

Emergence of Thymidine-Dependent *Staphylococcus aureus* Small-Colony Variants in Cystic Fibrosis Patients in Southern Brazil

^DDilair Camargo de Souza,^a Laura Lucia Cogo,^a Libera Maria Dalla-Costa,^b Ana Paula de Oliveira Tomaz,^{a,b} Daniele Conte,^b Carlos Antonio Riedi,^c Nelson Augusto Rosario Filho,^c Jussara Kasuko Palmeiro^{b,d}

^aLaboratório de Bacteriologia, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
 ^bFaculdades e Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
 ^cDepartamento de Pediatria, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
 ^dDepartamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil

ABSTRACT We characterized Staphylococcus aureus small-colony variant (SCV) strains isolated from cystic fibrosis (CF) patients in southern Brazil. Smaller colonies of S. aureus were isolated from respiratory samples collected consecutively from 225 CF patients from July 2013 to November 2016. Two phenotypic methods-the auxotrophic classification and a modified method of antimicrobial susceptibility testingwere employed. PCR was conducted to detect the mecA, ermA, ermB, ermC, msrA, and msrB resistance genes. Furthermore, DNA sequencing was performed to determine the mutations in the thyA gene, and multilocus sequence typing was used to identify the genetic relatedness. S. aureus strains were isolated from 186 patients (82%); suggestive colonies of SCVs were obtained in 16 patients (8.6%). The clones CC1 (ST1, ST188, and ST2383), CC5 (ST5 and ST221), and ST398 were identified. Among SCVs, antimicrobial susceptibility testing showed that 77.7% of the isolates were resistant to multiple drugs, and all of them were susceptible to vancomycin. mecA (2), ermA (1), ermB (1), ermC (3), and msrB (18) were distributed among the isolates. Phenotypically thymidine-dependent isolates had different mutations in the thyA gene, and frameshift mutations were frequently observed. Of note, revertants showed nonconservative or conservative missense mutations. SCVs are rarely identified in routine laboratory tests.

IMPORTANCE Similar findings have not yet been reported in Brazil, emphasizing the importance of monitoring small-colony variants (SCVs). Altogether, our results highlight the need to improve detection methods and review antimicrobial therapy protocols in cystic fibrosis (CF) patients.

KEYWORDS SCVs, thymidine dependent, auxotrophism, *thyA*, MLST, antimicrobial susceptibility

S taphylococcus aureus is an important pathogen that can colonize and infect the airways of cystic fibrosis (CF) patients (1). Small-colony variants (SCVs) emerged in *S. aureus* as a phenotype related to chronic and recurrent infections (2) because of their ability to resist antimicrobial treatment and to persist in host cells; they show attenuated virulence and immune evasion (3, 4).

Identification of stable SCVs (sSCVs) is challenging in laboratory settings, because specific substrates, such as hemin, menadione, or thymidine, are required for their growth (5). Owing to this metabolic deficiency, sSCVs are 10-fold smaller than normal colonies, nonpigmented, and nonhemolytic and can adhere to the agar surface (3). They may also display false-negative results for catalase and coagulase tests (2) and fail

Citation de Souza DC, Cogo LL, Dalla-Costa LM, Tomaz APDO, Conte D, Riedi CA, Rosario Filho NA, Palmeiro JK. 2021. Emergence of thymidine-dependent *Staphylococcus aureus* small-colony variants in cystic fibrosis patients in Southern Brazil. Microbiol Spectr 9:e00614-21. https://doi.org/10.1128/Spectrum.00614--21.

Editor Joanna B. Goldberg, Emory University School of Medicine

Copyright © 2021 de Souza et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Jussara Kasuko Palmeiro, jukasuko@gmail.com.

Received 25 June 2021 Accepted 4 July 2021 Published 28 July 2021

Spectrum

to grow on Mueller-Hinton agar (MHA) (3). In addition to sSCVs, other phenotypic changes in *S. aureus* include revertant types (unstable SCVs), which are also difficult to identify, especially when they do not grow in the form of SCVs. The reversal mechanism is unclear; however, it has been proposed as the key to successful reinfection of the host (4, 5). Thus, persistent *S. aureus* infections may be caused by a variety of phenotypes, even within a genetically clonal population (6).

Thymidine auxotrophism has emerged as a consequence of genetic mutations in the *thyA* gene due to prolonged treatment with trimethoprim-sulfamethoxazole (7, 8). This antibiotic inhibits the synthesis of tetrahydrofolic acid, which serves as a cofactor for thymidylate synthase (encoded by *thyA*), an enzyme required for the conversion of uracil into thymidine (3). Owing to these mutations, thymidine-dependent SCVs (TD-SCVs) show intrinsic resistance to trimethoprim-sulfamethoxazole (TMP-SMX) (7, 9). *S. aureus* TD-SCVs have been associated with different chronic infections such as endocarditis, arthritis, osteomyelitis, and rhinosinusitis (3). Remarkably, despite their low virulence, they were previously isolated in the context of bacteremia (8).

The clinical implications of SCVs and their difficult microbiological diagnosis highlight the need for the improvement of the understanding of their growth characteristics, as well as the development of new culture identification and antimicrobial susceptibility testing methods. Of note, such limitations may lead to misdiagnoses and, consequently, therapeutic failure. In this study, we describe the prevalence, as well as the phenotypic and molecular characteristics of *S. aureus* SCVs isolated from CF patients in the community. Notably, *S. aureus* TD-SCVs have never been reported in Brazil, emphasizing the need for improved monitoring in the context of this pathogen.

RESULTS

Isolation of *S. aureus* **SCVs: bacterial identification and prevalence.** A total of 225 respiratory samples from the same number of CF patients were referred for microbiological analyses. The numbers of male and female patients were similar (n = 117, 52%, and n = 108, 48%, respectively). The median age of the patients was 6 years (range, 1 month to 70 years). We isolated *S. aureus* from 186 patients (82%) and found suggestive colonies of SCVs in 16 patients (8.6%). The median ages of patients with normal and SCV *S. aureus* isolates were 5 (range, 1 to 70 years) and 13 (range, 5 to 57 years) years, respectively.

One bacterial isolate was studied from all patients except two patients with two isolates each (patient 7 [P7], samples 7 and 17 [Sa7 and Sa17]; and P8, Sa8 and Sa18) (Table 1); therefore, 18 SCV isolates of *S. aureus* were characterized. Table 1 summarizes the bacterial identification, the antimicrobial susceptibility profile, and the detection of resistance genes. Overall, the standard biochemical characteristics indicated *S. aureus*, except for 11 isolates that did not grow on 7% NaCl agar and MHA. Importantly, Vitek mass spectrometry (MS) and the amplification of the *nuc* gene, encoding a specific thermonuclease of *S. aureus*, identified all suspected SCV colonies as *S. aureus*; however, Vitek 2 did not show the same accuracy. Five isolates were identified as coagulase-negative staphylococci species instead of *S. aureus*.

