model.

Combined CF FCF Extraction CONV_FC A feature set that includes 19,200
convolution and fully connected features is
extracted from the ROI that includes the
tumor. The computation of the feature set is
performed by extracting deep features from
all convolution blocks and all fully
connected layers of the VGG19 model and
then concatenating and normalizing the
extracted features.

2.2.2. Deep Features Selection and Classification

The use of the extracted features to directly classify the BUS images in Dataset 1 can limit the
classification performance as these features might include redundant and irrelevant information [37].
To overcome this limitation, the extracted features are processed using features selection to identify the
relevant and effective features that can achieve high classification performance. Despite the fact that
the exhaustive search of all possible feature combinations can identify the optimal feature combination,
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this search approach requires long processing times and extensive computational resources, particularly
when a large number of features is considered [37]. In the current study, features selection is performed
using a two-phase heuristic procedure [7] that is based on the features selection algorithm described
in [14]. In the first phase, the extracted features are ranked using the minimum redundancy maximum
relevance (mRMR) features selection algorithm [38]. After ranking the features, M feature groups
are formed such that the mth feature group is composed of the m top-ranked features, where M
is the total number of features and m = {1, 2, 3, . . . , M}. Moreover, the classification performance
of the M feature groups is evaluated using the Matthews correlation coefficient (MCC) metric [39].
The MCC is used as it provides an effective classification performance metric for imbalanced data [40].
Then, the smallest feature group that achieves the highest classification performance is selected as
the candidate feature group. In the second phase, the candidate feature group obtained by the first
phase is refined using a backward elimination procedure to achieve a compact subset of features that
maximizes the classification performance. Assume that the size of the candidate feature group obtained
by the first phase is equal to n, then the aim of the first iteration of the backward elimination procedure
is to identify a subset of n − 1 features that can achieve the highest improvement in classification
performance. In particular, each individual feature in the candidate feature group, which includes
n features, is temporally eliminated and the classification performance obtained by the remaining
n− 1 features is evaluated. The feature that its elimination leads to the highest improvement in the
classification performance is identified and permanently removed to obtain a subset of n− 1 features
with enhanced classification performance. This process is repetitively applied in the subsequent
iterations of the backward elimination procedure to reduce the size of the selected features and, at the
same time, improve the classification performance. This iterative process stops when the elimination
of any feature leads to a reduction in the classification performance.

The process of classifying the features is performed using a binary SVM classifier [32] that is
implemented using the LIBSVM library [41]. The SVM classifier is configured to use the radial basis
function (RBF) kernel. Using this configuration, the SVM classifier has two control parameters that
require tuning, namely the regularization parameter (C) and the RBF kernel parameter (σ). The training
and testing of the SVM classifier is performed using a ten-fold cross-validation procedure combined
with a grid search approach to tune the parameters C and σ. The ten-fold cross-validation procedure
is used to reduce the possibility of overfitting the SVM classifier to the 380 BUS images included
in Dataset 1 [42]. To carry out the ten-fold cross-validation procedure, the BUS images in Dataset 1
are divided into ten groups such that each group includes 38 BUS images. In each iteration of the
ten-fold cross-validation procedure, nine groups of BUS images are used to train the SVM classifier
and the remaining group is used for testing. This train-test process is repeated for ten iterations
such that each group of BUS images is used exactly once as a testing group. Moreover, as suggested
in [43,44], the tuning of C and σ is carried out using a grid search approach that examines the C
and σ values of {2−5, 2−4, 2−3, . . . , 215} and {2−15, 2−14, 2−13, . . . , 23}, respectively. The grid search
approach is configured to find the values of C and σ that maximize the classification performance
that is evaluated using the MCC metric. In fact, the MCC is employed since it provides an effective
classification metric for imbalanced data, where such data imbalance can occur due to the unequal
numbers of benign and malignant BUS images [40].

