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The physiological process of male reproduction relies on the orchestration of
neuroendocrine, immune, and energy metabolism. Spermatogenesis is controlled by
the hypothalamic-pituitary-testicular (HPT) axis, which modulates the production of
gonadal steroid hormones in the testes. The immune cells and cytokines in testes
provide a protective microenvironment for the development and maturation of germ
cells. The metabolic cellular responses and processes in testes provide energy production
and biosynthetic precursors to regulate germ cell development and control testicular
immunity and inflammation. The metabolism of immune cells is crucial for both
inflammatory and anti-inflammatory responses, which supposes to affect the
spermatogenesis in testes. In this review, the role of immunometabolism in male
reproduction will be highlighted. Obesity, metabolic dysfunction, such as type 2
diabetes mellitus, are well documented to impact male fertility; thus, their impacts on
the immune cells distributed in testes will also be discussed. Finally, the potential
significance of the medicine targeting the specific metabolic intermediates or immune
metabolism checkpoints to improve male reproduction will also be reassessed.

Keywords: immunometabolism, immune privilege, metabolic reprogramming, immune cells, male reproduction,
hypothalamic-pituitary-testicular axis
INTRODUCTION

Male reproduction is a multi-step process starting from the production of germ cells in testes and
transport of sperm to the sperm-egg binding site in the fallopian tube, which is orchestrated by the
sophisticated regulation of the endocrine and immune system (1–3). Spermatogenesis is a complex
and highly-coordinated cellular differentiation process controlled by the hypothalamic-pituitary-
testicular (HPT) axis that modulates gonadal steroid hormones in testes (4, 5). Whereas,
spermatogenesis presents a unique challenge to the immune system because meiosis and
subsequent cellular differentiation events involved in spermatogenesis occur long after the
systemic tolerance is established (6, 7). In order to protect the testicular germ cells from
detrimental immune responses, the male reproductive system adopts an exclusive immune
milieu, which is referred to as the blood-testis barrier (BTB) in testes. The BTB anatomically
divides the seminiferous epithelium into the basal compartment containing meiotic (leptotene,
org July 2021 | Volume 12 | Article 6584321
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zygotene, and pachytene spermatocytes) germ cells and the
adluminal compartments. All subsequent post-meiotic (round
and elongating spermatids) germ cells, thus, allowing early-stage
germ cells (spermatogonia) localized outside of BTB to become
autoantigenic foreign bodies to the immune system (8, 9). Except
for the above testicular physical barriers, the testicular immune
privilege will be sustained by coordinating systemic immune
tolerance, and antigen-specific regulatory immunoregulation
(10). Infection or physical trauma of the testis can perturb
testicular immune privilege, causing inappropriate immune
responses or inflammation, which may result in altered tissue
and cellular metabolic function, and eventually leading to
impairment of spermatogenesis, autoimmune disorders, and
male infertility (11–13).

Metabolism cooperation among testicular cells is crucial for
normal spermatogenesis since increased energy requirements
during reproduction and metabolic factors play a predominant
role in controlling the functional activity of the reproduction
endocrine and immunity in testes (14). The establishment of
BTB physically and physiological compartmentalize the
seminiferous epithelium into two different milieus forming a
microenvironment to support spermatogenesis. Metabolic
regulation is essential for developing germ cells into mature
spermatids due to the specific metabolic demands of germ
cells (15). The BTB is composed of specialized junctions
between adjacent Sertoli cells, which is located near the
basement membrane, is responsible for maintaining the
different levels of substances between rete testis fluid and
the lymph or plasma (16). Sertoli cells provide structural and
functional support for the development of the germ cells due to
their role in maintaining the suitable ionic and metabolic
microenvironment in testes (17, 18). They use different
metabolic substrates, including glucose and fatty acids, and
growth factors to meet their metabolic demands and nurture
germ cells (19–22). Because the testis is a naturally hypoxic
organ, Sertoli cells preferentially use glucose and go through
anaerobic glycolysis rather than the tricarboxylic acid cycle to
meet the specific metabolic demands of germ cell development
(18, 23). Besides, Sertoli cells regulate testicular immune
tolerance by producing anti-inflammatory cytokines and
prostanoid molecules, slowing leukocyte migration and
inhibiting complement activation and membrane-associated
cell lysis (24). In the interstitium, Leydig cells also contribute
to the spermatogonial microenvironment by secreting
growth factors and steroid hormones whose metabolism is
notable in testes (25, 26). Androgens in Leydig cells are
derived from cholesterol, which metabolizes to progesterone
and, subsequently, testosterone (26). Testosterone regulates
spermatogenesis and contributes to the maintenance of the
BTB (27). In addition to Sertoli cells and Leydig cells, immune
cells presenting in the interstitium, such as macrophages, mast
cells, T cells, natural killer (NK) cells, are responsible for the
regulation of sperm generation (28, 29). Metabolism, as well as
the key signaling pathway mediating metabolic activity in
various immune cells of human blood or rodent animals, have
been elaborated in recently published reviews (30–33). However,
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even though all testicular cells, including germ cells, Sertoli cells,
Leydig cells, testicular macrophages and lymphocytes, can
regulate local immunity in the testis, the specific metabolic
functions of testicular immune cells and the different metabolic
pathways of testicular immune cells in physiological and
pathological states have been neglected (29).