Antimicrobial susceptibility and β -lactam/MLS_B resistance genes. Most isolates (except for Sa3, Sa5, Sa11, and Sa14) presented MICs with reduced susceptibility for at least three classes of antimicrobials (77.7%, n = 14). Only a unique isolate was sensitive to trimethoprim-sulfamethoxazole (Sa12) and to clindamycin and erythromycin (Sa14). Ciprofloxacin showed activity against SCV isolates, of which 61% (n = 11) were susceptible and 31.3% (n = 5) were intermediate to this antimicrobial. Only oxacillin and vancomycin showed good activity against these isolates (Table 1).

In oxacillin-resistant isolates, we detected the *mecA* gene. Additionally, for isolates showing macrolide-lincosamide-streptogramin B (MLS_B) resistance, constitutive and inducible MLS_B phenotypes (n = 11 and n = 6, respectively) showing different genotypes were identified, including the coexpression of *erm* and *msr* or the single detection of *msrB*. Three isolates displayed positive results for the inducible MLS_B test (D-test), although the *erm* gene was not detected (Sa5, Sa11, and Sa18). Of note, one isolate positive for the *msrB*

BiochemicalPatientIsolatePatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientIDaPatientSal <th< th=""><th>imical Ird 7% Se NaCl</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>кезізтапсе депез</th><th></th><th></th></th<>	imical Ird 7% Se NaCl												кезізтапсе депез		
lient ID ^a Sa1 Sa2 Sa3 Sa3 Sa5 Sa6 Sa6 Sa8 Sa8 Sa8 Sa8			Automated systems									Inducible			
tient ID ^a Sa1 Sa2 Sa3 Sa6 Sa6 Sa8 Sa8 Sa8				Vitek	nuc				TMP/				eta-Lactams		
Sa1 Sa2 Sa3 Sa5 Sa6 Sa8 Sa8 Sa8		Coagulase	Vitek 2	MS	gene	CIP	CLI	ERY	SMX	VAN	OXA	test (D-test)	(mecA)	MLS _B	
Sa2 Sa3 Sa6 Sa7 Sa8 Sa8 Sa8		+	S. aureus	S. aureus	+	5		>32	>16/304	-	>16	+	+	ermC	msrB
Sa3 Sa4 Sa5 Sa7 Sa8 Sa8	I	+	S. aureus	S. aureus	+			>32	>16/304	0.5	0.25	Ι	Ι	ermB	msrB
Sa4 Sa5 Sa7 Sa8 Sa8		+	S. aureus	S. aureus	+	7	0.06	32	>16/304	2	0.25	+	I	ermA	msrB
	I	+	S. capitis/	S. aureus	+	4		>32	>16/304	0.25	0.125	I	I		msrB
			warneri												
	Ι	+	S. lentus	S. aureus	+	-		>32	16/304	2	0.5	+	I		msrB
	Ι	+	S. aureus	S. aureus	+	4		>32	>16/304	-	-	Ι	I		msrB
	Ι	+	S. lentus	S. aureus	+	-	4	16	>16/304	-	0.5	Ι	I		msrB
	I	+	S. aureus	S. aureus	+	2		>32	>16/304	2	-	I	I		msrB
	Ι	+	S. lentus	S. aureus	+	8			>16/304	-	2	+	I	ermC	msrB
P10 Sa10 +	Ι	+	S. aureus	S. aureus	+	4			>16/304	-	-	Ι	I		msrB
P11 Sa11 +	I	+	S. aureus	S. aureus	+	-			>16/304	-	0.125	+	I		msrB
P12 Sa12 +	N	+	S. warneri	S. aureus	+	4	0.5	>32	2/38	-	>16	+	+	ermC	msrB
P13 Sa13 +	Ν	+	S. aureus	S. aureus	+	-		>32	>16/304	-	2	Ι	I		msrB
P14 Sa14 +	M	+	S. aureus	S. aureus	+	-			8/152	-	-	I	I		msrB
P15 Sa15 +	×	+	S. aureus	S. aureus	+	-			4/76	2	2	I	I		msrB
P16 Sa16 +	×	+	S. aureus	S. aureus	+	4		>32	>16/304	-	0.5	+	I		msrB
P7 Sa17 +	×	+	S. aureus	S. aureus	+	2			>16/304	2	0.5	I	I		msrB
P8 Sa18 +	Ν	+	S. aureus	S. aureus	+	2	>16	>32	4/76	2	-	I	I		msrB
QC¢						0.25			0.5/9.5	0.5	0.25				
QC ^r									0.5/9.5						

^bw, weak growth.

CIP, ciprofloxacin, CLI, clindamycin; ERY, erythromycin; TMP/SMX, trimethoprim-sulfamethoxazole; VAN, vancomycin; OXA, oxacillin. ^dMLS_p, macrolide-lincosamide-streptogramin B resistance. ^eQC, quality control results. S. aureus ATCC 29213. *fE. faecalis* ATCC 29212.

gene still showed susceptibility to MLS_B (Sa14). Moreover, one isolate showed high MICs to clindamycin and erythromycin in addition to the positive D-test (Sa9) (Table 1).

Phenotypic screening and molecular characterization of the auxotrophism of *S. aureus* SCVs. The 18 suggestive colonies of SCVs were subjected to nutritional dependence assays. Eleven isolates from different patients grew only on MHA when supplemented with thymidine (in both tests, MHA and disk supplemented). The remaining seven isolates grew poorly on nonsupplemented MHA and MHA supplemented with thymidine, menadione, and hemin and were, therefore, characterized as revertant SCVs (Table 2). No isolate showed dependency on menadione or hemin. Figure 1 shows examples of the morphology of normal colonies and SCVs grown on mannitol salt agar (MSA) and blood agar, their Gram morphologies, and their auxotrophism characterization.

Regarding the sequencing of the *thyA* gene, among the isolates phenotypically determined as SCVs, most showed insertion-deletion (indel) mutations, while revertant isolates showed nonsynonymous and synonymous mutations. We assigned genotypes according to the types of mutations identified in the *thyA* gene: (i) sSCVs included isolates that showed frameshift mutations caused by indels (7 isolates) or nonsense mutations resulting in a premature stop codon (1 isolate); (ii) revertants comprised missense conservative (1 isolate) and nonconservative mutations around the dUMP-binding site (2 isolates); and (iii) the wild type (WT) contained silent point mutations (7 isolates) or no mutations at all (1 isolate) (Table 2). Two isolates phenotypically determined as sSCVs (Sa2 and Sa8) and almost all revertant isolates showed the WT genotype; the only revertant isolate that did not was classified as sSCV (Sa13). Concerning the two patients with two isolates each (P7 [Sa7 and Sa17] and P8 [Sa8 and Sa18]), when comparing the isolates, we observed different mutations in only one (Table 2).