2.3. BUS Image Classification by Combining the Deep Features with Handcrafted Features

We investigated the possibility of improving the classification of the BUS images included in
Dataset 1 by combining the deep features with handcrafted features that were introduced in previous
studies. In particular, the best-performing deep feature set extracted from the pre-trained VGG19 model
is combined with handcrafted texture and morphological features that are commonly used for BUS
image classification. To extract the handcrafted texture features, the ROI in the BUS image that includes
the tumor is analyzed using the Gray-Level Co-occurrence Matrix (GLCM) [45] to quantify the statistics
of the pixels’ intensities within the ROI. In the current study, 10 distances (d = 1, 2, 3, . . . , 10 pixels)
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and 4 orientations (θ = 0◦, 45◦, 90◦, 135◦) are employed to compute the GLCM, as suggested in [14].
This process enabled the creation of 40 GLCMs. Each GLCM is analyzed to extract 20 texture features
that are widely employed for BUS image classification [7,14,46]. These texture features are summarized
in Table 2. Hence, the total number of texture features that are computed for each BUS image is equal
to 800.

In addition, the tumor outline in each BUS image is analyzed to extract 18 handcrafted
morphological features, which are summarized in Table 2. In particular, 10 morphological features,
namely the tumor area [12], tumor perimeter [12], tumor form factor [10,13], tumor roundness [10,13],
tumor aspect ratio [10,13], tumor convexity [10,13], tumor solidity [10,13], tumor extent [10,13],
tumor undulation characteristics [47], and tumor compactness [12,48], are extracted directly from the
tumor outline. Two morphological features are extracted by computing the the normalized radial
length (NRL) of the tumor and calculating its entropy and variance [12,49]. In fact, the NRL of the
tumor is the Euclidean distance between the tumor center and the pixels located at the tumor boundary
normalized by the maximum distance [49]. The last 6 morphological features are extracted from the
best-fit ellipse that is obtained by fitting an ellipse to the tumor outline [12]. These 6 features are the
length of the ellipse major axis [12], the length of the ellipse minor axis [12], the ratio between the
ellipse major and minor axes [12], the ratio of the ellipse perimeter and the tumor perimeter [12],
the angle of the ellipse major axis [12], and the overlap between the ellipse and the tumor [12].

The best-performing deep feature set, the handcrafted texture features, and the handcrafted
morphological features are concatenated to form three feature groups that combine deep and
handcrafted features. The first group comprises the best-performing deep feature set and the
handcrafted texture features. The second group comprises the best-performing deep feature set and
the handcrafted morphological features. Finally, the third group is composed of the best-performing
deep feature set and the handcrafted texture and morphological features. Each one of these feature
groups is normalized using l2-normalization and processed using features selection and classification
to find the best combination of deep and handcrafted features that optimizes the classification of the
BUS images included in Dataset 1.

Table 2. The handcrafted texture and morphological features that are extracted from the BUS image.

Type Features Description

Texture features Autocorrelation [50], contrast [14], correlation [50],
cluster prominence [50], cluster shade [50],
dissimilarity [50], energy [50], entropy [50],
homogeneity [50], maximum probability [50], sum
of squares [45], sum average [45], sum
entropy [45], sum variance [45], difference
variance [45], difference entropy [45], information
measure of correlation I [45], information measure
of correlation II [45], inverse difference
normalized [51], inverse difference moment
normalized [51]

A total of 800 texture features are extracted
from the ROI that includes the tumor.
In particular, 40 GLCMs are generated using
10 distances (d = 1, 2, 3, . . . , 10 pixels) and 4
orientations (θ = 0◦, 45◦, 90◦, 135◦).
Moreover, each GLCM is analyzed to extract
20 texture features.

Morphological features Tumor area [12], tumor perimeter [12], tumor form
factor [10,13], tumor roundness [10,13], tumor
aspect ratio [10,13], tumor convexity [10,13], tumor
solidity [10,13], tumor extent [10,13], tumor
undulation characteristics [47], tumor
compactness [12,48], NRL entropy [12,49], NRL
variance [12,49], length of the ellipse major
axis [12], length of the ellipse minor axis [12], ratio
between the ellipse major and minor axes [12],
ratio of the ellipse perimeter and the tumor
perimeter [12], angle of the ellipse major axis [12],
overlap between the ellipse and the tumor [12]