Immunometabolism is a recently emerging area of research
that focuses on the crosstalk between the immune and metabolic
systems, and studies in the field of reproduction have shown that
immunometabolic disorders may be associated with infertility
(34–36). Accumulating data from cellular and animal researches
focusing on how metabolism regulated immune cell function
have been reported, which provide new therapeutic opportunities
for many diseases related to immune system dysregulation like
autoimmune diseases and cancer (37–39). However, little
literature on the immunometabolism or metabolism of immune
cells in the male reproductive system, neither in animals nor in
humans. In addition, metabolic factors play a dominant role in
controlling the functional activity of the HPT axis in men due to
the increased energy requirements during reproduction.
Therefore, men who are overweight and suffer from metabolic
syndrome may be at higher risk of infertility than their healthy
counterparts (14). In this review, we will focus on the following
topics (a) functional impacts of the neuroendocrine-immune
systems on male reproduction; (b) the normal metabolic state
of immune cells in testes and their alteration in metabolic
diseases; (c) potential therapeutic strategies for male infertility
based on key immunometabolic targets.
REGULATION OF HPT AXIS AND IMMUNE
ON MALE REPRODUCTION

Regulation of HPT Axis on
Male Reproduction
Both positive and negative feedback regulatory mechanisms
homeostatically regulate the HPT axis. The gonadotropin-
releasing hormone (GnRH) is the central regulator of the HPT
axis and is secreted from the hypothalamus in a periodic pulsatile
manner and regulates the synthesis and secretion of
gonadotropins, which are luteinizing hormone (LH) and
follicle-stimulating hormone (FSH), by the pituitary gland.
Gonadotropins, in turn, acts on testes to stimulate the
synthesis of sex gonadal steroid hormones and modulates the
testicular-specific morphological changes and functions (40).
Conversely, testosterone secreted by the testes provides
continuous negative feedback to the hypothalamus and
pituitary gland to maintain a steady GnRH, LH, and FSH
secretion state. Thus, these gonadal steroids, together with
pituitary gonadotropins, explicitly establish physiological
homeostasis via feedback regulatory mechanisms to keep
healthy male reproductive function (4, 41).

Inside testes, the Sertoli cells provide morphogenetic support
through cell-cell interactions, nutrients, and biochemical
components through lactate, hormones, and cytokines to
facilitate spermatogenesis (22). Leydig cells are the major site
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for the synthesis of the predominant male steroid hormone
(testosterone), and cytokines, such as macrophage-migration-
inhibitory factor (MIF), for the regulation and maintenance of
spermatogenesis and extra-testicular androgenic and anabolic
and anti-inflammatory functions (42, 43). All the above
components of the HPT axis coordinate to produce sex steroid
hormones, maintain spermatogenesis and sperm counts and
quality (27, 44).

Regulation of metabolic process in testes is another crucial
factor that has a direct influence on male reproduction. Germ
cells have specific metabolic requirements for their development,
preferentially utilizing lactate as a substrate for ATP production
(21). Sertoli cells fulfill the energy requirement of the germ cells
and themselves through glycolysis and fatty acid oxidation (18).
FSH and sex steroid hormones from the HPT axis have been
proven as the regulatory factors that modulate Sertoli cell
metabolism (18, 45). FSH regulates glycolytic metabolism in
mature Sertoli cells through increasing glucose uptake and both
pyruvate and lactate production. Meanwhile, FSH has a
regulatory effect on lipid metabolism by influencing lipid
esterification in Sertoli cells (18, 46, 47). Androgens and
estrogens also regulate Sertoli cell metabolism. 5a-
Dihydrotestosterone and 17b-estradiol are reported to regulate
glucose uptake and lactate production in Sertoli cells isolated
from humans (48). A recent genome-wide study of androgen and
estrogen receptor binding sites proved that sex hormones
regulate lipid metabolism in adult Sertoli cells from rats by
transcriptionally controlling the expression of the genes (49).
Despite energy metabolism for germ cell development, Leydig
cells are stimulated by LH and metabolize cholesterol to
testosterone and other steroid hormones, which are required
for spermatogenesis and other funct ions for male
reproduction (26).

