
Inheritance of Acquired Behaviour Adaptations and
Brain Gene Expression in Chickens
Daniel Nätt1, Niclas Lindqvist1¤, Henrik Stranneheim2, Joakim Lundeberg2, Peter A. Torjesen3, Per

Jensen1*
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Abstract

Background: Environmental challenges may affect both the exposed individuals and their offspring. We investigated
possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access
would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations
would be transmitted to the offspring.

Methodology/Principal Findings: Parents were raised in an unpredictable (UL) or in predictable diurnal light rhythm (PL,
12:12 h light:dark). In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive
food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without
parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL
birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better,
and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression
caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected
similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds,
suggesting one possible mechanism for these effects.

Conclusions/Significance: Our findings suggest that unpredictable food access caused seemingly adaptive responses in
feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including
regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment.
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Introduction

Environmental challenges force animals to adjust their behaviour

and physiology in order to cope. This affects their phenotype, and

may also be associated with epigenetic modifications of gene

expression patterns, both of which may be transmitted across

generations. For example, lack of maternal care in rats causes a

significant effect on brain gene expression and stress related

behaviour later in life [1]. Similar effects may be seen in offspring

exposed to elevated levels of steroid hormones, toxins or malnutrition

in utero or in ovo [2–6]. Furthermore, we have previously shown that

offspring of chickens raised in stressful conditions have an affected

phenotype and brain gene expression which mirrors that of their

parents [7], supporting other studies which have shown that offspring

phenotypes may be affected by parental experiences preceding

pregnancy, and even persist over more than one generation [8–10].

Studies on transgenerational effects are increasingly focusing on

disease risks and stress related responses in the offspring [11].

However, it has been suggested that mechanisms such as these

could be a means of preparing the offspring for a hostile

environment [12], which, in principle, could be an adaptive

mechanism, allowing offspring to increase their fitness when faced

with similar challenges as those experienced by the parents.

An adaptive response should be relevant with respect to the type

of challenge, and it should potentially increase the fitness of the

affected individual [13]. Furthermore, an adaptive transgenera-

tional effect would require that the specific response of the parents

is mirrored in the offspring, making them better equipped to cope

with the environmental challenges experienced by the parents.

In the present experiment, we investigated whether unpredict-

able access to food and water would cause adaptive modifications

in behaviour and gene expression in chickens, and whether this

would be mirrored in the offspring. Possible ways to adapt to such

a situation would be, for example, to change foraging strategy

towards feeding more at known food sites and spend less time

exploring for new sites (a more conservative foraging strategy), to
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increase the rate of dominance related behaviors as a consequence

of a higher competition for food with limited availability, and to

aim for highest possible energy intake per time unit. Such changes

in behavior could logically be presumed to increase the feeding

efficiency in a situation where food availability is stochastic, and

would therefore be expected to increase the fitness of an animal in

such an environment. Optimal foraging theories have predicted

similar shifts toward conservative strategies when animals are

exposed to variable food availability [14].

Transmissions of information across generations which does not

involve traditional inheritance of DNA-sequence alleles is often

referred to as soft inheritance [15] or ‘‘Lamarckian inheritance’’. It

can broadly be divided into animal tradition and epigenetic

inheritance (heritable changes in gene expression which occur

without changes in nucleotide sequence) [16,17]. Gene expression

can potentially be affected across generations by means of various

pathways: hormonal effects on embryos, effects of maternal

behavior, and direct transmission of epigenetic marks such as

methylation of DNA. Chickens are powerful model animals for

studying epigenetic inheritance, since eggs can be incubated,

hatched and offspring raised without any contacts with the

parents, hence eliminating transmission of animal tradition

between generations.

We hypothesized that in an environment with unpredictable

food access, chickens will show more conservative and competitive

foraging strategies, as well as increased preference for high-energy

food. We further hypothesized that such alterations in behavior,

and the associated modifications in brain gene expression profiles,

would be transmitted to the offspring, thereby suggestively prepare

the offspring for the parental environment.

To test these hypotheses we studied the behavior and brain gene

expression in chickens raised in an unpredictable light rhythm (since

chickens do not feed in darkness [18], this makes food availability

stochastic), and their offspring, which were raised in a standard,

predictable environment. We were able to show a significant

transgenerational transmission of behavior, which seems to be

adaptive in relation to the challenges experienced by the parents.

Furthermore, using a 14000 transcript microarray, we found a

correlation between the induced gene expression differences in the

parents, and the corresponding difference between offspring of

parents from unpredictable or predictable conditions. These results

supported and further corroborated our previous findings, showing

that adaptive responses can be transmitted across generations in

chickens by means of epigenetic mechanisms.

Results

We used two generations of a commercial line of chickens

selected for high egg-laying. Parents were either raised from 26

days of age in a chronic unpredictable light/dark rhythm (UL-

treatment; Unpredictable Light) or a predictable 12:12 h light/

dark rhythm (PL-treatment; Predictable Light). Since chickens do

not eat in darkness [18], the UL treatment meant that also food

availability was unpredictable. All offspring, both from UL and PL

parents, were raised under predictable light.

Parents were firstly tested in a foraging test, where individual test

birds each were allowed to feed in an arena containing three types of

potential food sources placed in evenly distributed holes in the floor.

