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A B S T R A C T   

In sampling theory, a majority of the available estimators of population variance are designed for 
use with non-sensitive variables only. Such estimators cannot perform efficiently when the var-
iable of interest is of sensitive nature, such as use of drugs, illegal income, abortion, cheating in 
examination, the amount of income tax payable, and the violation of rules by employees, etc. In 
the current literature, the shortage of research studies on variance estimators of a sensitive 
variable has created a big research gap and a room for improvement in the efficiency of such 
estimators. In this paper, a new randomized scrambling technique is proposed, along with a new 
estimator of population variance. The new estimator achieves improvement in efficiency over the 
available variance estimators. The proposed estimator is designed for use with simple random 
sampling and uses the information on an auxiliary variable. The improvement in efficiency is 
shown for different choices of constants. Besides efficiency, improvement in the unified measure 
of estimator quality is also achieved with the proposed estimator under the new randomized 
response model.   

1. Introduction 

Survey researchers are often faced with refusals and false responses in sample surveys on sensitive topics. Respondents often fail to 
provide truthful information on question related to sensitive issues such as abortion, use of drugs, illegal income, and cheating in 
examination. Introduced in 1965, the randomized response techniques can be a good alternative to the direct-questioning method 
when collecting information on sensitive variables. The Warner’s [1] randomized response technique and its modified variants are 
designed to get sensitive information from the respondents yet protecting their privacy. Warner [2] introduced the use of a scrambling 
variable for the purpose of the respondents’ privacy protection. A drawback of the Warner’s [2] technique was that it forced every 
respondent to scramble his/her response even if the respondent perceived the question as non-sensitive. To alleviate this problem, 
Gupta et al. [3] introduced what is called the optional randomized response model. With optional randomization techniques, the 
respondents have the option to either provide the true response or go for reporting a scrambled response. The respondent’s decision to 
report the true or a scrambled response depends on whether he/she perceives the question being asked as sensitive or not. Unlike the 
usual additive or multiplicative scrambling methods, a recent study of Azeem [4] introduced the idea of exponential scrambling 
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technique. 
In sampling theory, Cochran [5] laid the foundation of using auxiliary information in estimating the population parameters by 

introducing ratio-type estimators. Later on, Das and Tripathi [6] suggested using the auxiliary information in the estimation of the 
variance of a finite population. Isaki [7] introduced a ratio estimator for the variance based on an auxiliary variable. Singh et al. [8] 
analyzed calibration estimators for the population variance. Kadilar and Cingi [9] used auxiliary variable to develop improved esti-
mators of the variance of population. The new estimators achieved a significant improvement in efficiency over previous estimators. 
Subramani and Kumarapandiyan [10] suggested a variance estimator based on the median of the supplementary variable. 

Gupta et al. [11] developed a generalization of the estimators of the variance under a linear scrambling model. The findings of the 
study suggested that the new estimator was more precise than the Isaki’s [7] estimator under the linear response model. Recently, 
Saleem et al. [12] developed a new randomized response model and presented a novel estimator of the variance based on two auxiliary 
variables. The new estimator gained a significant boost in efficiency over the available variance estimators. 

Zaman and Bulut [13] utilized the mathematical function of the auxiliary variable parameters to develop new variance estimators. 
In another study, Zaman and Bulut [14] suggested new estimators of variance by using the minimum covariance determinant. Another 
recent study of Zaman et al. [15] suggests a randomized technique for improving the efficiency of estimates using group discussion. 

Using a new scrambling model, this paper presents an efficient variance estimator based on a non-sensitive ancillary variable. The 
suggested estimator is found to achieve a big improvement in efficiency over the Gupta et al. [11] estimator, and the Isaki [7] estimator 
under the proposed randomized response model. 

This paper is outlined as follows: 
Section 2 presents the mathematical notations and assumptions which have been used in the subsequent sections. Section 3 presents 

the mathematical equations of some of the available estimators from the literature. Section 4 presents the proposed variance estimator 
and its algebraic properties under the proposed randomized response model. Section 5 provides the performance evaluation measures 
for the proposed variance estimator. In Section 6, the performance of the suggested estimator is compared with the existing estimators 
and the results have been presented in tables. Section 7 presents a detailed discussion related to the findings of the analysis and the 
conclusion of the study. 