Impact of GnRH and Pituitary
Gonadotropins on Immune Function
The immune system does not work in isolation as neuro-
endocrine-immune and central nervous systems are integrated
through a complex network (50) of signal molecules, including
cytokines, hormones, and neurotransmitters (51, 52). Evidence
suggests the hypothalamic-pituitary-gonadal (HPG) axis and
related hormonal system may modulate immune function (53).
Physiologically, GnRH acts as an autocrine or paracrine factor to
regulate both neuroendocrine and immune functions.
Immunoreactive and bioactive GnRH receptor (GnRH-R) has
been identified in human peripheral lymphocytes, implicating
that GnRH may function as an autocrine or paracrine factor to
regulate immune functions (54–56). Blockade of central and
peripheral GnRH-R during maturation of both the HPG axis
and brain-thymus-lymphoid axis remarkably impairs the
development of the immune system (57). The administration of
GnRH antagonist into rodent and primate fetuses resulted in the
suppression in the numbers of thymocytes and immune cell
development, suggesting GnRH plays a crucial role in immune
system modulation and development (56, 58). In mammals,
GnRH induces the expression of cytokines such as interleukin-2
Frontiers in Immunology | www.frontiersin.org 3
(IL-2) and interferon-g (IFN-g), promoting their proliferation and
activation of immune cells (59). Taken together, these pieces of
evidence indicate that GnRH may be directly involved in the cell-
mediated and humoral immune response.

Nevertheless, a paucity of studies illustrating the
immunomodulatory actions of FSH and LH experimental and
clinical evidence suggested that these two gonadotropins induce
the proliferation of immune cells and modify cytokine (e.g., IL-
10, interferon-g) production (60, 61). After treatment with
gonadotropin, the immune cell populations were altered in
male patients with idiopathic hypogonadotropic hypogonadism
(IHH), suggesting that gonadotropin could modulate both cell-
mediated and humoral immunity (62).

Collectively, Sertoli cell metabolism plays a decisive role in the
male reproductive physiology process. And FSH and sex steroid
hormones (androgens and estrogens) from the HPT axis have
been shown to regulate Sertoli cell metabolism.

Impact of Sex Steroid Hormones on
Immune Function
Besides sexual differentiation and reproduction, sex steroid
hormones also influence immune function due to the presence
of hormone receptors on immune cells (63, 64). Owing to
lipophilic properties, sex steroid hormones can alter membrane
properties of immune cells by integrating into their membrane,
leading to changes in the immune cell functions (51). Androgens
and estrogens represent the two major gonadal steroid hormones
produced by the testes. Estrogens and androgens exert their
effects through binding to their well-recognized estrogen
receptors (ERs) and androgen receptors (ARs), respectively,
which are expressed in primary lymphoid organs as well as
various immune cells (59). Thus, sex steroids, particularly
androgen and estrogens, can modulate immune cell
development and immune response and also regulate
reproductive functions in males.

Androgen
Men produce 20 times more testosterone than women, and the
incidences of autoimmune disease remain relatively lower among
men (65–67). Thus, androgens are believed to affect both the
development and function of the innate immune response and
the adaptive immune system (51, 68). In human males, androgen
deficiency is characterized by an increase in serum levels of
inflammatory cytokines, such as IL-1b, tumor necrosis factor a
(TNF-a), and the number of macrophages in the circulation
(69). Furthermore, loss of testicular immune privilege was
detected in the mice with deficiency of the androgen receptor
in Sertoli cells, revealing the role of androgen in testicular
immune privilege (70). Testosterone, as the dominant
androgen in testes, its level is decreased in experimental
autoimmune orchitis (EAO, a model of male immune
infertility) rat. Protective effect is shown in the development of
disease and the inflammatory response in EAO rat treated with
testosterone supplementation, which prevented the increase of
macrophage and reduced the number of CD4+ T cells
accompanied with increasing number of regulatory T cells
July 2021 | Volume 12 | Article 658432
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(Tregs) in testes comparing with the EOA rat without
testosterone replacement (71). The mechanism of testosterone
actives Tregs is that testosterone induces expression of Foxp3 in
human T cells through binding of the AR to gene regulatory
sequences, which leads to the generation of CD4+CD25+Foxp3+

regulatory T cells, which are viewed as important players in
testicular immune tolerance (72). Furthermore, testosterone
inhibits the lipopolysaccharide-induced inflammatory response
on TNF-amRNA expression both in Sertoli cells and peritubular
cells which support spermatogenesis and transport of
spermatozoa as well as testicular immune regulation, while no
effect was found in testicular macrophages (73). Taken together,
these studies suggested that androgens modulate not only the
numbers but also the function and responses of innate immune
cells in mammals, as well as the immunosuppressive effect in
male reproduction through influencing the numbers and
secretion of testicular immune cells. However, the role and
mechanism of androgens in regulating the testicular immune
status remains to be clarified and elucidated.