Diversity of S. *aureus* **phenotypes over time, treatment schedules, and molecular typing.** Figure 2 shows the diversity of *S. aureus* phenotypes isolated during the study in the 16 patients from whom SCVs were identified through phenotypic testing, starting from 1 year before to 1 year after the emergence of the first SCV; the use of TMP-SMX and azi-thromycin (AZT) during this period is also represented. Overall, monotherapy or combined therapy (AZT and TMP-SXT) was used for a long time in all patients. Of note, in four patients (P2, P3, P4, and P6), data on treatment were not available, and one patient (P14) did not receive antimicrobial therapy because he was asymptomatic. Most patients showed at least two different colony variants during the evaluation period, highlighting the heterogeneity in patients subjected to combination therapy.

The multilocus sequence typing (MLST) results are presented in Table 2. Molecular typing was performed only in the genotypically isolates classified as sSCVs. Clonal complex 5 (CC5) was found in three patients, with two isolates belonging to sequence type 5 (ST5). CC1 was also detected in three patients but with different sequence types, and ST398 was detected in two patients; in another two patients, the CC was nontypeable.

DISCUSSION

The SCV phenotype in the context of *S. aureus* has attracted much attention in the last 2 decades because it is related to chronic infections and difficult treatments (10). The present study is the first to characterize SCVs isolated from the respiratory tracts of CF patients in Brazil.

Due to the metabolic changes observed in *S. aureus* that determine the emergence of SCV colonies, the identification of this phenotype is challenging. In our study, the standard biochemical analysis showed the expected results. However, biochemical changes can occur and may lead to delayed or negative test results (3). Remarkably, the use of 7% NaCl medium contributed to the initial identification; wild-type *S. aureus* tended to grow usually, and SCVs did not grow or grew weakly compared to the phenotype SCV that usually grows in MSA medium (11). Of note, the use of 7% NaCl agar, used in this study, was not reported before. We used a modified Chapman medium (MSA) that does not contain mannitol and phenol red as a pH indicator.

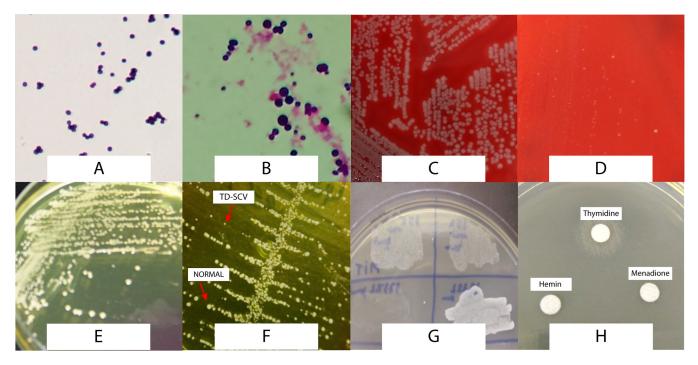

When the morphology suggests *S. aureus* SCVs but the classical tests do not confirm it, other methodologies such as screening of the *nuc* gene should be used (12). The Vitek 2 Compact automated system only provided correct identification of 72.2% of

