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Entry inhibitors: New advances in HCV treatment

Xi-Jing Qian, Yong-Zhe Zhu, Ping Zhao and Zhong-Tian Qi

Hepatitis C virus (HCV) infection affects approximately 3% of the world’s population and causes chronic liver diseases, including liver

fibrosis, cirrhosis, and hepatocellular carcinoma. Although current antiviral therapy comprising direct-acting antivirals (DAAs) can

achieve a quite satisfying sustained virological response (SVR) rate, it is still limited by viral resistance, long treatment duration,

combined adverse reactions, and high costs. Moreover, the currently marketed antivirals fail to prevent graft reinfections in HCV

patients who receive liver transplantations, probably due to the cell-to-cell transmission of the virus, which is also one of the main

reasons behind treatment failure. HCV entry is a highly orchestrated process involving initial attachment and binding, post-binding

interactions with host cell factors, internalization, and fusion between the virion and the host cell membrane. Together, these processes

provide multiple novel and promising targets for antiviral therapy. Most entry inhibitors target host cell components with high genetic

barriers and eliminate viral infection from the very beginning of the viral life cycle. In future, the addition of entry inhibitors to a

combination of treatment regimens might optimize and widen the prevention and treatment of HCV infection. This review summarizes

the molecular mechanisms and prospects of the current preclinical and clinical development of antiviral agents targeting HCV entry.
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INTRODUCTION

Hepatitis C virus (HCV) belongs to the family Flaviviridae and infects

more than 180 million people worldwide. HCV infection is considered

as a major public health problem and consumes millions of dollars in

medical expenses every year.1,2 HCV has a total of seven identified

genotypes, with more than 50 subtypes and millions of quasispecies.