A total of 18 morphological features are
extracted from the tumor outline.
In particular, 10 morphological features are
computed directly based on the tumor
outline. Moreover, 2 morphological features
are computed based on the NRL of the
tumor. In addition, 6 morphological features
are computed by fitting an ellipse to the
tumor outline.
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2.4. Performance Comparison

For the BUS images included in Dataset 1, we compared the classifications obtained using the
deep feature sets and the groups of combined deep and handcrafted features with the classifications
achieved using three other classification approaches. The first approach aims to investigate the
importance of the features selection algorithm, which eliminates the irrelevant and redundant features.
In particular, the first approach considers the BUS image classifications that are obtained using the
best-performing deep feature set but without applying the features selection algorithm. In other
words, the first approach is focused on the BUS image classifications that are achieved by applying all
features included in the best-performing deep feature set directly to the SVM classifier. The second
approach aims to evaluate the classification performance that can be achieved using the handcrafted
texture and morphological features. In particular, the second approach considers the BUS image
classifications obtained using the 800 handcrafted texture features, the 18 handcrafted morphological
features, and the combined 818 handcrafted texture and morphological features, which are described in
Section 2.3, after applying features selection. The third approach considers the BUS image classification
performance achieved by fine-tuning the pre-trained VGG19 model using the BUS images included in
Dataset 1. The process of fine-tuning the pre-trained VGG19 model is performed using the fine-tuning
procedure presented in [22].

2.5. Generalization Performance

The generalization performance of the deep feature sets and the groups of combined deep and
handcrafted features was investigated in the current study. In particular, the BUS images in Dataset
1 are used to train two SVM classifiers, where the first classifier is based on the best-performing
deep feature set and the second classifier is based on the best-performing group of combined deep
and handcrafted features. In fact, the best-performing deep feature set and the best-performing
group of combined deep and handcrafted features are identified based on the ten-fold cross-validation
analyses performed for Database 1, as described in Sections 2.2 and 2.3, respectively. The generalization
performance of the two SVM classifiers was evaluated by employing each classifier to classify the 163
BUS images included in Dataset 2.

2.6. Performance Metrics

Six performance metrics were used to evaluate the cross-validation classifications performed
for the BUS images in Dataset 1 based on the deep feature sets, the groups of combined deep and
handcrafted features, and the three classification approaches used in the performance comparison.
These metrics are the accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC),
positive predictive value (PPV), and negative predictive value (NPV). The mathematical formulas of
these metrics are provided below [39,52]:

Accuracy =
TP + TN

TP + TN + FP + FN
,

Sensitivity =
TP

TP + FN
,

Speci f icity =
TN

TN + FP
, (3)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN))
,

PPV =
TP

TP + FP
,

NPV =
TN

TN + FN
,
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where TP is the number of malignant tumors that are classified correctly, TN is the number of benign
tumors that are classified correctly, FP is the number of benign tumors that are classified incorrectly,
and FN is the number of malignant tumors that are classified incorrectly. In fact, the six performance
metrics were computed for each one of the ten folds that carried out during the cross-validation
analysis performed for Dataset 1. Moreover, the mean ± standard deviation values of the six metrics
are calculated across the ten folds.

In addition to the six performance metrics, the receiver operator characteristic (ROC) curves were
computed for the cross-validation classifications performed for Dataset 1 using the best-performing
combination of deep features, the best-performing combination of deep and handcrafted features,
the best-performing combination of handcrafted features, and the fine-tuned VGG19 model. In fact,
the ROC curves aim to study the relation between the classification sensitivity and specificity obtained
using each one of these classification approaches. The values of the AUC, which evaluates the overall
performance of the BUS image classifier, were also calculated for these four classification approaches.
In addition to the ROC curve analysis, these four classification approaches were studied using paired
t-tests based on the BUS image classification accuracies. In fact, the aim of the paired t-tests is to
investigate if the BUS image classification accuracy obtained using the most powerful approach, out of
the four approaches described above, is significantly different than the other three approaches.

The generalization performance of the best-performing deep feature set and the best-performing
group of combined deep and handcrafted features, which are achieved by performing the training
using Dataset 1 and the testing using Dataset 2, was evaluated using the six metrics described above.
In particular, the values these metrics were computed based on the classifications obtained for the 163
BUS images included in Dataset 2.