2. Notations 

Suppose the population of interest contains N units U1,U2, ...,UN and consider a simple random sample of n units obtained from a 
target population. Let the sensitive-type variable under consideration be denoted by Y, with X being the notation for an auxiliary 
variable having positive correlation with variable Y. Further, (xi, yi) denotes the value of (X,Y) corresponding to the ith unit of the 
population. The mathematical expressions for the different parameters and their estimators have been provided in Table 1. 

3. Variance estimators in literature 

A simple unbiased estimator of the variance may be expressed as: 

t0 = s2
y . (1) 

The sampling variance of the estimator in equation (1) may be expressed as: 

Table 1 
Notations for sample and population data.  

Notation Meaning 

X =
1
N
∑N

i=1
xi 

Population Mean of X 

Y =
1
N
∑N

i=1
yi 

Population Mean of Y 

x =
1
n
∑n

i=1
xi 

Sample Mean of X 

y =
1
n
∑n

i=1
yi 

Sample Mean of Y 

S2
x =

1
N − 1

∑N
i=1

(xi − X)2 Population Variance of X 

S2
y =

1
N − 1

∑N
i=1

(yi − Y)2 Population Variance of Y 

s2
x =

1
n − 1

∑n
i=1

(xi − x)2 Sample Variance of X 

s2
y =

1
n − 1

∑n
i=1

(yi − y)2 Sample Variance of Y 

λrs =
μrs

μ
r
2
20μ

s
2
02 

Moment ratio, where ‘r’ and ‘s’ denote positive integers. 

μrs =
1

N − 1
∑N

i=1
(yi − Y)r

(xi − X)s  Cross-product moment, where ‘r’ and ‘s’ denote positive integers.  
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Var(t0)= θS4
y(λ40 − 1), (2)  

where θ = 1
n, and λ40 in equation (2) can be obtained from the general moment ratio λrs presented in Table 1. 

Diana and Perri [16] proposed a linear model as: 

Z = TY + S, (3)  

where Z is the response observed by the interviewer, and T and S denote scrambling/random variables, such that E(T) = 1 and E(S) =

0. 
Under the scrambling model given in equation (3), the variance of Z can be derived as: 

S2
z = S2

TY + S2
S,

= S2
T S2

y + S2
T μ2

y + S2
y + S2

S,

or 

S2
y =

S2
z − S2

S − S2
T Z2

S2
T + 1

. (4) 

If the variable of interest Y is sensitive, a randomized variant of the variance estimator t0 can be obtained by replacing S2
z and Z2 by 

s2
z and z2, respectively. From equation (4), we get the following basic estimator of the variance: 

t0(R)=
s2

z − S2
S − S2

T z2

S2
T + 1

. (5) 

The estimator in equation (5) can be used in the development of ratio estimators of population variance. 
Isaki [7] presented a ratio estimator for the population variance, which can be expressed as: 

t1 = s2
y

(
S2

x

s2
x

)

. (6) 

The bias and Mean Square Error (MSE) of the estimator given in equation (6), up to the first order of approximation, can be 
expressed as: 

Bias(t1)= θS2
y(λ04 − λ22), (7)  

and 

MSE(t1)= θS4
y(λ40 + λ04 − 2λ22). (8) 

The moment ratios λ40, λ04, and λ22 in equation (7) and equation (8) can be obtained from the general expression of λrs presented in 
Table 1. 

Using the linear model, Gupta et al. [11] proposed the following generalized variance estimator: 

t2(R)=

[((
s2

z − S2
S − S2

T z2

S2
T + 1

)

+
(
S2

x − s2
x

)
)(

αS2
x + β

w
(
αs2

x + β
)
+ (1 − w)

(
αS2

x + β
)

)g]

, (9)  

where g, w, α, and β are predetermined constants. For different values of constants, we can obtain special cases of the estimator given in 
equation (9). 

The bias in the estimator t2(R) up to the first order of approximation may be derived as: 

Bias(t2(R))=
− θS2

T Z2

S2
T + 1

C2
z −

αgwθS2
x

αS2
x + β

[
S2

z (λ22 − 1) − 2S2
T Z2λ12Cz

S2
T + 1

− S2
x(λ04 − 1)

]

, (10)  

In equation (10), the notation C2
z can be expressed as: 

C2
z =C2

y S2
T +

S2
S

Y2
.