The high variability and complexity of the virus make it difficult to

manufacture effective prophylactic or therapeutic vaccines to prevent

the pathogen from spreading. Approximately 70% of acutely infected

patients will ultimately develop chronic infections despite the imple-

mentation of advanced medical care and intervention.3 Due to its

biological characteristics, HCV infection is one of the leading causes

of liver-associated diseases, such as cirrhosis, steatosis, and hepatocel-

lular carcinoma, whose end-stage patients require liver transplanta-

tion to stay alive.4 Unfortunately, the reinfection of a graft is difficult

to avoid due to the lack of preventive strategies.5

The previously recommended treatment for HCV infection was a

combination therapy consisting of PEGylated interferon alpha and

ribavirin.3 In recent years, HCV treatment has undergone a ground-

breaking evolution. Direct-acting antivirals (DAAs), such as protease

inhibitors (boceprevir or telaprevir in 2011), have revolutionized the

current status of HCV treatment. Triple-combination therapy

improves sustained virological response (SVR) rates in naive genotype

1 patients by more than 70%. However, the two first-generation prote-

ase inhibitors that are typically used easily lead to the development of

drug-resistant variants, and concomitant adverse reactions such as

fatigue or anemia unavoidably reduce patient compliance with the

regimen.4,6,7 A second-wave first-generation protease inhibitor, sime-

previr, and a nucleotide analog, sofosbuvir, were approved by the

United States in 2013 via the FDA and by Europe in 2014 for the

treatment of hepatitis C (HC).7–9 In October 2014, the use of ledipas-

vir/sofosbuvir was approved by the FDA, and in December, an inter-

feron-free regimen including an ombitasvir/paritaprevir/ritonavir

combination tablet and dasabuvir was also approved for the treatment

of genotype 1 patients.10–15 A number of other DAAs and host-tar-

geted agents (HTAs) are undergoing clinical trials. Daclatasvir is an

NS5A inhibitor and is currently being evaluated in an advanced clin-

ical trial as a component of a combination therapy.16 In fact, the

combination of daclatasvir and asunaprevir (an HCV NS3/4A prote-

ase inhibitor) has been approved for the treatment of genotype 1

patients in Japan.16 The future of HCV therapy is likely to be consist

of interferon-free regimens with pan-genotypic activity, higher anti-

viral efficiencies, shorter treatment durations, and fewer adverse reac-

tions. The emerging novel antivirals should optimize the treatment

options, especially for difficult-to-treat patients, such as those who are

suffering from advanced liver diseases or other co-infections and who

have poor response rates to current regimens.17,18

HCV entry represents the beginning of viral infection, which is highly

orchestrated and essential in initiating viral infection and spread. HCV

entry includes the initial recruitment and attachment of the virus to

hepatocytes, post-binding interactions with host entry factors, clathrin-

mediated endocytosis, and a final low pH-triggered membrane fusion to

release viral RNA into the cytosol (Figure 1). The blocking of viral entry

can efficiently eradicate HCV infection at the very first step, before viral

genomes start to emerge, and might prevent cell-to-cell transmission,

which is also required for viral spread. The current antiviral agents that

are on the market or being evaluated in clinical trials mainly focus on

targeting HCV nonstructural protein maturation or viral RNA syn-

thesis. Although the currently used cocktail therapy is believed to cure

more than 90% of infected patients, the appearance of viral resistance,
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null responders or treatment failure, superimposed with the adverse

effects caused by the drugs, is still a major limitation that must be

resolved.19 As an RNA virus, HCV very easily develops a resistance to

antiviral treatments due to its error-prone replication property. Most

entry inhibitors target host components, such as receptors or key

enzymes, which are required for HCV entry and definitely have high

genetic barriers to resistance due to their conserved nature. Therefore,

these inhibitors tend to not only have pan-genotypic activity against

virus infection but also have a greater risk of simultaneously causing

cellular toxicity. Moreover, as the initial step of the viral life cycle has

been blocked, entry inhibitors also have prophylactic properties.

Because entry inhibitors target a different stage of the viral life cycle

than the currently used anti-HCV drugs, they might have a synergistic

effect when combined with the current regimens, especially with DAAs,

providing multiple novel targets and new insight into antiviral strategies

and complementary existing antiviral interventions, such that viral

clearance may finally be achieved. This article reviews the entry inhibi-

tors that are currently in development.

HCV ENTRY INTO HEPATOCYTES

Initial low-affinity attachment and binding

In vivo, circulating HCV particles reach the basolateral surfaces of hepa-

tocytes, where the virus first binds to several receptors with low affinity,

allowing it to become concentrated on the host cells’ surfaces to enable

subsequent interactions with other essential entry factors (Figure 1).

These attachment factors include glycosaminoglycans (GAGs) on

heparan sulfate (HS) and low-density lipoprotein receptor (LDLR).

Both of these receptors are able to interact with viral envelope proteins

and apoE on lipo-virion particles (LVPs).20–22 HCV exists as LVP with

LDL and VLDL in the circulatory systems of chronically infected

patients. Recent studies have demonstrated that LDLR plays an import-

ant role in HCV attachment to target cells.23 The knockdown of this

receptor by small interfering RNA (siRNA) potently reduces virus infec-

tivity, and a soluble form of LDLR can impair virus binding by inter-

acting with HCV particles.24 Although this receptor is dispensable for

lipid/cholesterol-free HCVpp entry, productive HCV infection, includ-

ing viral entry and replication, requires the involvement of LDLR.24,25
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Figure 1 HCV entry into hepatocytes and antiviral agents targeting entry factors. The HCV lipoviral particle (LVP) is recruited and binds to glycosaminoglycans and low-

density lipoprotein receptor on host cells. After binding, the virions interact with a series of entry factors. SRB1 plays a role in both binding and post-binding. CD81

interacts with HCV E2, forms a complex with claudin-1 (CLDN1), and mediates HCV movement to the tight-junction areas. This process is regulated by the receptor

tyrosine kinase (RTK) family, including epidermal growth factor receptor (EGFR) and ephrin receptor A2 (EphA2). The virions internalize into host cells by clathrin-

mediated endocytosis. Transferrin receptor 1 (TfR1) facilitates viral entry after CD81, possibly during HCV particle endocytosis. Niemann Pick C1-like 1 (NPC1L1)

plays an important role in cholesterol transportation and is a cofactor for HCV entry during post-binding steps. Low pH-dependent membrane fusion between

endosome and HCV particle. Red words and lines indicate the antiviral agents targeting different stages and factors of HCV entry.