Image Image <th< th=""><th></th><th></th><th>Agar/d</th><th>isk suppl</th><th>Agar/disk supplementation^b</th><th>ion^b</th><th></th><th>thyA sequencing</th><th></th><th></th><th></th><th>Multilocu typing^d</th><th>Multilocus sequence typing^d</th></th<>			Agar/d	isk suppl	Agar/disk supplementation ^b	ion ^b		thyA sequencing				Multilocu typing ^d	Multilocus sequence typing ^d
No. No. <th>:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ī</th> <th></th> <th></th> <th></th> <th></th> <th>Clonal</th> <th>Sequence</th>	:						ī					Clonal	Sequence
50 $-i$ i </th <th>Patient</th> <th></th> <th>WS</th> <th>ТΗΥ</th> <th>HEM</th> <th>MEN</th> <th>Phenotype</th> <th>Synonymous mutation</th> <th>Nonsynonymous mutation</th> <th>Alteration(s)</th> <th>Genotype^c</th> <th>complex</th> <th>type</th>	Patient		WS	ТΗΥ	HEM	MEN	Phenotype	Synonymous mutation	Nonsynonymous mutation	Alteration(s)	Genotype ^c	complex	type
	P1		-/-	+/+	-/-	-/-	sSCV	A45G	A617G	Missense nonconservative mutation (GIn206Arg)	Revertant	2	Ŋ
	P2	Sa 2	-/-	+/+	-/-	-/-	sSCV	A183G, C219T, A237G, T411A, A438T, T450G, T501A, A516G, T582C, C609A, C837T, C864T, T876A, A924C		Silent point mutations	W	A	dN
	P3	Sa3	-/-	+/+	-/-	-/-	sSCV		T47G	Missense conservative mutation (Val16Gly)	sSCV	-	2383
34 -1- -1- 5CV A65 CACTT15CACTCTT Franch mutation 5CV 5 355 -1- +1+ -1- 5CV 55C 338 338 355 -1- +1+ -1- 5CV 55C 338 356 -1- +1+ -1- 5CV 338 1111, A456, A5166, T 111, A456, A5166, T Misense conservative from anino acid 40) 5CV 338 356 -1- +1+ -1- 5CV 358 1411, A456, A5166, T 358									A48TTTAGAAATAGG59	Frameshift mutation (-12 nt ^e from amino acid 17)			
355 $-/ +/+$ $-/-$ 5CV Manuation and 40 mutation (lie19.eu) 5CV 398 366 $-/ +/+$ $-/ 5CV$ Maximo and 40 mutation (lie19.eu) $5CV$ 398 366 $-/ +/+$ $-/ 5CV$ $5POCATTCGCTT601$ Framehift mutation $5CV$ 398 367 $-/ +/+$ $-/ 5CV$ $5POCATTCGCCTT601$ Framehift mutation $5CV$ $5P$ 388 $-/ +/+$ $-/ 5CV$ $5P$ $5POCATTCGCCTT601$ $1PO$ $1P$	P4	Sa4	-/-	+/+	-/-	-/-	sSCV	A45G	CAACTT115CAACTCTT	Silent point mutation Frameshift mutation (+2 nt	sSCV	5	221
A606, C219T, A2376, T411A, A4566, A5166, T882CA606, C219T, A2376, T411A, A4566, A5166, T882CAssoc Termeshift mutation (-12 triftom amino acid (-12 triftom amino acid 	P5	Sa5	-/-	+/+	-/-	-/-	SSCV		A55C	from amino acid 40) Missense conservative mutration (IIa191 eu)	sSCV	398	398
Sa6 -/- +/+ -/- -/- Sa9CACTTCCGCCTT601 Frameshift mutation (-12 mt from amino acid (-13 mt from acid (-13 mt								A60G, C219T, A237G, T411A, A456G, A516G, T582C		Silent point mutations			
5a6 -/- +/+ -/- 5sCV 5sPGCACTTCGGCCTT601 Frameshift mutation 5sCV 5 5a7 -/- +/+ -/- -/- sSCV 589GCACTTCGGCCTT601 (-13 nt from amino acid 10) 5a7 -/- +/+ -/- sSCV 589 (-13 nt from amino acid 10) 5a8 -/- +/+ -/- sSCV sSCV sSCV 398 5a9 -/- +/+ -/- sSCV sSCV sSCV 398 5a9 -/- +/+ -/- sSCV sSCV sSCV 398 5a9 -/- +/+ -/- sSCV sSCV sSCV 398 6606, A1471, C2197, A356G, T4350, A516G, A1471, C2197, A11A, A456G, A1471, C2197, A11A, A456G, A1471, C2197, A1446G, A1474, C2197, A1446G, A1474, C2197, A1446G, A1446G, A1474, C2197, A1446G, A1446G, A1446G, A1446G, A14474, C2197, A1446G, A144									A590CACTTCCGCCTT601	Frameshift mutation (-12 nt from amino acid 197)			
Sa7 -/- +/+ -/- SCV G99A 660G Missense nonconservative Revertant 1 Sa8 -/- +/+ -/- sSV 1489C,A510G,A516G A55C Missense nonconservative Revertant 1 Sa9 -/- +/+ -/- sSCV 1489C,A510G,A516G A55C Missense conservative sSCV 398 Sa9 -/- +/+ -/- sSCV 1489C,A147T,C219T, Missense conservative sSCV 398 A60G,A147T,C219T, A60G,A147T,C219T, A55C Missense conservative sSCV 398 A60G,A142T,C219T, A60G,A142T,C219T, A55C Missense conservative sSCV 398 A60G,A142T,C219T, A60G,A142T,C219T, A60G,A142T,C219T, Missense conservative sSCV 398 A60G,A142T,C219T, A60G,A142T,C219T, A60G,A11A,A456G, A55C Missense conservative sSCV 398 A60G,A142T,C219T, A74C A74G A74G A74G A74G A74G A74G<	P6	Sa6	-/-	+/+	-/-	-/-	sSCV		A589GCACTTCCGCCTT601	Frameshift mutation (-13 nt from amino acid 197)	sSCV	Ŋ	Ŋ
Sa8 -/- +/+ -/- -/- s5CV T489C, A510G, A516G A55C Silent point mutations WT NP Sa9 -/- +/+ -/- -/- s5CV T489C, A510G, A516G A55C Missense conservative s5CV 398 Sa9 -/- +/+ -/- -/- s5CV 308 mutation (Ile19Leu) 308 A00G, A147T, C219T, A536G, A147T, C219T, A536G, T411A, A456G, Missense conservative s5CV 398 A236G, T411A, A456G, A316G, T582C, A591T, A236G, T411A, A456G, A147C Conservative s5CV 398 A316G, T582C, A591T, A344C A744C A744C A744C A744C A766ATACTTGGAG778 Frameshift mutations 1 Sa10 -/- +/+ -/- -/- s5CV 398 1 Sa11 -/- +/+ -/- -/- s5CV 369 1 Sa11 -/- +/+ -/- -/- 5CV 0 <td< td=""><td>Р7</td><td>Sa7</td><td>-/-</td><td>+/+</td><td>-/-</td><td>-/-</td><td>sSCV</td><td>G99A</td><td>A650G</td><td>Missense nonconservative mutation (GIn217Ard)</td><td>Revertant</td><td>-</td><td>188</td></td<>	Р7	Sa7	-/-	+/+	-/-	-/-	sSCV	G99A	A650G	Missense nonconservative mutation (GIn217Ard)	Revertant	-	188
A60G, A147T, C219T, A237G, T411A, A456G, A516G, T582C, A591T, A744C Silent point mutations A237G, T582C, A591T, A744C A266ATACATTGGAG778 Frameshift mutation Sa10 -/- +/+ -/- -/- 560 Sa11 -/- +/+ -/- -/- 1 s50 Sa11 -/- +/+ -/- -/- s50 NT Sa11 -/- +/+ -/- -/- s50 NT Missense non-conservative s5CV N192T Missense non-conservative s5CV 1	P8 P9	Sa8 Sa9		+ + + + + +	-/	-/	sSCV sSCV	T489C, A510G, A516G	A55C	Silent point mutations Missense conservative	WT sSCV	NP 398	NP 398
Δ766ATACATTIGGAG778 Frameshift mutation Δ766ATACATTIGGAG778 Frameshift mutation (-12 nt from amino acid 256) 250 256) 511 -/- -/- +/+ -/- -/- 511 -/- -/- +/+ -/- -/- Sal1 -/- -/- +/+ Missense non-conservative 5CV mutation (Leu64Phe)								A60G, A147T, C219T, A237G, T411A, A456G, A516G, T582C, A591T, A744C		Silent point mutations			
Sa10 -/- +/+ -/- sSCV NT Sa10 -/- +/+ -/- sSCV NT Sa11 -/- +/+ -/- sSCV 1 Sa11 -/- +/+ -/- sSCV 1 Missense non-conservative sSCV 1 1									Δ766ATACATTTGGAG778	Frameshift mutation (–12 nt from amino acid 256)			
Sa11 -/- +/+ -/- SSCV A192T Missense non-conservative mutation (Leu64Phe)	P10	Sa10	-/-	+/+	-/-	-/-	sSCV		Δ591ACTTCCGCCTT601	Frameshift mutation (–11 nt from amino acid 198)	sSCV	NT	NT
	P11	Sa11	-/-	+/+	-/-	-/-	sSCV		A192T	Missense non-conservative mutation (Leu64Phe)	sSCV	-	.

											Multilocu	Multilocus sequence
		Agar/d	Agar/disk supplementation ^{b}	ementati	ion ^b		thyA sequencing				typing ^d	
	lsolate										Clonal	Sequence
Patient	١Da	WS	ТНҮ	HEM	MEN	Phenotype	Synonymous mutation	Nonsynonymous mutation	Alteration(s)	Genotype ^c	complex	type
								Δ197G198	Frameshift mutation (-1 nt from amino acid 66)			
P12	Sa12	W/W	M/M	W/W	W/W	Revertant	A183G, C219T, A237G,		Silent point mutations	WT	NP	NP
							T411A, A456G, A516G, C609A, C627T, A720G, C870T, C882T					
P13	Sa13	M/W	M/W	M/W	W/W	Revertant		AAA451TAA	Nonsense mutation (Lys150Stop)	sSCV	NT	NT
P14	Sa14	w/w	w/w	w/w	m/m	Revertant	A183G, C219T, A237G, T411A, A456G, A516G, C609A, C627T, A720G, C870T_C887T		Silent point mutations	WT	NP	AN
P15	Sa 15	W/W	W/W	M/M	W/W	Revertant			No mutation	WT	NP	NP
P16	Sa 16	W/W	W/M	W/W	W/W	Revertant	G99A		Silent point mutations	WT	NP	NP
P7	Sa17	W/W	M/M	M/M	W/W	Revertant	G99A, A282C, T495A	T495A	Missense conservative	Revertant	NP	NP
									mutation (Asp165Glu)			
P8	Sa 18	W/M	W/W	W/W	W/M	Revertant	T489C, A510G, A516G		Silent point mutations	MT	NP	NP

^bWS, without supplementation; THY, thymidine; HEM, hemin; MEN, menadione; w, weak growth. ^dWT, wild type. ^dMT, nontypeable; NP, analysis not performed.