The optimum MSE of t2(R) may be expressed as: 

MSE(t2(R))opt =
θ

(
S2

T + 1
)2

[(
S4

z (λ40 − 1)+ 4S4
T Z4C2

z − 4S2
z S2

T Z2λ30Cz
)
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−
1

(λ04 − 1)
(
S2

z (λ22 − 1) − 2S2
T Z2λ12Cz

)2
]

. (11) 

The expression for optimum MSE in equation (11) can be used for the purpose of efficiency comparison. Saleem et al. [12] proposed 
a generalized estimator of population variance as: 

tg =

[

k1

(
s2

z − S2
S − S2

T z2

S2
T + 1

)

+ k2
(
S2

x1 − s2
x1

)
+ k3

(
S2

x2 − s2
x2

)
]

exp
(

S2
x1 − s2

x1

S2
x1 + s2

x1

)α1(S2
x2

s2
x2

)α2

, (12)  

where k1, k2, k3, α1, and α2 are generalizing constants, (S2
x1, S2

x2) and (s2
x1, s2

x2) denote the population and sample variances of the 
auxiliary variables X1 and X2. Saleem et al. [12] also discussed many special cases of the estimator presented in equation (12). Two 
special cases of the Saleem et al. [12] generalized estimator are as follows: 

t3(R)=
s2

z − S2
S − S2

T z2

S2
T + 1

exp
(

S2
x − s2

x

S2
x + s2

x

)

. (13)  

and 

t4(R)=
[

s2
z − S2

S − S2
T z2

S2
T + 1

+
(
S2

x − s2
x

)
]

exp
(

S2
x − s2

x

S2
x + s2

x

)

. (14) 

Before deriving the mean squared error of each of the available estimators under the proposed model, we first present our proposed 
model in Section 4. Using our proposed model, we have derived the mean square error of various estimators, including those given in 
equation (13) and equation (14), in Section 5. 

4. Proposed model and variance estimator 

To estimate the population variance, the following scrambling model is proposed: 

Z = γ(Y + S) + (1 − γ)(Y + YS), (15)  

where γ is a constant such that 0 ≤ γ ≤ 1, and S is a scrambling variable such that E(S) = 0, and Var(S) = S2
S . For our proposed model 

presented in equation (15), we assume that the sensitive variable Y is uncorrelated with the scrambling variable S. 
Model’s simplicity is one of the criteria for the practical usability of any randomized response model. In almost every sample survey 

using a randomized response technique, the respondent calculates his/her scrambled response and report it to the interviewer. This 
makes it necessary that the model employed for data collection should be simple enough so that the respondent can easily calculate and 
report his/her scrambled response. The proposed model uses a single scrambling variable and hence is simpler than many of the 
available randomized response models where two scrambling are used. Compared to a two-variable model, a one-variable model puts 
less burden on the respondents to calculate the scrambled response. 

Using the proposed model, a simple estimator of the population variance may be obtained as: 

S2
z = γ2S2

Y+S + (1 − γ)2S2
Y+YS. (16) 

Equation (16) can be further simplified as: 

S2
z = γ2

(
S2

y + S2
S

)
+ (1 − γ)2

[
S2

y +E(YS)2
− {E(YS)}2

]
.

Using the independence of Y and S, further simplification yields: 

S2
z = γ2

(
S2

y + S2
S

)
+ (1 − γ)2

[
S2

y +
(

S2
y + μ2

y

)
S2

S

]
,

or 

S2
z =AS2

y +
[
γ2 +(1 − γ)2Z2]S2

S, (17)  

where 

A= γ2 + (1 − γ)2
+ (1 − γ)2S2

S. (18) 

Further simplification of equation (17) yields: 

S2
y =

S2
z −

[
γ2 + (1 − γ)2Z2

]
S2

S

A
, (19)  

where A is defined in equation (18). 
In equation (19), replacing Z and S2

z by their unbiased estimators, z and s2
z , respectively, we obtain the basic estimator of S2

y as: 
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t0(R)=
s2

z −
[
γ2 + (1 − γ)2z2

]
S2

S

A
. (20) 

The estimator given in equation (20) can be used to develop new estimators of population variance. Motivated by the study of 
Azeem and Hanif [17], the following estimator of the population variance is proposed: 

tp = s2
y
s∗2

x

S2
x
, (21)  

where 

s∗2
x =

(N − 1)S2
x − (n − 1)s2

x

N − n
, (22)  

s2
y =

1
n − 1

∑n

i=1
(yi − y)2

,

and 

S2
x =

1
N − 1

∑N

i=1
(xi − X)2

.