HCV entry inhibitors

X-J Qian et al

2

Emerging Microbes and Infections



The lectin cyanovirin-N (CV-N) is a type of carbohydrate-binding

agent that has potent antiviral activity against HCV. This small com-

pound impairs virus binding by interacting with viral envelope glyco-

proteins at their high-mannose oligosaccharides (Table 1).26 Recent

studies have identified boronic acid-modified lipid nanoparticles (BA-

LNC) as potent inhibitors of HCV entry through a mechanism similar

to that of lectins. BA-LNCs could be used as a pseudolectin-based

therapeutic agent to develop novel HCV entry inhibitors.27 Ficolins

are a type of serum protein related to collectins.28 Neutralizing con-

centrations of L-ficolin can be found in the sera of HCV-infected

patients. Additionally, a recent study shows that recombinant human

L-ficolin can neutralize HCV particles directly and inhibit virus

attachment by neutralizing the viral glycoproteins E1 and E2.29

Heparin is a structural analog of HS that can competitively inhibit

virus binding to host cells. A series of heparin-derived molecules are

undergoing evaluation for their potential to serve as anti-HCV

agents.21,90 Heparanase, an enzyme that degrades HS on host cell

surfaces, can also impede both HCV E2 and HCVcc binding to host

cell surfaces (Table 1).21

Epigallocatechin gallate (EGCG) and its derivatives are natural

polyphenol compounds that are abundant in green tea extracts and

have long been considered to regulate lipid metabolism, thereby hav-

ing the potential to affect a variety of diseases.91 Studies suggest that

EGCG and its derivatives impair virus binding to the host cell by

interfering with virion E1/E2 function and simultaneously blocking

cell-to-cell transmission in vitro (Table 1).30–32 Additionally, limited

sampling estimates of EGCG in HCV patients suggest that a single oral

dose of up to 400 mg of this green tea extract is safe and well toler-

ated.92 Additional experiments are needed to evaluate the possibility of

using this compound as a candidate for anti-HCV therapy.

Lactoferrin (LF) is an iron-binding glycoprotein that belongs to the

transferrin family; it is abundant in milk and most biological fluids.93

The antiviral activity of LF is relatively well understood. LF is thought to

function by directly interfering with HCV particles to prevent their

attachment to host cells both in vitro and in vivo.33 Bioactive peptides,

such as the N-lobe or C-lobe of LF, also inhibit virus infection.35 Among

all species, camel lactoferrin (cLF) shows the most effective antiviral

property and is now being evaluated in a clinical trial (Table 1).34

The p7 is a polypeptide of the HCV-encoded protein in the endo-

plasmic reticulum membrane and is essential for infectious viral pro-

duction in vivo.94,95 A recent study revealed that a p7 ion channel-

derived peptide H2-3 potently inhibits HCV entry by directly affecting

virus binding to the cell surface and interfering with the virus–host

interaction (Table 1).36

Table 1 The process of viral entry and targets for antiviral agents with their development stage

Process of entry Target Representatives of compounds Developmental stage References