One third of the holes contained freely accessible regular food and

one third contained meal worms, a highly preferred food item to

which the birds had earlier been accustomed. The meal worms were

hidden in saw dust, so finding the food required searching and

scratching. The last third contained only saw-dust (no food), so in

effect, a bird had to choose between eating freely available standard

feed or searching for a more unreliable, but attractive, food. UL

parents showed an overall increase in the total number of pecks in

the arena compared to PL (means6SEM: 595663 versus 322666

pecks, F1,29 = 7.3, p,0.01), and they pecked more in holes

containing freely available regular feed (Figure 1).

Secondly, the birds were exposed to a pair-wise dominance test,

where two birds of the same sex, one from each treatment,

competed for a common food resource which only one of them

could access at the time. There was no effect of UL on the result in

this test (Figure 2). Furthermore, there were no overall effects of

UL on the weights at the different ages, but between day 26 and

70, right after onset of treatment in the UL group, UL parents had

a higher growth rate than the PL (Figure 3); this was primarily due

to an effect in the females,

Offspring, which had never been exposed to an unpredictable

light rhythm, were also tested in a similar foraging arena and in a

similar dominance test as their parents. Just like their parents,

female (but not male) offspring of UL birds pecked more in food

sources with freely available regular feed than the offspring of PL

birds in the Foraging test (Figure 1). Unlike the parents, there was

no treatment effect on the total number of pecks in the test. At

adult age, but not when young, offspring of UL parents pecked

more at the food in the Dominance test (Figure 2) and also showed

shorter latencies to peck at the food (means6SEM: 199668 versus

470658 s, Z = 22.5, p = 0.01). In addition to these tests, the

Figure 1. Average nrs of pecks6SEM directed to a familiar,
readily available food resource in UL and PL parents, and their
respective offspring, as measured in a Foraging test. Significant
differences are indicated: * = p,0.05; ** = p,0.01.
doi:10.1371/journal.pone.0006405.g001
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offspring were subjected to a food preference test, where they

could choose between low energy and high energy food. Offspring

of UL parents spent more time at the high energy food source, and

less at the low energy food source (Figure 4). Offspring of UL

parents were significantly heavier than offspring of PL parents; this

was primarily due to a male difference late in life. There was also a

significant interaction between parental treatment and offspring

sex on weight (Figure 3). The interaction was due to female

offspring of PL parents being significantly larger at day 8

(F1,20 = 4.5, p,0.05). When instead considering daily growth at

different age intervals, both male and female offspring of UL

parents grew significantly faster between day 66 and 105 than

offspring of PL parents. In addition, offspring of UL parents had

significantly higher survival at 40 weeks of age than offspring of PL

(65% versus 39%, x2 = 4.2, df = 1, p,0.05); similar effects of

treatment was not seen in the parents.

When the parents were 20 weeks old, we collected eggs from UL

and PL birds respectively, on the same morning (which reassured

that each egg was laid by different females), and measured the levels

of five steroid hormones in yolk and albumen. Only estradiol in yolk

was significantly elevated by the UL treatment (1.0460.04 mmol/l

vs 0.8760.04 mmol/l; F1,11 = 9.4, p,0.01) although the estradiol

precursor testosterone had a non-significant tendency to be elevated

as well (12.6561.0 mmo/l vs 10.9760.79 mmol/l).

RNA from the hypothalamus of eight birds from each treatment

and generation was hybridized to 14k cDNA chicken microarrays

in order to compare gene expression profiles between treatments

and generations. In chickens, hypothalamus has previously been

associated with stress regulation within and across generations [7].

Nine genes were significantly differentially expressed (DE) based

on B-value (the log posterior odds ratio of differential expression vs

non-differential expression; significance was set at B.0) between

UL and PL in the parents (Table 1). A gene ontology analysis

assigned three of the five annotated genes to a biological process

(one gene per category): rhythmic process (corrected hypergeo-

metric p,0.01), signal transduction (corrected hypergeometric

p,0.05), and transcription (corrected hypergeometric p,0.05).

Considering the sexes separately, Heat shock 70kDa protein 5

(HSPA5, UniGeneID: Gga.4219) and Early growth response 1

(EGR1, UniGeneID: Gga.4922) were significantly down-regulated

in UL males (B-value: 0.66 and 0.09 respectively) compared to PL.

Based on the criterion B.0, no significantly DE genes were found

in the offspring, although there were several genes with

considerable fold-changes, i e, the estimated average expression

levels were higher in one of the treatments.

To explore possible transgenerational effects in the altered gene

expression caused by UL as compared to PL, we calculated the

Spearman rank correlation coefficients between the M-values (fold

change, measured as the log2 of the difference in expression level;

indicator of the effects of treatment on the expression level of a gene)

of the two sexes within and between generations (Figure 5). This

analysis measures whether the UL-induced pattern of DE was

similar in both sexes, and whether a similar difference could be

found when comparing offspring of UL parents with offspring of PL

parents. There were significant correlations (p,0.05) between male

and female M-values within both generations, showing that male

and female parents were affected similarly by the UL, and that this

effect was mirrored, but to a lower degree, by a similar difference

between offspring of UL and PL-parents. Across generations, the

pattern of DE in both female and male offspring tended to mirror

the UL-induced DE in the mothers, whereas only the DE of male

offspring mirrored the fathers (all comparisons: p,0.05).