3. Results and Discussions

3.1. BUS Image Classification Results Obtained Using the Deep Features

The classification results obtained using the ten-fold cross-validation analyses that are performed
for the BUS images in Dataset 1 based on the deep feature sets are provided in Table 3. The highest
classification performance is achieved using the CONV feature set that is extracted at CF Extraction
Level 3. The CONV feature set achieved BUS image classification with mean accuracy of 94.2%, mean
sensitivity of 93.3%, mean specificity of 94.9%, mean PPV of 93.3%, mean NPV of 94.9%, and mean
MCC of 88.2%. In fact, the features selection procedure was able to process the 11,008 features included
in the CONV feature set to select a combination of 25 features that achieved the highest classification
performance. These 25 features are extracted from six convolution layers of the pre-trained VGG19
model, which are CONV3_3 (1 feature), CONV4_2 (3 features), CONV4_3 (1 feature), CONV4_4
(1 feature), CONV5_1 (5 features), and CONV5_4 (14 features). Furthermore, Table 3 indicates that
the classification results achieved using the CONV_FC feature set matches the classification results
obtained using the CONV feature set. This is due to the fact that the feature combination selected
for the CONV_FC feature set matches the feature combination selected for the CONV feature set.
Hence, the fully connected features included in the CONV_FC feature set were unable to improve
the classification performance achieved by the convolution features included in both the CONV_FC
feature set and the CONV feature set. Hence, the best-performing deep feature set that is extracted
from the pre-trained VGG19 model is considered to be the CONV feature set.
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Table 3. The BUS image classification results obtained using the feature sets extracted from the pre-trained VGG19 model at six deep features extraction levels. For the
six performance metrics, the mean ± standard deviation values are computed across the ten folds of the cross-validation procedure performed using Dataset 1.

Deep Features
Extraction Level

Feature Set Total No. of Features No. of
Selected Features

Selected Features Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) MCC (%)

CF Extraction Level 1 CONV1_1 128 34 CONV1_1 (34) 78.2± 6.9 76.7± 7.4 79.3± 11.8 73.5± 12.0 81.9± 6.8 55.7± 12.7
CONV1_2 128 21 CONV1_2 (21) 81.8± 5.2 81.6± 8.9 82.0± 9.7 77.3± 11.0 85.6± 5.5 63.3± 10.1
CONV2_1 256 25 CONV2_1 (25) 82.1± 5.2 77.3± 9.3 85.7± 8.9 80.3± 8.9 83.4± 6.2 63.3± 9.8
CONV2_2 256 38 CONV2_2 (38) 84.2± 3.7 80.4± 9.4 87.1± 7.7 82.4± 7.4 85.5± 7.6 67.7± 6.2
CONV3_1 512 33 CONV3_1 (33) 84.7± 4.8 80.4± 11.9 88.0± 4.4 83.4± 2.1 85.7± 8.1 68.7± 9.2
CONV3_2 512 47 CONV3_2 (47) 86.1± 4.5 82.2± 8.1 88.9± 5.5 84.8± 7.4 86.9± 5.7 71.4± 9.0
CONV3_3 512 29 CONV3_3 (29) 85.3± 4.5 79.8± 10.5 89.4± 5.7 85.0± 6.2 85.5± 7.0 69.8± 8.1
CONV3_4 512 86 CONV3_4 (86) 88.9± 4.4 85.3± 10.0 91.7± 3.1 88.5± 4.1 89.2± 7.1 77.4± 8.6
CONV4_1 1024 20 CONV4_1 (20) 88.4± 5.0 84.0± 7.6 91.7± 5.6 88.4± 7.0 88.4± 5.8 76.3± 10.2
CONV4_2 1024 61 CONV4_2 (61) 87.1± 4.0 82.8± 8.3 90.3± 2.6 86.5± 4.4 87.5± 6.0 73.6± 7.8
CONV4_3 1024 31 CONV4_3 (31) 86.8± 5.5 82.8± 9.3 89.9± 5.4 86.0± 5.7 87.4± 7.0 73.1± 10.8
CONV4_4 1024 32 CONV4_4 (32) 90.0± 4.8 89.0± 10.3 90.8± 4.9 87.9± 9.3 91.6± 6.0 79.6± 10.5
CONV5_1 1024 58 CONV5_1 (58) 89.5± 5.0 87.7± 11.2 90.8± 6.0 87.7± 8.1 90.8± 6.1 78.5± 11.0
CONV5_2 1024 41 CONV5_2 (41) 89.7± 3.2 88.3± 9.1 90.8± 5.2 87.8± 8.5 91.2± 5.5 79.1± 6.8
CONV5_3 1024 23 CONV5_3 (23) 89.7± 4.4 87.1± 8.9 91.7± 6.5 88.8± 10.7 90.5± 6.5 79.0± 9.1
CONV5_4 1024 31 CONV5_4 (31) 91.3± 4.1 91.4± 5.4 91.2± 6.7 88.7± 10.1 93.4± 3.2 82.4± 9.2