Attachment Lectin cyanovirin-N Cell culture 26

BA-LNC Cell culture 27

Ficolin Cell culture 28,29

Heparin and heparin-derived compounds Cell culture 21,28

Heparanase Cell culture 21

EGCG and its derivatives Cell culture 30–32

Lactoferrin Phase I 33–35

A p7 ion channel-derived peptide H2-3 Cell culture 36

Post-binding interactions with

entry factors

CD81 Imidazole-based compounds Cell culture 37

Anti-CD81 mAbs Mouse model 38–43

Soluble CD81 LEL Cell culture 42,44–48

SRB1 Serum amyloid A Cell culture 49,50

Anti-SRB1 pAb and mAb Mouse model 51–54

ITX5061 Phase I/IIa 55–58

CLDN1 Anti-CLDN1 peptides Cell culture 59

Anti-CLDN1 pAb and mAb Mouse model 60–62

EGFR Erlotinib Phase I/IIa 63

EphA2 Dasatinib Cell culture 63

TfR1 Anti-TfR1 mAbs Cell culture 64

Ferristatin Cell culture 64

NPC1L1 Anti-NPC1L1 mAbs Cell culture 65

Ezetimibe Mouse model 66

Clathrin-mediated endocytosis Chlorpromazine Cell culture 67

Arbidol Cell culture 68

Fusion and uncoating Endosome acidification Concanamycin A Cell culture 69

Bafilomycin A Cell culture 69

Chloroquine Cell culture 70,71

Ammonium chloride Cell culture 70,71

Lipid composition of virus

or host cell

Arbidol Cell culture 72

Phenothiazines Cell culture 73

RAFIs (aUY11) Cell culture 74,75

LJ001 Cell culture 76

Silymarin Cell culture 77,78

Unclear mechanism Ferroquine Cell culture 79

PS-ONs Mouse model 80

Natural compounds and small

molecules

Flavonoids, terpenoids, tannic acid, gallic

acid, PF-429242

Cell culture 81–86

FDA-approved drugs CCZ, sorafenib, aspirin Phase Ib Cell culture 87–89
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Post-binding interactions with specific entry factors

Subsequent to virus binding, LVPs start to form contacts with a series

of entry factors on host cells. Targeting these relatively conserved

factors, which are indispensable for the early life cycle of the virus,

builds up genetic barriers against antiviral agents. HCV entry requires

several host factors, including the tetraspanin molecule CD81, scav-

enger receptor class B type 1 (SRB1), the tight junction (TJ) proteins

claudin-1 (CLDN1) and occludin (OCLN), transferring receptor 1

(TfR1), the receptor tyrosine kinases (RTKs) epidermal growth factor

receptor (EGFR) and ephrin receptor A2 (EphA2), and Niemann-Pick

C1-like 1 (NPC1L1) cholesterol uptake receptor (Figure 1).

CD81 was the first of these factors to be identified and is the best

understood HCV entry factor. It is a ubiquitously expressed, 26 kDa

transmembrane protein that consists of a small extracellular loop

(SEL) and a large extracellular loop (LEL).96–98 The CD81 LEL is

believed to interact with the HCV E2 protein, which contributes

directly to HCV infection. Imidazole-based compounds simulate the

D-helix of CD81 and are relatively safe small molecule inhibitors of

HCV. They selectively abrogate the function of CD81 during HCV

entry, while the remaining physiological functions of CD81 are basic-

ally preserved (Table 1).37 Specific anti-CD81 monoclonal antibodies

(mAbs), such as JS-81 or the newly developed K04, counteract E2-

CD81 interactions, interfering with viral entry during a post-binding

process and inhibit HCV infection in humanized mice (Table 1).38–43

A soluble recombinant form of CD81 LEL shows effective anti-HCV

activity and is able to inhibit the entry of HCVpp, HCVcc, and serum-

derived HCV, as well as HCV infection, in vivo (Table 1).42,44–48

However, because CD81 is widely distributed in all tissues, the toxicity

issues that are associated with using CD81-based antibodies or com-

pounds should be evaluated carefully.