There could be concern that some of the effects in comparisons

between males and females are due to dosage effects from the double

Z-chromosomes of males. Adding the top 100 lists (based on M-

values) of each sex and generation rendered a total of 114 fully

annotated genes, and out of these, one of the parental male genes and

one of the parental female DE genes were annotated to the Z-

chromosome; in the offspring, one male and no female DE genes

were annotated to the Z-chromosome. In total, the cDNA-array

Figure 2. Food competition at adult age in UL and PL parents and their respective offspring as measured in a Dominance test.
Numbers of pecks in the food are given in means6SEM. Significant differences are indicated: * = p,0.05.
doi:10.1371/journal.pone.0006405.g002
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Figure 3. Preference for high energy food in offspring of UL and PL parents. Time spent close to the food sources is given in means6SEM.
Significant differences are indicated: * = p,0.05. Dashed bars indicate preference for low energy food.
doi:10.1371/journal.pone.0006405.g003
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contained 7414 transcripts which have been assigned to a

chromosome, and of these, 145 are situated on the Z-chromosome.

Hence, in our data there was no over-representation of DE genes

from the Z-chromosome (x2 = 0.25; p = 0.61), excluding any possible

suspicions about dosage effects in male-female comparisons.

Since a correlation pattern across generations was found, we

compared the 2.5% top ranked genes (based on M-values of

fold-change) of parents and offspring, in order to identify some of

the genes particularly likely to show transgenerational transfer of

DE, and Table 2 lists genes which occurred in the top lists of at

least one of the sexes in both generations. Although care is needed

when inferring function based on a list like this, it is notable that

among the top rated DE genes in both generations were several

transcripts from immune genes, which are separately shown in

Table 3. Interestingly, three MHC-transcripts were among the top

ranked in the parental generation, but not in the offspring.

Furthermore, we used the top 100 list of genes, based on M-

values, in each generation and sex for a gene ontology (GO)

analysis for biological processes. Only six parental genes (out of 59

annotated) were assigned a significant GO-function (one gene in

each functional category), and these were T-cell differentiation,

Positive regulation of JNK cascade, Epidermis development, B-cell

activation, Notch signaling pathway, and Protein metabolic

processes (all with corrected hypergeometric p,0.05). In the

offspring, also six genes were assigned significant GO-functions,

and these were Transmembrane receptor protein tyrosine kinase

Figure 4. Weight measurements of surviving birds. (A) Growth in
UL and PL parents; male UL, n = 4; male PL, n = 7; female UL, n = 11;
female PL, n = 8. (B) Body weight in offspring of UL and PL parents. The
difference between the offspring groups was significant (p,0.01) based
on a repeated measure general linear model with parental treatment
and sex as independent factors. There was an interaction between
parental treatment and sex (p,0.05) illustrated by the small figure in
the female diagram. (C) Growth in offspring of UL and PL parents; males
with UL parents n = 10; males with PL parents, n = 9; females with UL
parents n = 11; females with PL parents n = 10. All values are given as
grams with means6SEM.
doi:10.1371/journal.pone.0006405.g004

Table 1. Significantly differentially expressed gene transcripts between parents treated with Unpredictable Light or Predictable
Light based on microarray analysis.

Symbol Name GenBank UniGene M-fold B-value

Unknown CN237660 0.69 2.48

Unknown CN236687 0.87 2.45

C1QC Complement component 1, q subcomponent, C chain BU413814 Gga.9873 0.81 1.93

Transcribed locus CN227392 Gga.15444 0.51 1.78

PER2 Period homolog 2 BU311564 Gga.39390 0.73 1.54

SOUL SOUL protein CN225752 Gga.1806 20.65 0.59

CIRBP Cold inducible RNA binding protein CN232810 Gga.4756 0.36 0.47

CRIP2 Cysteine-rich protein 2 BU123394 Gga.42630 0.78 0.31

MAPK8IP3 Mitogen-activated protein kinase 8 interacting protein 3 CN224884 Gga.16066 0.53 0.06

M-fold value is the log2 of the difference in expression level, and B-value is the log odds ratio of expression levels; the B-value estimates the certainty of DE vs non-
certainty of DE. The criterium used for significant expression was that B.0. Positive M-values indicate that the transcript is higher expressed in birds treated with
Unpredictable Light.
doi:10.1371/journal.pone.0006405.t001

Figure 5. Correlations of differential gene expression. Spearman
rank correlations between the M-values of the two sexes within and
between generations. All correlations coefficients were significant on at
least p,0.05.
doi:10.1371/journal.pone.0006405.g005
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signaling pathway (3 genes; corrected hypergeometric p,0.01)

and Regulation of transcription DNA-dependent (3 genes;

corrected hypergeometric p,0.01). Hence, no GO-functions

appeared as DE in both generations based on this analysis.

Five top ranked genes (two of which were significantly DE based

on B-values in the parents) were selected for verification with real-

time quantitative PCR: Immunoglobulin light chain, LTF, SOUL,

HSPA5 (Gga.4219) and PER2. In the parents, all genes were DE in

the same direction as on the microarray, and four were significantly

DE either on p-value (p,0.05) or fold change (.2 fold). This

verification rate is in accordance with previous studies [19].

Discussion

Our findings show that chickens in a stochastic light

environment, which includes an unpredictable access to food,

showed modification of their foraging behavior which is in line

with what could be expected from an adaptive perspective.