CF Extraction Level 2 CONV1 256 34 CONV1_1 (17),
CONV1_2 (17)

82.6± 5.1 82.8± 7.3 82.5± 7.5 78.0± 9.2 86.5± 5.5 64.9± 10.0

CONV2 512 23 CONV2_1 (5),
CONV2_2 (18)

84.7± 3.7 80.4± 9.4 88.0± 7.0 83.4± 6.9 85.7± 7.6 68.7± 6.1

CONV3 2048 15 CONV3_1 (7),
CONV3_4 (8)

88.7± 4.3 84.0± 9.0 92.2± 5.8 89.0± 7.7 88.5± 6.3 76.8± 8.3

CONV4 4096 34 CONV4_1 (8),
CONV4_2 (4),
CONV4_3 (8),
CONV4_4 (14)

90.5± 4.8 88.3± 10.1 92.2± 4.4 89.4± 9.1 91.3± 5.9 80.6± 10.6

CONV5 4096 27 CONV5_2 (7),
CONV5_3 (8),
CONV5_4 (12)

91.8± 4.5 91.4± 5.4 92.2± 6.5 89.8± 10.5 93.5± 3.2 83.4± 10.0

CF Extraction Level 3 CONV 11,008 25 CONV3_3 (1),
CONV4_2 (3),
CONV4_3 (1),
CONV4_4 (1),
CONV5_1 (5),
CONV5_4 (14)

94.2 ± 2.7 93.3 ± 5.1 94.9 ± 4.1 93.3 ± 5.6 94.9 ± 4.4 88.2 ± 5.5

FCF Extraction Level 1 FC6 4096 36 FC6 (36) 90.5± 2.8 88.3± 7.0 92.2± 4.3 89.4± 6.2 91.3± 5.2 80.6± 5.8
FC7 4096 98 FC7 (98) 90.0± 4.4 87.7± 10.2 91.7± 5.1 88.8± 7.4 90.9± 6.2 79.6± 9.4

FCF Extraction Level 2 FC 8192 36 FC6 (36) 90.5± 2.8 88.3± 7.0 92.2± 4.3 89.4± 6.2 91.3± 5.2 80.6± 5.8

Combined CF FCF
Extraction

CONV_FC 19,200 25 CONV3_3 (1),
CONV4_2 (3),
CONV4_3 (1),
CONV4_4 (1),
CONV5_1 (5),
CONV5_4 (14)

94.2 ± 2.7 93.3 ± 5.1 94.9 ± 4.1 93.3 ± 5.6 94.9 ± 4.4 88.2 ± 5.5
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In addition, the results provided in Table 3 show that the classification results achieved using the
feature sets extracted at CF Extraction Level 2 are generally higher than the results obtained using the
feature sets extracted at CF Extraction Level 1. This can be attributed to the fact that each feature set
extracted at CF Extraction Level 2 is composed of the features obtained from a particular convolution
block of the VGG19 model, while the feature sets extracted at CF Extraction Level 1 is composed of
the features obtained from the individual convolution layers of the VGG19 model. Hence, for the
feature sets extracted at CF Extraction Level 2, the features selection procedure can process the features
extracted from all layers of each convolution block of the VGG19 model. However, in the case of the
feature sets extracted at CF Extraction Level 1, the search space of the features section procedure is
limited to the features obtained from the individual convolution layers of the VGG19 model.