SRB1 is a horseshoe-shaped glycoprotein that is closely related to

lipid metabolism. SRB1 binds diverse lipoproteins, including HDL,

LDL, and oxLDL and plays key roles in bidirectional cholesterol trans-

port, possibly modulating HCV entry into host cells.99,100 The extra-

cellular loop of SRB1 interacts with the HCV E2 HVR1 region and is

required for viral entry during both binding and post-binding

steps.51,101 Serum amyloid A (SAA) is an acute-phase protein that is

produced by the liver.102,103 There is a close relationship between SAA

and HDL in modulating HCV infectivity.50 SRB1 binds to and inter-

nalizes SAA, and SAA inhibits HCV entry by interacting with the virus

(Table 1).49,50 Antibodies targeting SRB1 inhibit virus infection and

spread both in vitro and in a humanized mouse model (Table 1).51–54

The preclinical compound ITX5061 is a small-molecule antiviral that

impedes the uptake of HDL through SRB1, thus blocking the uptake of

viral particles.55,56 An in vitro study indicated that ITX5061 functions

synergistically with DAAs, making it a promising candidate for future

combination therapy.57 This compound has just finished evaluation in

a phase Ib study and is now undergoing a phase II clinical trial in HCV-

positive patients (Table 1).58

CLDNs and OCLNs are components of TJs. CLDN1 is believed to

form a complex with CD81 and to contribute to efficient HCV inter-

nalization.104–106 The expression of CLDN1, CD81, and SRB1 can

confer HCVpp entry into HEK293 cells.107 CLDN1 is highly expressed

in hepatocytes, making it an ideal and promising target for the

development of specific prophylactic antiviral agents.108 A human

CLDN1-derived peptide (CL58) was screened out from an overlap-

ping peptide library and was confirmed to have antiviral activity dur-

ing a late post-binding step without affecting TJ integrity (Table 1).59

CLDN1 mAbs and pAbs show potent inhibitory effects on HCV infec-

tion, probably because they can neutralize E2-CD81-CLDN1 associa-

tions with low toxicity in primary human hepatocytes (PHHs) and

humanized mice (Table 1).60–62 However, a recent study has suggested

that broad CLDN tropism permits its escape from CLDN1 Abs

because the virus can utilize CLDN6 proteins in the same cell, provid-

ing new insight into CLDN usage during HCV infection.109 OCLN is

also a key entry factor for HCV, as the expression of human OCLN and

CD81 in mouse liver leads to viral permissivity in this originally non-

susceptible animal model, while the silencing of this receptor perturbs

HCV entry during a late post-binding step.110–112 A recent study found

that the overexpression of miR-122 can decrease HCV entry by down-

regulating OCLN.113

EGFR and EphA2 are two well-understood RTKs and have recently

been identified as host cofactors of HCV entry by a functional siRNA

kinase screen.63 These two kinases are highly expressed in human liver,

and their specific inhibitors erlotinib (an EGFR inhibitor) and dasa-

tinib (an EphA2 inhibitor), two clinically approved anticancer com-

pounds, significantly impair viral entry in both polarized hepatoma

cells and PHHs; erlotinib has also been effective in human-liver chi-

meric mice (Table 1).63 RTKs modulate viral entry at post-binding

steps by interfering with CD81–CLDN1 complex association and

blocking cell-to-cell transmission, all of which makes these two

RTKs promising targets for developing anti-HCV agents, especially

for the prevention of graft reinfection in chronic HCV patients who

must undergo liver transplantation.114 Still, the specific efficacy and

safety of using the currently licensed inhibitors of RTKs in HCV treat-

ment requires further clinical evaluation.

Clinical observational data suggest that an iron metabolic disorder

might occur in HCV-positive patients.115–117 Transferrin receptor 1

(TfR1), an iron uptake receptor, is widely expressed in mammalian

cells, including hepatocytes, and its trafficking protein (TTP) is

involved in HCV entry. Both a specific anti-TfR1 mAb and a TfR1

inhibitor, ferristatin, impede HCV infection without affecting viral

RNA replication when treatment is applied before virus incubation

(Table 1).64 Kinetic experiments suggest that TfR1 facilitates HCV

entry at a post-binding step, most likely after CD81.64 Further studies

are needed to identify the functional domain of TfR1 that is used

during HCV entry, which will enable the development of specifically

targeted antiviral agents. However, HCV cell-to-cell transmission is

not completely reduced after treatment with either the anti-TfR1 anti-

body or the TfR1 inhibitor, indicating that a different potential mech-

anism might be involved in this process.