Volume 9 Issue 1 e00614-21

FIG 1 Microbiological characteristics of clinical *Staphylococcus aureus* isolates. (A) Gram morphology of normal *S. aureus*. (B) Gram morphology of TD-SCV exhibiting an increase in cell size. (C) *S. aureus* isolates grown on Columbia blood agar. (D) TD-SCV grown on Columbia blood agar displaying smaller and nonhemolytic colonies. (E) Normal *S. aureus* isolates grown on mannitol salt agar. (F) Normal and TD-SCV isolates grown on mannitol salt agar showing different colony sizes. (G) Types of growth of TD-SCVs in the surface of Mueller-Hinton agar supplemented with thymidine (100 μ g/ml). (H) Growth of TD-SCVs around the disc impregnated with thymidine placed onto Mueller-Hinton agar.

the *S. aureus* SCV isolates. Indeed, these data demonstrate that, due to decreased metabolism of SCVs, the use of automated colorimetric systems for their identification is limited, even for essential tests such as catalase and coagulase tests (2). On the other hand, the use of mass spectrometry (matrix-assisted laser desorption ionization-time of flight [MALDI-TOF]) would have been a better alternative to confirm the phenotypic identification in our study, as also described by Ota et al. (13).

Worrisome enough, most of our isolates showed resistance to at least three classes of antimicrobials, being classified as multidrug resistant (14). Expectedly, almost all SCV isolates were resistant to TMP-SMX (a feature of this phenotype) (9, 15). In fact, only one isolate was susceptible to this antimicrobial; of note, it was classified as a revertant, which can explain this finding. Although TMP-SMX is an antimicrobial of choice for the treatment of *S. aureus* infections in CF patients, continuous exposure to this drug is associated with the appearance of TD-SCVs (7). The drug impacts the bacterial folate pathway, inhibiting the production of two proteins involved in the synthesis of tetrahydrofolic acid, which acts as a cofactor for thymidylate synthase, resulting in mutations in the *thyA* gene and consequent resistance (3). Importantly, all patients with TD-SCVs were administered TMP-SMX; however, a few did not receive this antimicrobial for more than 1 year before the emergence of this phenotype.

We also observed elevated resistance to erythromycin and clindamycin in this study. Our results, however, are not in line with those of other studies reporting intermediate or low resistance (16, 17). We need to keep in mind that the macrolide azithromycin has anti-inflammatory properties and is used in CF patients to improve their lung function (18). The use of this antibiotic is associated with resistance to erythromycin and clindamycin, supporting our results (19). The gene *msrB*, found in all isolates, is related to the expression of efflux pumps, an additional mechanism associated with resistance to macrolides and streptogramin B; however, this mechanism is not associated with induced or constitutive resistance to clindamycin (20). Interestingly, the only isolate susceptible to macrolides (Table 1) was detected in a patient who did not use azi-thromycin (Fig. 2). Additionally, Table 1 shows the results of both constitutive and

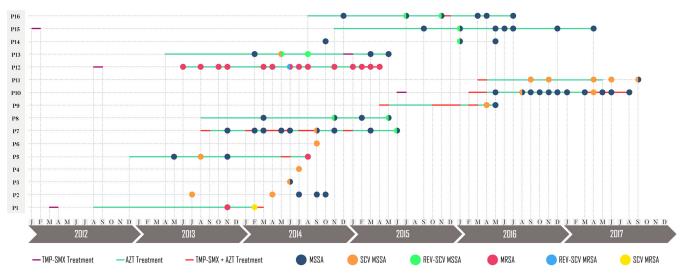


FIG 2 Timeline of the isolation of different *Staphylococcus aureus* phenotypes, according to the use of antimicrobials and molecular typing. TMP/SMX, trimethoprim-sulfamethoxazole treatment; AZT, azithromycin treatment; TMP/SMX+AZT, trimethoprim-sulfamethoxazole plus azithromycin treatment.

inducible resistance (cMLS_B and iMLS_B, respectively). Some isolates showing a positive phenotypic test (D-test) result did not reveal a matching genotype (the amplification of *erm* genes). Of note, here, only the most frequently found *ermA*, *ermB*, and *ermC* genes were screened for; the presence of less frequently described genes, such as *ermF*, *ermY* (21), and *ermT* (22), was not investigated.

A minority of isolates were oxacillin resistant, as confirmed by the expression of the *mecA* gene, as previously reported (16, 23). Of note, methicillin-resistant *S. aureus* is associated with worsening lung functions and the subsequent mortality risk in CF patients (24). Therefore, the emergence of methicillin-resistant *S. aureus* (MRSA) SCV isolates can further aggravate the condition of infected patients (25). The susceptibility to vancomycin observed here may be related to the restricted use of this antimicrobial in the hospital environment.

Regarding the nutritional dependence, all isolates were TD-SCVs. This auxotrophism is most frequent in respiratory samples from CF patients (7). In line with our results, different studies showing only thymidine dependence have been reported (4, 26); however, codependence on hemin and menadione has also been described (16, 27). We found a prevalence of 8.6% of SCVs among the patients included, which is within the ranges reported in different countries. For instance, the prevalence of SCVs in different European countries ranges from 4% to 33% (3), in the United States, from 4.6% to 24% (27, 28), and in Turkey, from 8% to 21% (17, 23).

Sequencing of the *thyA* gene in TD-SCVs has revealed several mutations. Here, we show that frameshift mutations (mostly deletions) resulted in the emergence of the sSCV phenotype, while missense mutations were associated with the revertant phenotype. Mutations can occur anywhere in the gene, in the beginning, end, or near or at the active site of the enzyme (4, 15, 29). Owing to the complex characteristics of TD-SCVs (particularly of the unstable phenotype, which is not yet fully understood), further studies are still needed to understand better whether additional mutations can act in a compensatory or stabilizing manner to restore the activity of the enzyme thymidylate synthase, leading to revertant and normal phenotypes.