For CF Extraction Level 1, the results presented in Table 3 indicate that the feature sets associated
with high convolution layers, such as CONV5_4 and CONV5_3, generally achieved better classification
results compared to the feature sets associated with low convolution layers, such as CONV1_1 and
CONV1_2. Similarly, for CF Extraction Level 2, the feature sets associated with high convolution blocks,
such as CONV5, obtained better classification results compared to the feature sets associated with low
convolution blocks, such as CONV1. This can be attributed to the fact that high convolution layers tend
to learn abstract features while low convolution layers extract low-level features, such as the edges [53].

3.2. BUS Image Classification Results Obtained by Combining the Deep Features with Handcrafted Features

Table 4 provides a comparison between the classification results achieved by the CONV feature
set and the results obtained by combining the CONV feature set with the handcrafted texture,
morphological, and combined texture and morphological features. In fact, this comparison is performed
using the ten-fold cross-validation procedure that is applied on the BUS images in Dataset 1. As shown
in Table 4, the highest classification performance is achieved by combining the CONV feature set
(11,008 features) with the handcrafted morphological features (18 features) and processing these
combined features using features selection to select a combination that consists of 18 CONV features
and 3 morphological features. In fact, the selected combination of CONV and morphological features
enabled the classification of BUS images with mean accuracy of 96.1%, mean sensitivity of 95.7%,
mean specificity of 96.3%, mean PPV of 95.1%, mean NPV of 96.8%, and mean MCC of 92.0%.
These results indicate that the morphological features, which quantify the shape and structure of
the tumor, include tumor quantification information that complement the tumor quantifications that
are achieved by the CONV feature set. Hence, the combined CONV feature set and morphological
features were able to achieve higher classification performance compared with the CONV feature
set alone. The high classification sensitivity obtained by combining the CONV feature set with the
morphological features indicates that these combined features enable high detection capability of
malignant breast tumors. In addition, the high classification specificity achieved by the combined
CONV feature set and morphological features indicate that these combined features reduce the potential
of misclassifying benign tumors, which in turn reduces the number of unnecessary biopsies performed
for benign tumors.

Furthermore, the results provided in Table 4 indicate that the classification performance achieved
by the CONV feature set matches the classification performance obtained by combining the CONV
feature set with the handcrafted texture features. In addition, the classification performance achieved by
combining the CONV feature set with the handcrafted morphological features matches the classification
performance obtained by combining the CONV feature set with the handcrafted morphological and
texture features. This is attributed to the fact that the features selected by the features selection algorithm
for the CONV feature set are the same features that are selected for the combined CONV feature set and
texture features. In addition, the features selected for the combined CONV feature set and morphological
features are the same features that are selected for the combined CONV feature set, morphological
features, and textures features. These findings suggest that the tumor quantifications obtained by the
CONV feature set include the tumor quantifications achieved by the handcrafted texture features.
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Table 4. The BUS image classification results obtained using the CONV feature set compared with the classification results achieved by combining the CONV feature
set with handcrafted texture and morphological features. For the six performance metrics, the mean ± standard deviation values are computed across the ten folds of
the cross-validation procedure performed using Dataset 1.

Features Total no. of
Features

No. of Selected
Features

Selected Features Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) MCC (%)

CONV feature set 11,008 25 CONV3_3 (1),
CONV4_2 (3),
CONV4_3 (1),
CONV4_4 (1),
CONV5_1 (5),
CONV5_4 (14)

94.2 ± 2.7 93.3 ± 5.1 94.9 ± 4.1 93.3 ± 5.6 94.9 ± 4.4 88.2 ± 5.5

CONV feature set and
texture features

11,808 25 CONV3_3 (1),
CONV4_2 (3),
CONV4_3 (1),
CONV4_4 (1),
CONV5_1 (5),
CONV5_4 (14)

94.2 ± 2.7 93.3 ± 5.1 94.9 ± 4.1 93.3 ± 5.6 94.9 ± 4.4 88.2 ± 5.5

CONV feature set and
morphological features

11,026 21 CONV4_4 (4),
CONV5_4 (14),

morphological (3)