Furthermore, offspring of UL birds showed a similar response to

that of their parents, in spite of themselves never being exposed to

the treatment. As predicted, offspring of UL parents used a more

conservative feeding strategy (females only), were more dominant

and showed an increased preference for high energy food than

offspring of PL parents. They were also heavier and had higher

survival than the PL. The modified brain gene expression induced

by UL was mirrored in the offspring, indicating a transgenera-

tional transfer of the acquired differential expression levels. In

addition, we found elevated estradiol levels in the yolk of eggs from

UL hens, which may be part of the mechanisms involved in the

transgenerational effect observed.

As predicted, the UL parents consumed more of the readily

available food in the Foraging test, which can be interpreted as a

Table 2. Genes with an M-value among the 2.5% top ranked in both generations, and sexes.

Rank in parents Rank in offspring

Symbol Name UniGene FemaleA MaleB FemaleC MaleD

ACSBG2 Acyl-CoA synthetase bubblegum 2* Gga.22498 213 86

SOUL SOUL protein Gga.1806 174 56 8

Immunoglobulin light chain C-region*/** Gga.38 2 19 38 3

MRPL19 Mitochondrial ribosomal protein L19 Gga.9754 204 22

LHX8 LIM Homeobox Gga.12515 12 NA 218 NA

NFU1 NFU1 iron-sulfur cluster scaffold homolog Gga.22431 52 56 6

LTF Lactotransferrin Gga.2551 25 93

CCNF Cyclin F Gga.15366 1 1 30

NUDT4 Nudix-type motif 4 Gga.34977 58 57 13

TTR Transthyretin Gga.2620 18 22 109 1

TMEM167B Transmembrane protein 167B Gga.34569 46 25

AHR Aryl hydrocarbon receptor Gga.3264 18 26 NA

Protein phosphatase 1, regulatory subunit 12C Gga.30578 27 85 NA

NCBP2 Nuclear cap binding protein subunit 2 Gga.6356 57 119

SCG5 Secretogranin V Gga.1678 86 43

FGFR3 Fibroblast growth factor receptor 3 Gga.2908 30 191 74

TSPAN15 Tetraspanin 15 Gga.7579 80 2

Immunoglobulin heavy chain */** 1 33 38 69

BRPF3 Bromodomain and PHD finger containing 3 Gga.7615 40 26

Unkown transcript (GeneBank: CN220016) 8 34 54 5

UBE2L3 Ubiquitin-conjugating enzyme E2L 3 Gga.22647 91 11

Transcribed locus Gga.46489 56 75

Unkown transcript (GeneBank: CN223066) 163 58

P2RY10 Purinergic receptor P2Y, G-protein coupled, 10 Gga.25992 23 NA 6 NA

ISG12-2 Putative ISG12-2 protein Gga.6201 NA 15 69 NA

Unkown transcript (GeneBank: CN227633) 26 76

The table shows the rank position of the M-value of a gene in a particular data set (for example, female parents). The highest rank is assigned to the gene with the
highest absolute M-value, and the lowest possible M-value is equal to the total nrs of genes on the list after filtration. NA denotes genes filtered away during analysis as
low quality spot on microarray. The criterion for a gene being listed in this table was that it belonged to the 2.5% highest ranked genes in at least one of the sexes in
both generations.
*These genes were represented by more than one transcript on the microarray.
**All transcripts were top ranked in both generations, See table 3.
ANrs of total genes on the list 9429.
BNrs of total genes on the list 9570.
CNrs of total genes on the list 9457.
DNrs of total genes on the list 9078.
doi:10.1371/journal.pone.0006405.t002
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more conservative feeding strategy. At the same time, they had a

higher overall feeding rate, probably at the expense of explorative

behavior. This illustrates a seemingly adaptive response to the

challenge used in this experiment, where it would appear to be

most beneficial to adopt the strategy of feeding as efficiently as

possible at those unpredictable time windows when food is

available. Furthermore, the increased growth rate, which was

shown as an acute response to the onset of the treatment, is in

agreement with previous reports [20,21], and may indicate a

general increase in feed intake in the home pens as a response to a

sudden stochasticity of food availability.

Female offspring had a similar response in the same Foraging

test as their parents, showing that the modified foraging strategy

was transmitted to them. Additionally, the offspring of UL parents

preferred high energy food, which again was in line with

predictions, suggesting that the foraging strategy of the chicks

was affected in an adaptive fashion by the UL experiences of the

parents. This altered foraging behavior, possibly combined with an

increased food intake, may partly explain the significantly higher

weight gain in the offspring of UL birds.

Although no significantly DE genes were detected between the

offspring of UL and PL parents based on B-values, the measured

fold-changes of the expression of several genes and transcripts

between UL and PL birds were closely related between

generations. The correlation analysis, and the number of genes

which appeared on the top ranked DE list in both generations

suggests that the expression differences induced by UL in the

parents were to some extent transferred to the offspring – if the

expression of a particular gene was highly affected by the UL, the

same gene tended to be similarly affected in the offspring of UL

parents. Transthyretin and one of the unknown transcripts

(GeneBank: CN220016) were of particular interest, because they

were high ranked (within 1.2% of top ranked) in both sexes in both

generations. Even though the Gene Ontology did not demonstrate

any significant transgenerational effects on GO functional groups,

it should be remembered that only relatively few genes were GO

annotated. However, it is conceivable that some of the GO groups

identified (although with small gene numbers) appear relevant in

relation to the treatment and our results: for example, rhythmic

process, transcription, T-cell differentiation and B-cell activation.