The isolates Sa3, Sa4, Sa5, Sa6, Sa9, Sa10, and Sa11 were phenotypically and genetically determined as sSCVs; in subcultures after initial isolation, the phenotype remained stable. Although these isolates may be less fit because of the mutations behind this phenotype, they can survive owing to the presence of thymidine in secretions in the airways of CF patients (4, 11). Of note, sSCV isolates that presented missense nonconservative mutations (isolates Sa1 and Sa7) and the revertant isolate with missense conservative mutations (Sa17) showed, after subculturing, reversible and

Gene	Sequence (5′→3′) ^a	Fragment size (bp)	PCR conditions	Reference
Nuc	F GCCACGTCCATATTTATCAG	117	94°C for 1 min, 52°C for 30 s, 72°C for 30 s	36
	R TATGGTCCTGAAGCAAGTG			
thyA	F GCAATGACTACACTGCTATTGG	957	94°C for 45 s, 56°C for 45 s, 72°C for 45 s	This study
	R GAGGTGTTATCGCATATGTTG			
mecA	F TCCAGATTACAACTTCACCAGG	162	94°C for 1 min, 52°C for 30 s, 72°C for 30 s	37
	R CCACTTCATATCTTGTAACG			
ermA	F TCTAAAAAGCATGTAAAAGAA	645	94°C for 30 s, 52°C for 1 min, 72°C for 90 s	38
	R CTTCGATAGTTTATTAATATTAGT			
ermB	F GAGTGAAAAGGTACTCAACCAAATAA	208	94°C for 30 s, 52°C for 1 min, 72°C for 90 s	39
	R TTGGTGAATTAAAGTGACACGAA			
ermC	F TCAAAACATAATATAGATAAA	642	94°C for 30 s, 47°C for 1 min, 72°C for 90 s	40
	R GCTAATATTGTTTAAATCGTCAAT			
msrA	F TATAGCGCTCGTAGGTGCAA	270	94°C for 1 min, 52°C for 30 s, 72°C for 30 s	39
	R GTTCTTTCCCCACCACTCAA			
msrB	F TGTGGATGGCCTAGCTTTTC	230	94°C for 1 min, 52°C for 30 s, 72°C for 30 s	39
	R TCGCCATAACCCAATTCTTC			

TABLE 3 List of primers and PCR conditions used in this study

^aF, forward; R, reverse.

normal phenotypes, respectively. In line previous reports (4), these results suggest that unstable phenotypes may be lost. Curiously, it was not possible to characterize SCVs via phenotypic tests alone, as exemplified by the Sa13 isolate. The predominance of reversible colonies made it impossible to detect the sSCV phenotype. This fact highlights the need for the use of highly accurate assays, such as sequencing.

Remarkably, in our study, the emergence of TD-SCV was often related to some type of mutation in the *thyA* gene. However, in isolates Sa2 and Sa8, with the stable phenotype, and in isolates Sa12, Sa14, Sa16, and Sa18, with the revertant phenotype, only silent point mutations and the wild genotype were observed. Of note, in Sa15, no mutations (synonymous or nonsynonymous) were observed. In these isolates, the reversible SCV phenotype may be due to other mutations in the genome of *S. aureus* and not in the *thyA* region (4). This is important for understanding the mechanisms behind the appearance of SCVs and the pathogenesis of *S. aureus* (30). Notably, the unstable phenotype seems to play a major role in the relapse of seemingly defeated infections (27). Multi-omics approaches must, therefore, be used to increase the understanding of these strains.

Finally, clonal analysis was performed only for sSCVs to verify if there was a common clone; however, genetic variability was detected among the isolates. The ST5 and ST398 clones were found more than once. These clones have been previously detected in the context of methicillin-susceptible *S. aureus* (MSSA) and MRSA isolates with the SCV phenotype from respiratory samples of CF patients (31); the ST5 clone was described as a community-acquired isolate (32), and ST398 has been reported in animal and human infections (8) and may present high virulence (33).

Altogether, our data highlight the challenges in the recognition and identification of *S. aureus* SCVs. Lack of accurate methods in laboratory settings interferes directly in the recognition and identification of these variants. Therefore, their local (and even global) prevalence, we believe, is expressive and underestimated. Additionally, our results emphasize the potential treatment challenges in the context of these particular strains, since all of the isolates were multidrug resistant.

MATERIALS AND METHODS

Study settings and ethics statement. This study was performed at Complexo Hospital de Clínicas, Universidade Federal do Paraná (CHC/UFPR), an academic care hospital located in Curitiba, Paraná, southern Brazil. The Institutional Ethics Review Board of CHC/UFPR approved this study under reference number CAAE 45.063115.90000.0096.

Clinical sample collection, bacterial identification, and phenotypic characterization of SCVs. A total of 225 respiratory samples (sputum, bronchoalveolar lavage fluid, and oropharyngeal swab samples) from CF patients at CHC/UFPR were collected and analyzed consecutively during July 2013 and November 2016. Mannitol salt agar (MSA) was used to isolate *S. aureus* under aerobic conditions. Smaller colonies were identified using standard biochemical tests. All isolates were stored at -80° C in

Trypticase soy broth (TSB; HiMedia, Mumbai, India) containing 15% glycerol. Bacterial identification was performed using 7% NaCl agar, the Vitek 2 Compact instrument, and Vitek MS (bioMérieux S.A., Marcy l'Etoile, France), as per the manufacturer's instructions. Amplification of the *nuc* gene via PCR was performed for confirmation; the primers and amplification conditions used are indicated in Table 3.

The nutritional dependence of *S. aureus* SCVs was further assessed. Isolates (0.5 McFarland standard) were inoculated on (i) Mueller-Hinton agar (MHA) (Oxoid, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with hemin ($10 \mu g/ml$), menadione ($25 \mu g/ml$), or thymidine ($100 \mu g/ml$) (Sigma-Aldrich, Merck, St. Louis, MO, USA), and (ii) MHA containing blank discs impregnated with 15 μ l of each of the above-mentioned solutions (34), both incubated under aerobic conditions at 35°C for 24 to 72 h. *S. aureus* SCV isolates were characterized as nutritionally dependent when there was growth on a particular substrate but there was no growth in its absence. Additionally, isolates were considered revertants when they showed small colonies and grew weakly in the presence and absence of substrates on MHA.

Antimicrobial susceptibility testing and detection of β -lactam, macrolide, lincosamide, and streptogramin B resistance genes. TD-SCV and revertant isolates, as defined by the phenotypic methods mentioned above, were tested for susceptibility to ciprofloxacin, clindamycin, erythromycin, oxacillin, trimethoprim-sulfamethoxazole, and vancomycin by broth dilution using brain heart infusion broth (BHI; Oxoid, Thermo Fisher Scientific) supplemented with thymidine (100 μ g/ml) (23, 34). *S. aureus* ATCC 29213 was used as a control strain; test was performed using cation-adjusted Muller-Hinton broth (CAMHB; Oxoid, Thermo Fisher Scientific). To evaluate the interference of thymidine (used to supplement the medium for susceptibility testing and the possible effect on TMP-SXT results) on bacterial growth, quality control was also performed with *Enterococcus faecalis* ATCC 29212 (Table 1). The double-disk diffusion method with clindamycin and erythromycin disks was performed to determine MLS_B resistance phenotypes, using MHA supplemented with thymidine (100 μ g/ml). Test results were interpreted according to the CLSI standards (CLSI M100S-ED26:2016; https://clsi.org).