NPC1L1 is a 13 transmembrane cholesterol transport receptor that

is highly expressed on the apical surfaces of human enterocytes and the

canalicular membranes of human hepatocytes.118,119 The main func-

tion of it is to modulate cholesterol homeostasis in the body.120

A correlation exists between the NPC1L1 level and HCV infection.66

Specific antibodies, especially ones that target the NPC1L1 large extra-

cellular loop 1 (LEL1), effectively eradicate HCV entry in a manner

similar to that of CD81 antibodies, indicating the potential action

mode of this receptor.65 Ezetimibe is an FDA-approved NPC1L1 ant-

agonist that is clinically used to treat hypercholesterolemia. The

application of ezetimibe inhibits HCV entry and cell-to-cell transmis-

sion in vitro, while in vivo, this drug delays the establishment of geno-

type 1 HCV infections in severe combined immunodeficiency (SCID)

mice with humanized hepatocytes (Table 1).66 The therapeutic win-

dow in humans has not yet been determined.

Clathrin-mediated viral endocytosis and membrane fusion

After interacting with a series of receptors, HC virions are internalized

into cells via a highly coordinated process, most likely through
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clathrin-mediated endocytosis together with some cell entry factors,

such as CD81 and CLDN1.70 The trafficking of the CD81–CLDN1

receptor complex promotes simultaneous virus internalization and

fusion.60,104,106 During this process, the internalized vesicles form

early and late endosomes, which are then prepared for the subsequent

virion-cell fusion process.69 The use of either siRNA molecules target-

ing the clathrin heavy chain or the specific inhibitor chlorpromazine,

which effectively interferes with clathrin-coated pit formation,

impairs HCVpp entry and HCVcc infection in host cells (Table 1).67

Arbidol is an indole-derivative molecule that is licensed as an anti-

influenza drug in China and Russia.121,122 This broad-spectrum anti-

viral uses several approaches to inhibit HCV cell entry. One of its

antiviral mechanisms involves affecting clathrin-mediated endocyto-

sis by impairing clathrin-coated pit release and dynamin-2-induced

membrane scission (Table 1).68

Membrane fusion between the virus and host cell is the final step

before the viral genome is released into the cytosol to start translation

and replication.123 The envelope proteins are primed by virus–recep-

tor interactions (most likely CD81) to become sensitive to low pH, and

the fusogenic conformational changes of the related peptides are acti-

vated by the acidic environment and proper temperature of the endo-

somal lumen.71,90,124 Lipids, including cholesterol and sphingomyelin

(SM), are essential components that facilitate HCV fusion.125,126

Studies have shown that the addition of cholesterol enhances the

fusion efficiency of the HCV particle. Additionally, among virions

of different densities, the lowest-density particle, HCVcc, exhibits

the highest specific fusogenicity.127

HCV fusion inhibitors are basically characterized into the following

three groups. The first group targets the acidification-triggering mech-

anism of virion–cell membrane fusion. Currently available acidifica-

tion inhibitors include concanamycin A and bafilomycin A, two

potent inhibitors of vacuolar ATPases (Table 1).69 Chloroquine and

ammonium chloride are also considered to disturb endosome acidi-

fication and to suppress the occurrence of membrane fusion in a dose-

dependent manner (Table 1).70,71 The second group focuses on the

lipid compositions of both virus and host cells, which are indispens-

able throughout the process of virus fusion. In addition to its inhib-

itory effect on viral endocytosis, the indole-derivative arbidol also

inhibits HCV membrane fusion, most likely via a dual-binding mode

that involves aromatic residues in viral glycoproteins and phospholi-

pids at the membrane–water interface, thus impeding the required

conformational changes of fusion peptides during virus fusion

(Table 1).72 Phenothiazines are small-molecule compounds contain-

ing nitrogen and sulfur tricyclic structures. Recently, three phenothia-

zine compounds have been identified as potent HCV entry inhibitors

(Table 1); they suppress virion–cell membrane fusion by incorporat-

ing into target membranes and increase the fluidity of cholesterol-rich

membranes, destabilizing the pre-fusion state of the virus.73 Rigid

amphipathic fusion inhibitors (RAFIs) are a class of synthetic rigid

amphiphiles that are similar to phospholipids. RAFIs can interact with

envelope lipids and increase the activation barrier of viral proteins,

leading to the blockage of increased negative curvature during the