It should be noted that we have measured the gene expression at

different ages in the parents and the offspring. This may have

obscured the results, since it can not be excluded that some of the

genes which are DE in the parents are not sufficiently expressed in

the offspring at the age when we obtained our samples, and we

may therefore miss some significant correlations. Unfortunately,

the reference design we have used for the microarray analysis does

not allow us to check whether a particular gene is expressed or not,

since we only obtain the expression level relative to the reference

sample. However, in a parallel experiment, where both parents

and offspring were at the same ages (but a different White Leghorn

breed) as in the present experiment and the same brain regions

were studied, we used Affymetrix oligo-arrays (unpublished data).

These do not use the reference design, and it is possible to estimate

whether genes (or rather probe sets) have a detectable level of

expression or not. The Affymetrix microarray contained 38535

probes, and using a signal strength of 5 as limit (considered to be

just above background levels), 23153 had a detectable level in the

parents, and 23037 in the offspring. Of these, 22778 were

detectable in both groups. Changing the detection level to 7

decreased the number of detectable signals, but did not change the

proportions. Although we can still not exclude that certain genes

central to our experiment change their expression levels with age,

we feel sufficiently safe in assuming that this should not alter our

main findings. Regardless of the age differences between parents

and offspring, our data strongly suggest that some DE was

transferred between generations.

The correlation analysis suggests that the mother and father

influenced offspring gene expression differently, maybe by

parental imprinting on specific genes [22]. In the offspring, we

found some differences between the sexes both in behavior and the

possibly transmitted gene expression in response to the parental

Table 3. Immune gene transcripts which had among the 2.5% highest absolute M-values in each sex and generation.

Name GeneBank UniGene Parents Offspring

Female Male All Female Male All

Ig light chain CN217151 Gga.22841 3 9 3

Ig light chain CN225453 Gga.22841 2 19 1 32 58

Ig light chain CN224479 Gga.22841 5 49 2 134 141

Ig light chain CN221461 Gga.22841 4 4 38 91 43

Ig heavy chain CN234170 Gga.4330 104

Ig heavy chain1 CN219711 6 22

Ig heavy chain1 CN218849 33* NA1 NA1 1

Ig heavy chain1 CN217762 1 7 92 69 36

MHC class I CN224062 Gga.4973 150* 178*

MHC class II CN225201 Gga.4414 37 30 33

MHC class II CN221719 Gga.4414 31 199

The table shows the same values with same criteria as in table 3 for all transcripts included on the microarray from the two immune related genes Ig light chain, Ig
heavy chain. Also included are three MHC-transcripts, which were only top ranked in the parents. If not stated otherwise, all transcripts were down-regulated in parents
treated with Unpredictable Light (UL) or offspring of UL parents in relation to parents in Predictable Light or their offspring.
*Up-regulated.
1Annotation was done using Chicken Discovery System.
1NA indicate genes filtered away during analysis as low quality spot on microarray. Filtration is dependent on joint properties on all the arrays in the group, hence could
fall out differently in relation to which arrays are included.

doi:10.1371/journal.pone.0006405.t003
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treatment. This is in accordance with findings by Mueller and Bale

[23] who showed that the sexes were affected differently regarding

emotionality after exposure to prenatal stress during pregnancy in

mice and in their study, this difference was probably mediated by

the methylation status of the corticotrophin-releasing factor and

glucocorticoid receptor genes.

The microarray data from the parents suggest a possible

coregulation of the expression of PER2, a clock gene which uses

food occurrence as a zeitgeber [24], and some stress/immuno-

related genes. Especially transcripts of the immunoglobulin light

chain and its precursors were down-regulated in UL parents and

tended to be so in their offspring. Other proteins of the

immunoglobulin superfamily, like MHC class I and Thy-1, do

not only contribute to different disease resistance phenotypes, but

also have an apparent role in neural development [25–27]. It

remains an intriguing possibility for future studies that immune

genes, which give rise to extreme variation in gene products and

play an important role in the complexity of neural development,

also are involved in transgenerational epigenetic phenotypic

tuning. If so, the impact on our understanding of the develop-

mental origin of health and disease [28,29] could be significant.

Since we have effectively excluded animal traditions in this

study, transgenerational epigenetic inheritance is the most likely

explanation to the differences seen in the offspring phenotypes.

Epigenetic inheritance can be either context-dependent or germ-

line dependent [30]. Context dependent epigenetics involve

modifications in gene expression patterns caused by variations in

the embryonic chemical and endocrine environment, where

typical mediators are steroid hormones [31]. Germ-line dependent

epigenetics, on the other hand, are mediated by meiotic and

embryonic survival of epigenetic modifications in germ cells, like

DNA-methylation or variations in chromatin structure [32]. An

important difference between context dependent and germ-line

dependent effects is that the former only shows a maternal effect,

while the latter can originate from both parents [33]. A detailed

analysis of the relative contribution of maternal and germ-line

effects would require a different experimental design, where the

parents of different sex were treated independently. Although this

was not the immediate purpose of the present experiment, we have

nevertheless performed a number of analyses to provide a first

indication of possible transgenerational pathways.

The higher levels of estradiol in yolk of UL might have

mediated the transgenerational effect in a context dependent

manner. For example, maternal estradiol has been shown to affect

embryonic brain development leading to increased anabolism and

masculinized behaviors [34], much in agreement with the

phenotypic effects we observed in the offspring. Furthermore,

steroids are potent modifiers of gene expression [35] but it remains

to be investigated how a particular steroid would be able to affect a

specific subset of genes, as would be required in order to explain

the relation between DE of specific genes in the two generations.