The *mecA* gene (encoding oxacillin [OXA] resistance determinant) and the *ermA*, *ermB*, *ermC*, *msrA*, and *msrB* genes (encoding MLS_B resistance determinants) were detected via PCR using specific primers and conditions previously described (Table 3).

thyA sequencing and molecular typing. Phenotypically TD-SCV stable and revertant *S. aureus* isolates were tested for the presence of mutations in *thyA* by using PCR and sequencing (Table 3). The PCR products were sequenced using a 3730XL DNA analyzer (Applied Biosystems, Carlsbad, CA, USA). Nucleotide and protein sequences were compared to the sequences of eight *S. aureus* strains, available in the GenBank database: (i) COL (accession no. NC_002951.2), (ii) MRSA252 (NC_002952.2), (iii) MSSA476 (NC_002953.3), (iv) Mu50 (NC_002758.2), (v) MW2 (NC_003923.1), (vi) N315 (NC_002745.2), (vii) NCTC8375 (NC_007795.1), and (viii) USA300_FPR3757 (NC_007793.1). We also included the *thyA* sequencing results of our wild-type isolates in the analysis.

Multilocus sequence typing (MLST) was performed by PCR amplification and sequencing of seven *S. aureus* housekeeping genes (*arcC, aroE, glpF, gmk, pta, tpi,* and *yqiL*) only for genetically confirmed SCVs, using previously described primers and procedures (35). Sequences were analyzed using the *S. aureus* MLST website (https://pubmlst.org/saureus/).

ACKNOWLEDGMENTS

We thank the Central Laboratory of Paraná (LACEN), Paraná, Brazil, for the conduction of the MALDI-TOF assay. We also thank the staff of the Life Sciences Core Facility (GOSeq Biotecnologia), Federal University of Paraná (UFPR), for help with DNA sequencing.

PhD (D.C.) and MSc (A.P.D.O.T.) fellowships were funded by Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CAPES) Brazil, finance code 001.

REFERENCES

- Besier S, Smaczny C, Von Mallinckrodt C, Krahl A, Ackermann H, Brade V, Wichelhaus TA. 2007. Prevalence and clinical significance of *Staphylococcus aureus* small-colony variants in cystic fibrosis lung disease. J Clin Microbiol 45:168–172. https://doi.org/10.1128/JCM.01510-06.
- Kahl BC. 2014. Small colony variants (SCVs) of *Staphylococcus aureus* a bacterial survival strategy. Infect Genet Evol 21:515–522. https://doi.org/ 10.1016/j.meegid.2013.05.016.
- Kahl BC, Becker K, Löffler B. 2016. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev 29:401–427. https://doi.org/10.1128/CMR.00069-15.
- Kittinger C, Toplitsch D, Folli B, Landgraf LM, Zarfel G. 2019. Phenotypic stability of *Staphylococcus aureus* small colony variants (SCV) isolates from cystic fibrosis (CF) patients. Int J Environ Res Public Health 16:1940. https://doi.org/10.3390/ijerph16111940.
- Lee J, Zilm PS, Kidd SP. 2020. Novel research models for *Staphylococcus aureus* small colony variants (SCV) development: co-pathogenesis and growth rate. Front Microbiol 11:321. https://doi.org/10.3389/fmicb.2020.00321.
- Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science 305:1622–1625. https://doi.org/10 .1126/science.1099390.

- Kriegeskorte A, Lorè NI, Bragonzi A, Riva C, Kelkenberg M, Becker K, Proctor RA, Peters G, Kahl BC. 2015. Thymidine-dependent *Staphylococcus aureus* small-colony variants are induced by trimethoprim-sulfamethoxazole (SXT) and have increased fitness during SXT challenge. Antimicrob Agents Chemother 59:7265–7272. https://doi.org/10.1128/AAC.00742-15.
- de Souza DC, Cogo LL, Palmeiro JK, Dalla-Costa LM, de Oliveira Tomaz AP, Riedi CA, Rosario Filho NA. 2020. Thymidine-auxotrophic *Staphylococcus aureus* small-colony variant bacteremia in a patient with cystic fibrosis. Pediatr Pulmonol 55:1388–1393. https://doi.org/10.1002/ppul.24730.
- Precit MR, Wolter DJ, Griffith A, Emerson J, Burns JL, Hoffman LR. 2016. Optimized *in Vitro* antibiotic susceptibility testing method for small-colony variant *Staphylococcus aureus*. Antimicrob Agents Chemother 60:1725–1735. https://doi.org/10.1128/AAC.02330-15.
- Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Löffler B, Peters G. 2014. *Staphylococcus aureus* small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol 4:99. https://doi.org/10.3389/fcimb.2014.00099.
- 11. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G. 2006. Small colony variants: a pathogenic form of bacteria that

facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305. https://doi.org/10.1038/nrmicro1384.

- Vergison A, Denis O, Deplano A, Casimir G, Claeys G, DeBaets F, DeBoeck K, Douat N, Franckx H, Gigi J, leven M, Knoop C, Lebeque P, Lebrun F, Malfroot A, Paucquay F, Pierard D, Van Eldere J, Struelens MJ. 2007. National survey of molecular epidemiology of *Staphylococcus aureus* colonization in Belgian cystic fibrosis patients. J Antimicrob Chemother 59:893–899. https://doi.org/10.1093/jac/dkm037.
- Ota Y, Matsumoto T, Sugano M, Honda T. 2015. Identification of clinical thymidine-dependent small-colony variants of *Staphylococcus aureus* by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Rinsho Byori 63:683–687.
- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469 -0691.2011.03570.x.
- Besier S, Ludwig A, Ohlsen K, Brade V, Wichelhaus TA. 2007. Molecular analysis of the thymidine-auxotrophic small colony variant phenotype of *Staphylococcus aureus*. Int J Med Microbiol 297:217–225. https://doi.org/ 10.1016/j.ijmm.2007.02.003.
- Masoud-Landgraf L, Zarfel G, Kaschnigg T, Friedl S, Feierl G, Wagner-Eibel U, Eber E, Grisold AJ, Kittinger C. 2016. Analysis and characterization of *Staphylococcus aureus* small colony variants isolated from cystic fibrosis patients in Austria. Curr Microbiol 72:606–611. https://doi.org/10.1007/s00284-016-0994-z.
- 17. Pakasticali N, Kaya G, Senel U, Kipritci O, Tamay Z, Guler N, Nazik H, Ongen B. 2016. Prevalence, antibiotic and pulsed-field gel electrophoresis patterns of *Staphylococcus aureus* small-colony variants in cystic fibrosis patients. Southeast Asian J Trop Med Public Health 47:475–484.
- Black PN. 1997. Anti-inflammatory effects of macrolide antibiotics. Eur Respir J 10:971–972. https://doi.org/10.1183/09031936.97.10050971.
- Phaff SJ, Tiddens HAWM, Verbrugh HA, Ott A. 2006. Macrolide resistance of *Staphylococcus aureus* and *Haemophilus* species associated with longterm azithromycin use in cystic fibrosis. J Antimicrob Chemother 57:741–746. https://doi.org/10.1093/jac/dkl014.
- Elkammoshi AM, Ghasemzadeh-Moghaddam H, Nordin SA, Taib NM, Subbiah SK, Neela V, Hamat RA. 2016. A low prevalence of inducible macrolide, lincosamide, and streptogramin B resistance phenotype among methicillin-susceptible *Staphylococcus aureus* isolated from Malaysian patients and healthy individuals. Jundishapur J Microbiol 9:e37148. https://doi.org/10 .5812/jjm.37148.
- Matsuoka M, Inoue M, Nakajima Y, Endo Y. 2002. New *erm* gene in *Staphylococcus aureus* clinical isolates. Antimicrob Agents Chemother 46:211–215. https://doi.org/10.1128/AAC.46.1.211-215.2002.
- 22. Chroboczek T, Boisset S, Rasigade JP, Tristan A, Bes M, Meugnier H, Vandenesch F, Etienne J, Laurent F. 2013. Clonal complex 398 methicillin susceptible *Staphylococcus aureus*: a frequent unspecialized human pathogen with specific phenotypic and genotypic characteristics. PLoS One 8:e68462. https://doi.org/10.1371/journal.pone.0068462.
- Yagci S, Hascelik G, Dogru D, Ozcelik U, Sener B. 2013. Prevalence and genetic diversity of *Staphylococcus aureus* small-colony variants in cystic fibrosis patients. Clin Microbiol Infect 19:77–84. https://doi.org/10.1111/j .1469-0691.2011.03742.x.
- Dasenbrook EC, Checkley W, Merlo CA, Konstan MW, Lechtzin N, Boyle MP. 2010. Association between respiratory tract methicillin-resistant *Staphylococcus aureus* and survival in cystic fibrosis. JAMA 303:2386–2392. https://doi .org/10.1001/jama.2010.791.
- Cervantes-García E, García-Gonzalez R, Reyes-Torres A, Resendiz-Albor AA, Salazar-Schettino PM. 2015. *Staphylococcus aureus* small colony variants in diabetic foot infections. Diabet Foot Ankle 6:26431. https://doi .org/10.3402/dfa.v6.26431.
- Morelli P, De Alessandri A, Manno G, Marchese A, Bandettini R, Bassi M, Lobello R, Minicucci L. 2015. Characterization of *Staphylococcus aureus* small colony variant strains isolated from Italian patients attending a regional cystic fibrosis care centre. New Microbiol 38:235–243.