initial viral fusion stage (Table 1).74 AUY11 is a representative ara-

bino-based RAFI.75 LJ001 is a small-molecule compound that specif-

ically intercalates into viral membranes to inactivate the virion from a

pre-fusion state, thereby blocking virus fusion (Table 1).76 Silymarin is

a compound mixture of several flavonolignans and flavonoid taxi-

folins; it inhibits HCV infection both in vitro and in vivo in a similar

pattern to that of arbidol (Table 1).77,78 The third group of fusion

inhibitors includes several compounds with unclear mechanisms,

including ferroquine, a chloroquine analog, and phosphorothioate

oligonucleotides (PS-ONs), which act as amphipathic DNA poly-

mers.79,80 PS-ONs inhibit HCV infection both in vitro and in vivo,

possibly at the fusion step (Table 1).

Some natural, plant-derived compounds, such as the flavonoid

ladanein, the terpenoids saikosaponin, oleanolic acid, tannic acid or

gallic acid, or the small molecule SKI-1/SIP inhibitor PF-429242, have

antiviral activities against HCV during an early stage of viral infection

(Table 1).81–86 However, their exact antiviral mechanisms and poten-

tial applications in clinical practice require further investigation and

evaluation.

Moreover, several FDA-approved drugs that have already been

qualified for clinical application have shown antiviral activities against

HCV infection. Chlorcyclizine HCl (CCZ) is an over-the-counter

anti-histamine drug for allergy symptoms. CCZ blocks late-stage of

HCV entry before viral replication and is now undergoing a phase Ib

clinical trial.87 Sorafenib is a multi-kinase inhibitor that has been

approved for the treatment of hepatocellular carcinoma.128 A recent

study shows that sorafenib inhibits both HCV entry and production

and affects CLDN1 expression and localization.88 Aspirin, a com-

monly used analgesic and anti-platelet drug, blocks HCV entry by

downregulating CLDN1 (Table 1).89 These drugs are relatively access-

ible and affordable agents with an established clinical safety profile,

thereby becoming promising candidates for drug repurposing for the

treatment HCV infection.

CONCLUSIONS AND PERSPECTIVES

The unveiling of the molecular mechanisms of HCV entry in recent

years has largely promoted the development of entry inhibitors tar-

geting different stages of the early viral life cycle. Because viral entry is

essential for the initiation, spread, and maintenance of HCV infection,

great potential and numerous prospects exist for entry inhibitors to be

applied as members of cocktail therapy in future HCV treatments.

Although newly identified entry inhibitors have emerged continuously

in recent years, most of them still remain in the in vitro stages of

testing. Until now, only a few have entered clinical trials, including

the most advanced entry inhibitor, ITX5061, which targets the host

entry factor SRB1 to interfere with virus infection. This compound is

currently undergoing phase II clinical trials and appears to be a prom-

ising option for future combination therapy.9,56,63 Regardless of its

outcome, ITX5061 provides a good example for the study and

development of entry inhibitors. Moreover, several compounds with

favorable anti-HCV potencies have already been approved to treat

other diseases in the clinic and provide a good method of screening

for novel entry inhibitors of HCV. Table 1 summarizes the targets and

developmental stages of current antiviral agents during the HCV entry

process.

Unlike the currently marketed anti-HCV DAAs, which target viral

proteins of high variability, most entry inhibitors are HTAs with high

genetic barriers, which are valuable features for avoiding viral escape,

due to their conserved nature. Because all of the major HCV genotypes

are believed to enter host cells via the same cellular pathways, the

antiviral activities of most entry inhibitors tend to be genotype-inde-

pendent.129 Moreover, entry inhibitors are also bestowed with the

unique advantage of preventing cell-to-cell transmission as long as

their antiviral targets cover common factors in both cell-free and

cell-to-cell viral spread.130 Additionally, such drugs will help end-stage

HCV patients resist graft reinfection after undergoing liver trans-

plantation. A series of novel antiviral agents is currently being tested

in in vitro assays or in vivo animal models. Some of these agents have
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entered the clinical stage for evaluation in patients. The satisfactory

outcomes of this class of entry inhibitors should complement current

treatment approaches and lead to more efficient, economical and

better tolerated options for HCV patients, especially difficult-to-treat

patients.
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