Sex hormone deposits in the yolk come mainly from the ovaries,

which appear to deposit egg hormone levels independently from

the circulating levels [36], hence offering a mechanism for a

female bird to change offspring phenotypes without affecting her

own.

Similar to our previous results [7], corticosterone levels in eggs

were not affected by the UL treatment. Since steroid levels in

albumen reflect circulating levels in the mother [37], this indicates

that the chronic unpredictable light rhythm at the most exerted a

mild stress on the female birds at the time when eggs were

collected.

The fact that we found significant correlations between DE in

male parents and their male offspring may indicate that other

mechanisms than hormonal effects via the egg might also play a

role in the transgenerational transfer. Although the nature of such

mechanisms remains to be discovered, similar effects have been

observed in studies on humans [9].

Although there are many possible non-adaptive explanations for

our results which we have not tested in this experiment, it remains

an intriguing possibility that responses to environmental challenges

may serve an important role in rapid adaptation across

generations. Epigenetic modifications are normally transitory in

their nature, but have been demonstrated to sometimes remain

stable over several generations [15]. Transgenerational effects may

aid in rapid evolutionary radiation [38], for example during major

evolutionary transitions such as in bottleneck populations,

domestication or in populations exposed to climate change or

geographical isolation. This opens a new perspective on the

communication between the environment and the genome.

Materials and Methods

Ethical considerations
This study was approved by the local Ethical Committee of The

Swedish National Board of Laboratory Animals. The committee

has the task to evaluate the welfare of the animals in relation to the

purpose of the study, possibilities to alternative methods and to

determine if the study is a repetition of an already conducted

experiment.

Animals and housing
A commercial laying hen hybrid, HyLine W98, was used in this

experiment. Eggs were purchased from a commercial breeder and

incubated in one and the same incubator (Masalles Comericial SA,

Incubator type 25 H). The hatched chicks were marked,

vaccinated and housed in 100 (w)6200 (l)6180 (h) cm pens, with

ad libitum food and water, on a 12:12 h light/dark rhythm. At day

26 after hatching 40 chicks were randomly selected, divided into

two equally large groups, which were balanced for sex and weight,

and introduced into two larger pens, each measuring

15063006270 cm. As in Lindqvist et al. [7], one group was

given an unpredictable light schedule (UL), while the other

remained on a predictable 12:12 h light:dark cycle (PL). For the

UL group light and dark periods of 3, 6, 9, 12, 18 and 24 hours

were randomly applied. On a weekly basis, the light to dark ratio

was balanced so that the total number of light hours per week was

identical for the treatments. The two groups were housed in the

same room and to minimize pen effects every third week the

groups were moved between pens. Parents were weighed at day 0,

9, 26, 70, 119 and 148 after hatch. From six weeks of age both

groups were offered meal worms three times per week to get

accustomed to this food type. The mealworms were always

presented in the same type of bowl as was later used in the

Foraging test (see below).

At 24 weeks of age eggs were collected from each group once

every morning and stored at 14uC. Observations showed that at

least 60% of the males were actively copulating during this time,

and daily egg counts showed that all females were contributing to

the next generation (UL: max 9 eggs/day, mean 4.860.5 S.E.M.;

PL max 9 eggs/day, mean 5.460.1 S.E.M). All eggs were

incubated in the same incubator. In total 78 offspring were

hatched and housed, as one group, in the same type of pens as the

parents prior to onset of the treatment; 39 of those had UL parents

and 39 had parents of the PL group. At an age of 26 days, they

were moved to 30063006180 cm home-pens, with perches, nest

boxes, and ad libitum food and water. All offspring had a 12:12 h

light schedule, were presented meal worms once every second day
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and were weighed at day 0, 8, 20, 47, 66, 105, 154, 185 and 283

after hatch. Parents and offspring were housed in different

buildings more than 100 km apart.

Behavioral tests
The behavior of the birds was recorded in a series of tests

designed to measure the hypothesized adaptive changes to the

unpredictable light schedule (increased conservative foraging

strategy, dominance and preference for energetic food).

Foraging test – Conservative foraging strategy
To investigate foraging strategy all parental animals were on

day 131-133 after hatching tested in a circular shaped

(Ø = 250 cm) foraging arena. The floor of the arena had twelve

holes (Ø = 10 cm), where the test bird had free access to three

different resources, presented in equal numbers and balanced for

spatial distribution: 1) familiar/regular food, 2) meal worms mixed

with wood shavings, and 3) only wood shavings. A 50650 cm

start-box was connected to the arena with a guillotine door.

Recordings were done with the behavioral sampling software The

Observer 5.0 (Noldus Information Technology) through three

video cameras monitoring the whole arena.

One day before the test all birds were habituated to the arena

for 2620 min in familiar groups of four individuals. At the test day

birds were caught in their home pen and taken to a treatment

specific pre-test pen, with ad libitum water, but without food

(15061506270 cm). After 120 min (615 min) test birds were

caught in the pre-test pen and in darkness introduced to the start-

box. When light was turned on the birds were given 30 sec to calm

down, followed by the lifting of the guillotine door, which gave the

bird access to the whole arena and denoted the start of the test.