Using the proposed model and using equation (22), the suggested estimator given in equation (21) may be expressed as: 

tp(R)=
s2

z −
[
γ2 + (1 − γ)2z2

]
S2

S

A

[
(N − 1)S2

x − (n − 1)s2
x

(N − n)S2
x

]

. (23)  

In the subsequent theorems, we prove the algebraic properties of our proposed estimator presented in equation (23). 

Theorem 1. The bias of the proposed estimator may be expressed as: 

Bias
(
tp(R)

)
≈

θ
A
[
− (1 − γ)2Z2S2

SC2
Z − DS2

Z(λ22 − 1)+ 2D(1 − γ)2Z2S2
Sλ12CZ

]
, (24)  

where 

A= γ2 + (1 − γ)2
+ (1 − γ)2S2

S, and D =
n − 1
N − n

.

Proof: In order to obtain the bias, let 

s2
z = S2

z (1+ dz), s2
x = S2

x(1+ dx), and z= Z(1+ ez),

where 

dz =
s2

z − S2
z

S2
z

, dx =
s2

x − S2
x

S2
x

, and ez =
z − Z

Z
,

so that 

E(dz)=E(dx)=E(ez)= 0,E
(
d2

z

)
= θ(λ40 − 1),E

(
d2

x

)
= θ(λ04 − 1),E

(
e2

z

)
= θC2

z ,

E(dzdx)= θ(λ22 − 1),E(dzez)= θλ30Cz, and E(dxez)= θλ12Cz.

Using these notations, the proposed estimator may be expressed as: 

tp(R)=
S2

z (1 + dz) −
{

γ2 + (1 − γ)2Z2(1 + ez)
2}S2

S

A

[
(N − 1)S2

x − (n − 1)S2
x(1 + dx)

(N − n)S2
x

]

,

or 

tp(R)=
S2

z + S2
z dz −

{
γ2 + (1 − γ)2Z2

}
S2

S − 2(1 − γ)2Z2S2
Sez − (1 − γ)2Z2S2

Se2
z

A  

×

[
(N − n)S2

x − (n − 1)S2
xdx

(N − n)S2
x

]

,

or 
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tp(R)=
S2

z + S2
z dz −

{
γ2 + (1 − γ)2Z2

}
S2

S − 2(1 − γ)2Z2S2
Sez − (1 − γ)2Z2S2

Se2
z

A
(1 − Ddx),

where 

D=
n − 1
N − n

.

Further simplification yields: 

tp(R) − S2
y =

S2
z dz − 2(1 − γ)2Z2S2

Sez − (1 − γ)2Z2S2
Se2

z

A
−

Ddx

A
[
S2

z + S2
z dz −

{
γ2 +(1 − γ)2Z2}S2

S  

− 2(1 − γ)2Z2S2
Sez − (1 − γ)2Z2S2

Se2
z

]
. (25) 

Applying expectation and simplification yields: 

E
[
tp(R) − S2

y

]
=

1
A

E
[
− (1 − γ)2Z2S2

Se2
z − DS2

z dzdx + 2D(1 − γ)2Z2S2
Sdxez

]
.

On further simplification, we get the result given in equation (24) as: 

Bias
(
tp(R)

)
=

θ
A
[
− (1 − γ)2Z2S2

SC2
z − DS2

z (λ22 − 1)+ 2D(1 − γ)2Z2S2
Sλ12Cz

]
.

This completes the proof. 

Theorem 2. The MSE of the suggested estimator can be obtained as: 

MSE
(
tp(R)

)
=

θ
A2

[
S4

z (λ40 − 1)+ 4(1 − γ)4Z4S4
SC2

z +B2D2(λ04 − 1) − 4(1 − γ)2Z2S2
z S2

Sλ30Cz  

− 2BDS2
z (λ22 − 1)+ 4(1 − γ)2BDZ2S2

Sλ12Cz
]
,

where 

B= S2
z −

{
γ2 +(1 − γ)2Z2}S2

S.