- Wolter DJ, Emerson JC, McNamara S, Buccat AM, Qin X, Cochrane E, Houston LS, Rogers GB, Marsh P, Prehar K, Pope CE, Blackledge M, Déziel E, Bruce KD, Ramsey BW, Gibson RL, Burns JL, Hoffman LR. 2013. *Staphylococcus aureus* small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin Infect Dis 57:384–391. https://doi.org/10 .1093/cid/cit270.
- Green N, Burns JL, Mayer-Hamblett N, Kloster M, Lands LC, Anstead M, Ratjen F, Saiman L. 2011. Lack of association of small-colony-variant *Staphylococcus aureus* strains with long-term use of azithromycin in patients with cystic fibrosis. J Clin Microbiol 49:2772–2773. https://doi.org/10.1128/JCM.00835-11.
- Chatterjee I, Kriegeskorte A, Fischer A, Deiwick S, Theimann N, Proctor RA, Peters G, Herrmann M, Kahl BC. 2008. *In vivo* mutations of thymidylate synthase (encoded by *thyA*) are responsible for thymidine dependency in clinical small-colony variants of *Staphylococcus aureus*. J Bacteriol 190:834–842. https://doi.org/10.1128/JB.00912-07.
- Guérillot R, Kostoulias X, Donovan L, Li L, Carter GP, Hachani A, Vandelannoote K, Giulieri S, Monk IR, Kunimoto M, Starrs L, Burgio G, Seemann T, Peleg AY, Stinear TP, Howden BP. 2019. Unstable chromosome rearrangements in *Staphylococcus aureus* cause phenotype switching associated with persistent infections. Proc Natl Acad Sci U S A 116:20135–20140. https://doi.org/10.1073/pnas .1904861116.
- Dodémont M, Argudín MA, Willekens J, Vanderhelst E, Pierard D, Miendje Deyi VY, Hanssens L, Franckx H, Schelstraete P, Leroux-Roels I, Nonhoff C, Deplano A, Knoop C, Malfroot A, Denis O. 2019. Emergence of livestock-associated MRSA isolated from cystic fibrosis patients: result of a Belgian national survey. J Cyst Fibros 18:86–93. https://doi.org/10.1016/j.jcf.2018.04.008.
- Jamrozy DM, Fielder MD, Butaye P, Coldham NG. 2012. Comparative genotypic and phenotypic characterisation of methicillin-resistant *staphylococcus aureus* ST398 isolated from animals and humans. PLoS One 7: e40458. https://doi.org/10.1371/journal.pone.0040458.
- 33. Kashif A, McClure JA, Lakhundi S, Pham M, Chen S, Conly JM, Zhang K. 2019. *Staphylococcus aureus* ST398 virulence is associated with factors carried on prophage ϕ Sa3. Front Microbiol 10:2219. https://doi.org/10.3389/fmicb.2019.02219.
- Maduka-Ezeh A, Seville MT, Kusne S, Vikram HR, Blair JE, Greenwood-Quaintance K, Arabia F, Patel R. 2012. Thymidine auxotrophic *Staphylococcus aureus* small-colony variant endocarditis and left ventricular assist device infection. J Clin Microbiol 50:1102–1105. https://doi.org/10.1128/ JCM.01170-11.
- Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; referees: 2 approved]. Wellcome Open Res 3:124. https:// doi.org/10.12688/wellcomeopenres.14826.1.
- 36. Silbert S, Menezes LC, Monteiro J, Gabriela M, Ribeiro C, Pereira SC, Pignatari ACC, Kit EM. 2009. Screening of MRSA: a comparison between one and multiple sites sample collection using the new ESWAB MRSA collection kit. Abstr C-049. ASM, 109th General Meeting, Philadelphia, PA.
- Oliveira DC, De Lencastre H. 2002. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant *Staphylococcus aureus*. Antimicrob Agents Chemother 46:2155–2161. https://doi.org/10.1128/AAC.46.7.2155-2161.2002.
- McDougal LK, Fosheim GE, Nicholson A, Bulens SN, Limbago BM, Shearer JES, Summers AO, Patel JB. 2010. Emergence of resistance among USA300 methicillin-resistant *Staphylococcus aureus* isolates causing invasive disease in the United States. Antimicrob Agents Chemother 54:3804–3811. https://doi.org/10.1128/AAC.00351-10.
- Hilmi D, Parcina M, Bode K, Ostrop J, Schuett S, Heeg K, Ziebuhr W, Sommerburg O, Bekeredjian-Ding I. 2013. Functional variation reflects intra-strain diversity of *Staphylococcus aureus* small colony variants in the host-pathogen interaction. Int J Med Microbiol 303:61–69. https://doi .org/10.1016/j.ijmm.2012.12.008.
- 40. Chen J, Yu Z, Michel FC, Wittum T, Morrison M. 2007. Development and application of real-time PCR assays for quantification of *erm* genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl Environ Microbiol 73:4407–4416. https://doi.org/10.1128/AEM.02799-06.