One third of each treatment group was tested each day during the

three day test period. By shifting the position of the three resources

each day, the spatial occurrence of every food source was balanced

in relation to treatment and start-box position. Observation was

performed during 15 min and number of pecks to each of the

resources was recorded.

The offspring was tested on day 55–57 after hatching in the

same way as their parents in a similar, but smaller arena (Ø

120 cm), which was monitored with only one video camera.

Dominance test
On day 146 each UL parent was tested together with a PL

matched for sex and body weight. In darkness each pair was

introduced to a 15061506270 cm pen, with a perch, ad libitum

water, but no food. After a habituation period of one hour light

was turned off again, a familiar food container with regular pellets

was introduced, followed by light and a 7 min observation period.

The container allowed only one bird at a time to eat from it and

the number of pecks directed toward food in the container was

recorded.

All surviving offspring was tested at day 22 and 189 after hatch

in the same way as the parents with the following exception: for

the 22 days old chicks we used a smaller test pen (80640640 cm)

with no perch. All recordings were done using The Observer 5.0

(Noldus Information Technology) behavioral sampling software.

Food choice test (offspring only) – Preference for
energetic food

On day 216 all surviving offspring were tested in a food

preference test, using an equal sided triangular-shaped arena

(15061306200 cm) with different food sources in two corners; 1) a

food container with low energy pellet (fat content: 3.5%); 2) a food

container with high energy sunflower seeds (fat content: 49.4%);

the third corner that was used as starting point for the test bird.

Birds were food deprived for 2 h before the test. The 10 min test

was started by lifting a bird into the arena, in complete darkness,

and turning on the light. The location of the test bird was sampled

automatically from, a video image with behavioral software

Ethovision version 2.1.6 (Noldus Information Technology), where

two parallel arenas were monitored simultaneously. Birds that did

more than three flight attempts were excluded from the analysis

due to problems with software recordings (in total one with UL

parents and two from PL). The variables sampled were time spent

in a zone close to each of the two food sources. Direct

observations, which were not quantified, asserted that pecking

was performed only when the birds were present in the zone.

Behavioral statistical analysis
All behavioral analysis was done with the statistical software

SPSS version 15.0 using General Linear Models (GLM), except for

the Dominance test where a pair wise Wilcoxon signed ranks test

was used. All data used in the GLM’s were tested for normality of

the standardized residuals (Shapiro-Wilkins test) and equal

variance (Levene’s test). Transformation was done on the data

that did not reach the criteria for the GLM. Analysis of treatment-

effects that included groups with mixed sexes always used both sex

and treatment as independent factors.

Survival rate
Differences in survival between treatments was conducted at 40

weeks of age using a chi-square test.

Analysis of steroid concentrations in eggs
In the morning of day 138 after hatching six eggs from the UL

and seven from the PL group was collected. From these,

approximately 10 ml of yolk and albumen were frozen to

270uC, and later analyzed for testosterone, estradiol, androsten-

dion, corticosterone and dihydrotestosterone.

Extraction from yolk was performed essentially as described by

Schwabl [39] with some modifications. Initial extraction was

performed with 10 ml diethyl ether, and recovery controlled by

the addition of tritiated DHT or androstendione. The final

extracts were dissolved in 2 ml 2,2,4-trimethylpentane. 1 ml was

used for DHT assay after celite column purification. 0.2 ml was

used for direct determination of androstendione and 0,5 ml for

direct determination of corticosterone. The final organic phases

were dried under nitrogen, and the dried extracts redissolved in

0,1% gelatine in PBS for RIA of corticosterone and androsten-

dione. Another extract was made for the assay of estradiol and

testosterone, where the final dried extracts were dissolved in 1 ml

of diethylether which was divided into 2 parts that were separately

dried under nitrogen. The 2 dried extracts were dissolved in the

appropriate assaybuffers for immunoassay determinations.

Extraction of albumen was performed with 0.5 ml albumen in

0.5 ml distilled water, mixed and extracted with 7 ml of

diethylether. After freezing, the ether phase was collected, dried

under nitrogen and the residue dissolved in the appropriate

assaybuffers.

The following RIAs were used for the quantification of the

steroids: Corticosterone – as described by Lindqvist [7];

Testosterone – RIA kit from Orion Diagnostica, Espoo, Finland;

Estradiol – DELFIA kit from PerkinElmer Life Sciences, Wallac

Oy, Turku, Finland; Androstendione and DHT – as described by

Opstad & Aakvaag [40].
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Brain sampling and RNA isolation
At day 179 after hatch 16 parents (8 males/8 females; 8 UL/8

PL) where sacrificed by decapitation. Brains were removed and the

hypothalamus and pituitary region dissected as been described

previously [7]. The time from sacrifice to snap freezing in liquid

nitrogen was less then 15 min. The tissue collection of the offspring

was performed with the same protocol but at day 58 after hatch.

Samples were later transferred and stored in a 270uC freezer.

Prior to RNA isolation each sample was weighed frozen in

50 ml tubes. Appropriate amount (1 ml/50 mg) of TRI reagents

(Ambion Inc.) was added and homogenized with a handheld

motorized Ultra Turrax T8 homogenizer (IKAH). The samples

were divided into 1 ml fractions and centrifuged for 10 min at

12000 x g (4uC). Supernatant was saved and 100 ml of 1-brom-3-

chloropropane (AldrichH) added. Incubation was performed for

5 min (20uC), followed by centrifugation for 15 min at 12000 x g

(4uC). RNA was precipitated from the aqueous phase by adding

0.5 ml isopropanol, incubated for 10 min (20uC) and centrifuged

for 10 min at 12000 x g (4uC). The supernatant was discarded and

the pellet was washed in 1 ml 75% RNase free EtOH. After

centrifugation for 10 min at 7500 x g (4uC), the pellet was dried

and then re-dissolved in 30 ml RNase free H2O (Ambion Inc.).