Proof: 
Ignoring higher order terms, equation (25) simplifies to: 

tp(R) − S2
y =

S2
z dz − 2(1 − γ)2Z2S2

Sez

A
−

Ddx

A
[
S2

z −
{

γ2 +(1 − γ)2Z2}S2
S

]
,

or 

tp(R) − S2
y =

1
A
[
S2

z dz − 2(1 − γ)2Z2S2
Sez − DS2

z dx +D
{

γ2 +(1 − γ)2Z2}S2
Sdx
]
. (26) 

Squaring both sides of equation (26) and applying expectation, we get: 

E
[
tp(R) − S2

y

]2
=

1
A2 E

[
S2

z dz − 2(1 − γ)2Z2S2
Sez − BDdx

]2
,

where 

B= S2
z −

{
γ2 +(1 − γ)2Z2}S2

S.

Further simplification yields the required result. 

MSE
(
tp(R)

)
=

θ
A2

[
S4

z (λ40 − 1)+ 4(1 − γ)4Z4S4
SC2

z +B2D2(λ04 − 1) − 4(1 − γ)2Z2S2
z S2

Sλ30Cz  

− 2BDS2
z (λ22 − 1)+ 4(1 − γ)2BDZ2S2

Sλ12Cz
]
. (27) 

Differentiating equation (27) with respect to γ and then equating to zero yields the optimum value as: 

γopt = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S2

S

(
S2

z λ30 − BDλ12
)

2Z2S4
z Cz

√

. (28) 

The optimum value of γ from equation (28) may be used in equation (27) to get the optimum mean squared error of the suggested estimator. 

M. Azeem et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e27488

7

5. Performance evaluation 

Yan et al. [18] proposed a novel metric to quantify the degree of the respondents’ privacy. In the case of our proposed model, the 
respondents’ degree of privacy can be calculated as: 

Δ=E(Z − Y)2
= E[γS + (1 − γ)YS]2,

= γ2E
(
S2)+(1 − γ)2E

(
Y2S2)+ 2γ(1 − γ)E

(
YS2),

= E
(
S2)[γ2 +(1 − γ)2E

(
Y2)+ 2γ(1 − γ)E(Y)

]
,

or 

Δ= S2
S

[
γ2 +(1 − γ)2

(
S2

y + μ2
y

)
+ 2γ(1 − γ)μy

]
. (29) 

The measure Δ given in equation (29) uses the respondents’ privacy protection level but ignores another important aspect of model 
quality – its efficiency. A better approach would be to quantify privacy and efficiency into a single metric. For this purpose, a unified 
metric was proposed by Gupta et al. [19] as: 

δ=
MSE

Δ
. (30) 

The model-evaluation measure given in equation (30) is useful for comparison of models. 
Using the proposed model, the mathematical expression for the bias and the mean squared error of the basic estimator t0(R) may be 

obtained as: 

Bias(t0(R))=
− θZ2(1 − γ)2S2

SC2
z

A
, (31)  

and 

MSE(t0(R))=
θ

A2

[
S4

z (λ40 − 1)+ 4(1 − γ)4Z4S4
SC2

z − 4(1 − γ)2Z2S2
z S2

Sλ30Cz
]
. (32) 

The symbol A in equation (31) and equation (32) has been defined in equation (18). The bias and mean squared error of the Isaki’s 
[7] estimator t1(R) under the proposed model may be derived as: 

Bias(t1(R))=
− θ
A
[
(1 − γ)2Z2S2

SC2
z + S2

z (λ22 − 1) − 2(1 − γ)2Z2S2
Sλ12Cz − B(λ04 − 1)

]
, (33)  

and 

MSE(t1(R))=
θ

A2

[
S4

z (λ40 − 1)+ 4(1 − γ)4Z4S4
SC2

z +B2(λ04 − 1) − 4(1 − γ)2Z2S2
SS2

z λ30Cz  

− 2BS2
z (λ22 − 1)+ 4(1 − γ)2BZ2S2

Sλ12Cz
]
. (34) 

The bias and MSE of the Gupta et al. [11] estimator t2(R) under the proposed model may be derived as: 

Bias(t2(R))=
θ
A
[
− (1 − γ)2Z2S2

SC2
z − gCS2

z (λ22 − 1)+ 2(1 − γ)2gCZ2S2
Sλ12Cz  

+
g(g + 1)

2
C2B(λ04 − 1)

]

, (35)  

and 

MSE(t2(R))=
θ

A2

[
S4

z (λ40 − 1)+ 4(1 − γ)4Z4S4
SC2

z +
(
AS2

x + gBC
)2
(λ04 − 1) − 4(1 − γ)2Z2S2

z S2
Sλ30Cz  

+4(1 − γ)2Z2( AS2
x + gBC

)
S2

Sλ12Cz − 2
(
AS2

x + gBC
)
S2

z (λ22 − 1)
]
, (36)  

where 

C=
wαS2

x

αS2
x + β

.