96.1 ± 2.2 95.7 ± 4.2 96.3 ± 3.6 95.1 ± 5.4 96.8 ± 3.1 92.0 ± 5.0

CONV feature set,
texture features, and

morphological features

11,826 21 CONV4_4 (4),
CONV5_4 (14),

morphological (3)

96.1 ± 2.2 95.7 ± 4.2 96.3 ± 3.6 95.1 ± 5.4 96.8 ± 3.1 92.0 ± 5.0
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3.3. Performance Comparison Results

Table 5 provides a comparison between the results obtained using the CONV feature set with
and without features selection, the combined CONV feature set and handcrafted morphological
features with features selection, the handcrafted texture, morphological, and combined texture
and morphological features with features selection, and the fine-tuned VGG19 model. In fact,
this comparison is performed using the ten-fold cross-validation procedure that is applied on the
BUS images in Dataset 1. As shown in the table, the highest classification performance is achieved
using the combined CONV feature set and morphological features after applying the features selection
algorithm. Moreover, the second highest classification performance is obtained using the CONV
feature set after applying the features selection algorithm.

Furthermore, Table 5 shows that the classification results obtained using the CONV feature set
degraded when the features selection algorithm is not applied. This is attributed to the fact that
the CONV feature set is composed of 11,008 features that include relevant features, which enable
effective BUS image classification, as well as redundant and irrelevant features, which degrade the
classification performance. Hence, the performance of the SVM classifier degraded significantly when
all 11,800 features are classified directly by the classier. On the other hand, when the CONV feature set
is processed using the features selection algorithm, the most effective features are selected and used to
classify the BUS images.

In addition, Table 5 shows that the handcrafted texture, morphological, and combined texture
and morphological features, which are processed using the features selection algorithm, achieved low
classification performance compared to the CONV feature set and the combined CONV feature set
and morphological features when the features selection algorithm is applied. In addition, Table 5
indicates that the classification performance obtained using the morphological features is higher than
the texture features. Furthermore, the classification performance is improved by combining the texture
and morphological features. These findings agree with the BUS image classification results reported
in previous studies, such as [7]. Furthermore, Table 5 indicates that the fine-tuned VGG19 model
achieved classification results that are lower than the results obtained using the CONV feature set
when the features selection algorithm is applied. On the other hand, the fine-tuned VGG19 model
outperformed the CONV feature set when the features selection algorithm is not applied.

Figure 2 shows the ROC curves obtained using the CONV feature set and the combined CONV
feature set and morphological features after applying the features selection algorithm. Furthermore,
the figure shows the ROC curve achieved using the combined texture and morphological features
after applying the features selection algorithm as well as the ROC curve obtained using the fine-tuned
VGG19 model. The highest AUC value is obtained using the combined CONV feature set and
morphological features. Moreover, the second highest AUC value is achieved using the CONV feature
set. These results confirm the superior classification performance achieved by combining the CONV
feature set with the morphological features.

The p values obtained using the paired t-tests to compare the classification accuracies of the
combined CONV feature set and morphological features after applying features selection with the
CONV feature set after applying features selection, the combined texture and morphological features
after applying features selection, and the fine-tuned VGG19 model are equal to 0.043, 0.003, and 0.001.
These p values indicate that the classification accuracy achieved by the combined CONV feature set
and morphological features is significantly different than the three other classification approaches at
confidence level of 0.05.
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Table 5. Performance comparison between the classification results obtained using the CONV feature set with and without features selection, the combined CONV
feature set and morphological features with features selection, the handcrafted texture, morphological, and combined texture and morphological features with
features selection, and the fine-tuned VGG19 model. For the six performance metrics, the mean ± standard deviation values are computed across the ten folds of the
cross-validation procedure performed using Dataset 1.