RNA quantity and quality was assessed using a NanoDropH
spectrophotometer (NanoDrop Technologies Inc.) and the Agilent

2100 Bioanalyzer (Agilent Technologies). RNA integrity numbers

never dropped under 8.0.

Synthesis of cDNA and Microarray hybridization
For more information about the microarrays and protocols, see

www.ktharray.se (protocol SOP 002 and 003). Production of

cDNA, Cy3/Cy5 labeling and hybridization procedures have been

described elsewhere [7,41]. In short, 20 mg of total RNA was used

for producing labeled cDNA, which was hybridized to the KTH

UniChicken 2614k cDNA microarray. The microarray, devel-

oped by the Royal Institute of Technology in Stockholm, contains

12.7k unique transcripts and was the same microarray as used in

previous similar studies, allowing some comparison across

experiments [7]. The microarray was constructed from an EST-

library of chicken testes and brain, and details of the construction

and content of the microarray has been described elsewhere [44].

Each individual test sample (Cy5) was hybridized against a

differently labeled reference (Cy3), which was constructed by

pooling total RNA-isolates from the hypothalamus/pituitary of 49

birds from two different breeds (including the samples of the

present study). Scanning was performed by a MicroArray Scanner

G2565B (Agilent Technologies, Serial nr US22502515).

Microarray analysis
Raw fluorescence scan-data was imported to the software

GenePix (Molecular Device Corp.), where the Cy5 and Cy3

channels were superimposed upon each other, creating spot colors

ranging from red (sample overrepresentation), to yellow (equal

representation), to green (reference overrepresentation). Spot

identification and manual flagging of poor quality spots was also

performed in GenePix, with an operator that was blinded for

treatment, and transcript name and function. Pre-normalization

quality control was performed by inspection of density plots in

accordance with the protocol, in order to reassure that no aberrant

arrays were included in the analysis.

For filtration, normalization and statistical analysis the R

software environment with version 2.2.0 was used with the

KTH-package add-in, using the same methods as detailed in

Lindqvist et al. [7]. The strictest filtration criteria were used with

the following commands in R: filterFlags, filterSize, filterB2SD,

filterMtoM, filterRatioComp and filterSaturated. After filtration,

approximately 60% of the total spots remained. Print-tip lowess

normalization was performed within slide and spot intensities were

normalized across slides.

The fold changes, given as M-values (the log2 of the difference in

expression level),were calculated for each spot as in Lindqvist et al.

[7], while the B-test was calculated as in Rubin et al. [41]. The B-

value is attained by Bayesian statistics and assigns the log posterior

odds ratio of differential expression versus non-differential expres-

sion. Previously the threshold for significance, taking false discovery

threshold into account, has been set to B.0 for this type of tissue

and microarray [7,19,41]. Spearman rank correlations of M-values

(regardless of level) were calculated on all spots, comparing within

and between sexes both within and between generations. Annota-

tion was primarily done with NCBI’s Entrez UniGene (http://

www.ncbi.nlm.nih.gov/), and secondarily with Chicken Discovery

System (http://www.sbc.su.se/,arve/chicken/).

Gene ontology analysis was performed using GeneCodis 2.0

(http://genecodis.dacya.ucm.es/), which calculates significant

associations of genes to different ontological groups using

hypergenometric distribution statistics with adjustment for false

discovery rates.

q-RT-PCR verification
Primers for ten high ranked genes differentially expressed were

designed using Primer 3 [42]. When possible, all primer pairs were

designed to span over exon-exon boundaries and a blast against

the chicken genome (www.ensembl.org/Gallus_gallus) was per-

formed to verify sequence uniqueness.

Isolated RNA samples were converted to cDNA in 50 ml

fractions using TaqManH Reverse Transcription reagents (Applied

Biosystems). Before reverse transcription 17.25 ml of diluted RNA

(1 mg) was treated with 2 ml Turbo DNase (1 U/ml) (Ambion/

Applied Biosystems) in 5 ml 106TaqMan RT buffer. Each sample

was then heated to 37uC for 30 min, followed by 75uC for 7 min.

The proceeding protocol was according to the manufacturer’s

recommendations. Quantitative real-time PCR was performed in

25 ml fractions in single plex on a RotorgeneH 6000 (Corbett Life

Science), using Power SYBR-green reagents (Applied Biosystems),

with each well containing: 12.5 ml 26Power SYBR-green Master

Mix, 1.5 ml of each primer (2.5 pmol/ml) and 4.5 ml RNase free

water (Ambion/Applied Biosystems). The fold change and p-

values was calculated with REST-386 excel-macro using the Pair

Wise Fixed Reallocation Randomization Test with 2000 permu-

tations and with three reference genes (GAPDH, Beta-Actin and

TATA-box binding protein) [43].

Supporting Information
Accession Numbers. The microarray experiment, described

according to MIAME guidelines, has been deposited in

ArrayExpress microarray data repository (http://www.ebi.ac.uk/

microarray-as/ae/). Accession number is pending.
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