The optimum value of g may be obtained by differentiating equation (36) with respect to g and solution of the equation yields: 
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ĝopt =
S2

z (λ22 − 1) − 2(1 − γ)2Z2S2
Sλ12Cz − AS2

x(λ04 − 1)
BC(λ04 − 1)

. (37) 

This optimum value of g from equation (37) may be used in equation (36) to get the optimum variance of the Gupta et al. [11] 
estimator t2(R). 

The MSE of the Saleem et al. [12] estimator t3(R) under the proposed model may be derived as: 

MSE(t3(R))=
θ

4A2

[
4S4

z (λ40 − 1)+ 16(1 − γ)4Z4S4
SC2

z +B2(λ04 − 1) − 16(1 − γ)2Z2S2
z S2

Sλ30Cz  

− 4BS2
z (λ22 − 1)+ 8(1 − γ)2BZ2S2

Sλ12Cz
]
. (38) 

The MSE of the Saleem et al. [12] estimator t4(R) under the proposed model may be derived as: 

MSE(t4(R))=
θ

A2

[
S4

z (λ40 − 1)+ 4(1 − γ)4Z4S4
SC2

z +E2(λ04 − 1) − 4(1 − γ)2Z2S2
z S2

Sλ30Cz  

− 2ES2
z (λ22 − 1)+ 4(1 − γ)2EZ2S2

Sλ12Cz
]
, (39) 

Table 2 
MSEs of various estimators for S2

x = 10, S2
z = 8, μy = 3, S2

y = 2, N = 5000, α = 2, β = 3.  

γ w n t1(R) t2(R) t3(R) t4(R) tp(R)

0.8 0.3 50 24.9205 45.1686 18.6367 36.7023 17.0639 
100 12.4603 22.5843 9.3183 18.3512 8.5251 
200 6.2301 11.2921 4.6592 9.1756 4.2571 
500 2.4921 4.5169 1.8637 3.6702 1.7017 
1000 1.2460 2.2584 0.9318 1.8351 0.8633 

0.8 50 24.9539 103.9532 18.6438 36.7635 17.0453 
100 12.4770 51.9766 9.3219 18.3817 8.5161 
200 6.2385 25.9883 4.6609 9.1909 4.2529 
500 2.4954 10.3953 1.8644 3.6763 1.7003 
1000 1.2477 5.1977 0.9322 1.8382 0.8630 

0.4 0.3 50 14.7725 34.6525 11.9102 30.2480 10.4305 
100 7.3862 17.3262 5.9551 15.1240 5.2240 
200 3.6931 8.6631 2.9775 7.5620 2.6216 
500 1.4772 3.4652 1.1910 3.0248 1.0628 
1000 0.7386 1.7326 0.5955 1.5124 0.5495 

0.8 50 14.9552 61.6075 11.9615 30.8018 10.3531 
100 7.4776 30.8038 5.9808 15.4009 5.1867 
200 3.7388 15.4019 2.9904 7.7004 2.6043 
500 1.4955 6.1608 1.1962 3.0802 1.0577 
1000 0.7478 3.0804 0.5981 1.5401 0.5488  

Table 3 
δ values of various estimators for S2

x = 10, S2
z = 8, μy = 3, S2

y = 2, N = 5000, α = 2, β = 3.  

γ w n t1(R) t2(R) t3(R) t4(R) tp(R)

0.8 0.3 50 12.2159 22.1414 9.1356 17.9913 8.3646 
100 6.1080 11.0707 4.5678 8.9957 4.1790 
200 3.0540 5.5354 2.2839 4.4978 2.0868 
500 1.2216 2.2141 0.9136 1.7991 0.8341 
1000 0.6108 1.1071 0.4568 0.8996 0.4232 

0.8 50 12.2323 50.9575 9.1391 18.0213 8.3555 
100 6.1162 25.4787 4.5696 9.0107 4.1745 
200 3.0581 12.7394 2.2848 4.5053 2.0847 
500 1.2232 5.0957 0.9139 1.8021 0.8335 
1000 0.6116 2.5479 0.4570 0.9011 0.4230 