Features Total no. of
Features

No. of
Selected Features

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) MCC (%)

CONV feature set
(with features selection)

11,008 25 94.2± 2.7 93.3 ± 5.1 94.9± 4.1 93.3 ± 5.6 94.9 ± 4.4 88.2 ± 5.5

CONV feature set and
morphological features
(with features selection)

11,026 21 96.1 ± 2.2 95.7 ± 4.2 96.3 ± 3.6 95.1 ± 5.4 96.8 ± 3.1 92.0 ± 5.0

CONV feature set
(without features selection)

11,008 - 80.5 ± 4.5 82.2 ± 9.0 79.3 ± 8.0 74.9 ± 7.1 85.6 ± 7.4 60.9 ± 8.6

Texture features
(with features selection)

800 38 84.2 ± 4.3 81.0 ± 9.6 86.6 ± 6.6 82.0 ± 10.6 85.8 ± 5.5 67.7 ± 9.2

Morphological features
(with features selection)

18 8 87.1 ± 4.7 82.2 ± 8.9 90.8 ± 7.9 87.0 ± 11.9 87.2 ± 6.2 73.6 ± 9.7

Texture and
morphological features
(with features selection)

818 29 87.9 ± 6.1 82.8 ± 12.3 91.7 ± 3.9 88.2 ± 6.1 87.7 ± 7.7 75.2 ± 12.7

Fine-tuning - - 88.2 ± 4.5 83.4 ± 8.0 91.7 ± 5.5 88.3 ± 8.1 88.1 ± 6.9 75.8 ± 9.1
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Figure 2. The ROC curves obtained using the CONV feature set (with features selection), the combined
CONV feature set and morphological features (with features selection), the combined handcrafted
texture and morphological features (with features selection), and the fine-tuned VGG19 CNN model.

3.4. Generalization Performance Results

For the CONV feature set, the values of the classification accuracy, sensitivity, specificity, PPV,
NPV, and MCC obtained by performing the training using Dataset 1 and the testing using Dataset 2
are equal to 93.3%, 90.7%, 94.5%, 89.1%, 95.4%, and 84.8%, respectively. Furthermore, the values of the
classification accuracy, sensitivity, specificity, PPV, NPV, and MCC achieved using the combined CONV
feature set and morphological features are equal to 95.1%, 94.4%, 95.4%, 91.1%, 97.2%, and 89.1%,
respectively. These results are close to the corresponding results in Table 4, which are obtained using
the ten-fold cross-validation analysis that is applied on Dataset 1. This finding suggests that the
classification results reported in the current study can be generalized to other BUS image datasets.

4. Conclusions

The current study contributes to the ongoing efforts to improve BUS image classification by
extracting deep features from the pre-trained VGG19 model at six different deep features extraction
levels, combining the extracted deep features with handcrafted texture and morphological features,
processing the features using a features selection algorithm, and classifying the selected features
using a SVM classifier. The results reported in the current study indicate that the highest classification
performance that can be achieved using the deep features is enabled using the CONV feature set,
which includes features extracted from the layers of all convolution blocks of the VGG19 model.
In addition, the results show that the classification performance of the CONV feature set can be
improved by combining this feature set with handcrafted morphological features. In particular,
the combined CONV feature set and morphological features achieved mean accuracy of 96.1%,
mean sensitivity of 95.7%, mean specificity of 96.3%, mean PPV of 95.1%, mean NPV of 96.8%, and mean
MCC of 92.0%. On the other hand, combining the CONV feature set with the handcrafted texture
features did not improve the classification performance, which suggests that the tumor quantifications
provided by the handcrafted texture features are included in the CONV feature set. The high sensitivity
and specificity values obtained by the combined CONV feature set and morphological features can
enable high detection capability of malignant tumors and reduce the potential of misclassifying benign
tumors as malignant tumors. Furthermore, the performance comparison results provided in the current
study show that both the CONV feature set and the combined CONV feature set and morphological
features outperform the handcrafted texture and morphological features and the fine-tuned VGG19
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model. The results also show that the performance of the CONV feature set degrades when the features
selection algorithm is not applied. This suggests the importance of processing the deep features using
features selection algorithms to enable high classification performance. The generalization performance
analysis conducted in the current study indicates that the CONV feature set and the combined CONV
feature set and morphological features can be used to achieve high classification performance in
other BUS image datasets. The future directions of the current study include combining the deep
features that are extracted from the BUS image using different pre-trained CNN models with the goal
of improving the classification performance.
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