0.4 0.3 50 2.6569 6.2325 2.1421 5.4403 1.8760 
100 1.3285 3.1162 1.0711 2.7201 0.9396 
200 0.6642 1.5581 0.5355 1.3601 0.4715 
500 0.2657 0.6232 0.2142 0.5440 0.1912 
1000 0.1328 0.3116 0.1071 0.2720 0.0988 

0.8 50 2.6898 11.0805 2.1514 5.5399 1.8621 
100 1.3449 5.5402 1.0757 2.7699 0.9329 
200 0.6724 2.7701 0.5378 1.3850 0.4684 
500 0.2690 1.1080 0.2151 0.5540 0.1902 
1000 0.1345 0.5540 0.1076 0.2770 0.0987  
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where 

E=AS2
x +

B
2
.

We have used the results presented in equation 33–35 and equation 38 and 39 for comparison of the models in Table 2 and Table 3. 

6. Comparison of estimators 

Our suggested estimator will be more efficient than the basic estimator t0(R) if: 

MSE
(
tp(R)

)
< MSE(t0(R)),

or 

BD(λ04 − 1) < 2S2
z (λ22 − 1) − 4(1 − γ)2Z2S2

Sλ12Cz.

Our suggested estimator will be more efficient than the Isaki’s [7] estimator t1(R) if: 

MSE
(
tp(R)

)
< MSE(t1(R)),

or 

n − 1 < N − n.

This condition is strong and always holds if the population size is more than twice the sample size. 
The proposed estimator tp(R) will be more efficient than the Gupta et al. [11] estimator t2(R) if: 

MSE
(
tp(R)

)
< MSE(t2(R)),

or 

AS2
x + B(gC − 1) > 0.

The proposed estimator tp(R) will be more efficient than the Saleem et al. [12] estimator t3(R) if: 

MSE
(
tp(R)

)
< MSE(t3(R)).

On simplification, the above condition reduces to: 

B <
2(D − 2)

(
D2 − 1

)
(λ04 − 1)

[
S2

z (λ22 − 1) − 2(1 − γ)2Z2S2
Sλ12Cz

]
.

The proposed estimator tp(R) will be more efficient than the Saleem et al. [12] estimator t4(R) if: 

Table 4 
Root Mean Square Error (RMSE) of various estimators for S2

x = 10, S2
z = 8, μy = 3, S2

y = 2, N = 5000, α = 2, β = 3.  

γ w n t1(R) t2(R) t3(R) t4(R) tp(R)

0.8 0.3 50 4.9920 6.7208 4.3170 6.0582 4.1308 
100 3.5299 4.7523 3.0526 4.2838 2.9198 
200 2.4960 3.3604 2.1585 3.0291 2.0633 
500 1.5786 2.1253 1.3652 1.9158 1.3045 
1000 1.1163 1.5028 0.9653 1.3547 0.9291 

0.8 50 4.9954 10.1957 4.3178 6.0633 4.1286 
100 3.5323 7.2095 3.0532 4.2874 2.9182 
200 2.4977 5.0979 2.1589 3.0316 2.0622 
500 1.5797 3.2242 1.3654 1.9174 1.3040 
1000 1.1170 2.2798 0.9655 1.3558 0.9290 

0.4 0.3 50 3.8435 5.8866 3.4511 5.4998 3.2296 
100 2.7178 4.1625 2.4403 3.8890 2.2856 
200 1.9217 2.9433 1.7256 2.7499 1.6191 
500 1.2154 1.8615 1.0913 1.7392 1.0309 
1000 0.8594 1.3163 0.7717 1.2298 0.7413 

0.8 50 3.8672 7.8490 3.4585 5.5499 3.2176 
100 2.7345 5.5501 2.4456 3.9244 2.2774 
200 1.9336 3.9245 1.7293 2.7750 1.6138 
500 1.2229 2.4821 1.0937 1.7550 1.0285 
1000 0.8647 1.7551 0.7734 1.2410 0.7408  
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MSE
(
tp(R)

)
< MSE(t4(R)).

On simplification, the above condition reduces to: 

BD + E<
2

λ04 − 1
[
S2

z (λ22 − 1) − 2(1 − γ)2Z2S2
Sλ12Cz

]
.

The mean square errors of the estimators t0(R), t1(R), t2(R), t3(R), t4(R), and the suggested estimator tp(R) are displayed in Table 2 
for various values of w, γ, and the sample size n. Table 3 presents the δ values for various choices of S2

T, S2
S , and the sample size n. Table 4 

presents the values of root mean square error (RMSE) of various estimators. Examining Table 2 to Table 4, the improvement in terms of 
efficiency and δ values may clearly be observed. Moreover, Table 5 shows the simulated values of Mean Absolute Error (MAE) of the 
proposed and other variance estimators, based on 1000 iterations using different sample sizes from an artificial population generated 
through R code. The improvement in terms of mean absolute deviation can also be observed from Table 5. 

7. Discussion and conclusion 

This study introduced a new randomized response model for precise estimation of the variance of a finite population. Additionally, 
a new estimator of the variance has been developed which outperforms the existing variance estimators. The mathematical properties 
of the suggested variance estimator under the proposed model have been derived. Table 2 shows the mean square error of the Isaki [7] 
estimator, the Gupta et al. [11] estimator, and the suggested estimator for different sample sizes and for various choices of the con-
stants. The corresponding δ values have been presented in Table 3 for different sample sizes under the proposed model. 

Table 2 clearly shows that, based on the proposed model, the proposed estimator is the most efficient estimator. It may also be 
examined in the table that an increase in the sample size n results in a decline in the mean square error of each estimator. It is also clear 
that the Isaki’s [7] estimator performs better than the Gupta et al. [11] estimator under the proposed model. It may also be observed 
that as the value of γ changes from 0.8 to 0.4, the mean square error of each estimator decreases. 

Glancing at the combined measure of estimator quality, δ, presented in Table 3, one may observe that the proposed estimator 
produces the best δ values of all three estimators. This makes the suggested variance estimator the most suitable estimator for use with 
sensitive surveys. Table 3 also shows that the Isaki’s [7] estimator produces smaller δ values than the Gupta et al. [11] estimator under 
the proposed model. Based on the findings of this study, it is recommended for survey researchers to use the proposed variance 
estimator in situations where the variable of interest is of sensitive nature. Table 5 shows that the proposed variance estimator achieves 
the least mean absolute error of all five estimators. 

The proposed variance estimator is designed for use with simple random sampling where the variable of interest is sensitive in 
nature. It is recommended for future researchers to extend the proposed estimator and/or the proposed model to other sampling 
schemes, including stratified sampling and systematic sampling. The proposed estimator can also be used in unequal probability 
sampling, and it is therefore suggested that future researchers analyze its properties under unequal probability sampling. 

It may also be interesting if future researchers analyze the properties of the new suggested estimator in the case of measurement 
error and non-response error. Researchers may also work on modifying the proposed model for even more improvement in efficiency. 

Table 5 
Simulated Mean Absolute Error (MAE) of various estimators for S2

x = 10, N = 5000, α = 2, β = 3, g = 5.  

γ w n t1(R) t2(R) t3(R) t4(R) tp(R)

0.8 0.3 50 10.4141 10.2237 10.0333 10.0536 9.9678 
100 10.2323 10.1426 10.0490 10.0620 10.0175 
200 10.1975 10.1536 10.1284 10.1309 10.1215 
500 10.1625 10.1455 10.1287 10.1315 10.1223 
1000 10.1909 10.1836 10.1798 10.1801 10.1768 

0.8 50 10.4141 11.9726 10.0333 10.0536 9.9678 
100 10.2323 10.9741 10.0490 10.0620 10.0175 
200 10.1975 10.5047 10.1284 10.1309 10.1215 
500 10.1625 10.3033 10.1287 10.1315 10.1223 
1000 10.1909 10.2415 10.1798 10.1801 10.1768 

0.4 0.3 50 6.1595 6.0622 5.9214 5.9341 5.8770 
100 4.7969 4.7726 4.6920 4.7071 4.6769 
200 4.1433 4.1368 4.1057 4.1104 4.1027 
500 3.7233 3.7169 3.7119 3.7119 3.7113 
1000 3.7072 3.7047 3.7016 3.7021 3.7000 

0.8 50 6.1595 7.1953 5.9214 5.9341 5.8770 
100 4.7969 5.3234 4.6920 4.7071 4.6770 
200 4.1433 4.3700 4.1057 4.1104 4.1027 
500 10.4141 10.2237 10.0333 10.0536 9.9678 
1000 10.2323 10.1426 10.0490 10.0620 10.0174  
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