Estrogen
Estrogens, as relevant physiological regulators in men, exhibit an
immunoenhancing effect (66). Two intracellular ER subtypes
(ERa and ERb) are expressed in the mammalian immune system
to regulate the innate and adaptive immune system as well as
immune cell development (64, 68, 74). Of note, both ERa and
ERb are expressed by a diverse array of immune cell types,
including T cells, B cells, macrophages, dendritic cells (DCs), and
NK cells (75, 76). Estrogen regulates immunity and maintains
Frontiers in Immunology | www.frontiersin.org 4
immunometabolic function in males (77, 78). In transgenic male
mice that overexpress human aromatase genes (AROM+ mice),
increased estradiol promoted testicular macrophage activation;
however, testicular macrophages were enhanced in a rat model of
EAO, indicating the stimulating effect of estrogens on
immunoregulation of male reproductive function (79, 80).

Collectively, sex steroids function as regulators of the immune
system, and androgens and estrogens affect different subsets of
immune cells. In general, androgens appear to predominantly
have immunosuppressive activity, while estrogen exhibit an
immunoenhancing effect on immune cells and immune activity
(Figure 1). Thus, androgens exert suppressive effects in the
immune-privileged environment of testes, while estrogens
exert immunoenhancing activities in testes, which warrants
further investigation.
POSSIBLE CONTRIBUTION OF
METABOLISM OF IMMUNE CELLS TO
MALE REPRODUCTION

The testicular interstitial space possesses potent immunoregulatory
activities through the production of cytokines and other
immunoregulatory molecules such as androgens by interacting
cell types, including macrophages, DCs, T cells, NK cells, mast
cells, and Leydig cells (6, 9). For instance, the anti-inflammatory
factor TGF-b and IL-10, can suppress the immune response to
maintain the immune homeostasis of testes (6, 9). These immune
cells primarily express a high tolerance to germ cell autoantigens,
FIGURE 1 | The hypothalamic-pituitary-testicular (HPT) axis and the testicular immune-privileged microenvironment. GnRH stimulates the release of pituitary
gonadotropins, induces male reproductive function as well as affects cellular and humoral immune function. GnRH promotes the proliferation of immune cells and
modifies cytokines production. Pituitary gonadotropins are involved in cellular and humoral immune development. Sex steroid hormones are secreted by the
stimulation of LH that acts on Leydig cells in testis. Androgens and estrogens affect male reproductive function via modulation of the immune system and immune
response. Various cell types present in the testicular interstitial space, including macrophages, DCs, T cells, NK cells, mast cells, and Leydig cells, providing a unique
microenvironment for testicular functions. Androgens play crucial roles in maintaining the integrity of testicular immune-privileged microenvironment (solid arrow),
while estrogens seem to play a stimulatory role in testicular immunoregulation which needs further investigations (dotted arrow).
July 2021 | Volume 12 | Article 658432
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meanwhile maintain protection against microbial infections. At
present, the microenvironmental signals like androgens,
prostaglandins, and corticosterone have been indicated to
influence the phenotype and function of testicular immune cells
(81). Since metabolic flux can dictate cell fate like immune cell
effector and regulatory function, the field of immunometabolism
has seen tremendous development over the past decade (33). Yet
metabolic reprogramming in immune cells of testes has not been
illustrated. This may be due to a paucity of nonpathological tissue
samples in human (82). Conceivably, immunometabolism pattern
has been partly established in tumor and gravid uterus which are
also immune-privileged sites, which could be used as reference for
the new areas of research in immunometabolism in male
reproduction. In this article, therefore, we attempt to establish the
possible immunometabolic pathways involved testicular function.

Macrophages
In testes, macrophages represented the most abundant immune
cells in the interstitial space (83). For example, rat testicular
macrophages were accounting for approximately 80% of the
testicular leukocytes (84). A recently study in human testes
revealed that testicular resident macrophages are approximately
62% of testicular myeloid cells and express 6-fold higher levels of
the M2 macrophages marker (CD163) than blood monocytes
(85). According to the morphology and localization, human
testicular macrophages could be classified into interstitial and
peritubular macrophages; but no marker has been found to
distinguish both types (86). Unlike in humans, mouse testicular
interstitial and peritubular macrophages were characterized by
CD64hiMHCIIlo and CD64loMHCIIhi, respectively (87, 88). Once
established in the niche, except the empty niche, these
macrophages self-maintain for long periods of time without
replenishment from blood monocytes in the steady condition
(88). Interstitial macrophages closely contact with Leydig cells,
which might contribute to facilitate testosterone. For example,
when Leydig cells cultured in testicular macrophages-conditioned
medium, the production of testosterone significantly increased,
whereas had less effect on conditioned medium from peritoneal
macrophages (89). Subsequently, macrophage-derived factor 25-
hydroxycholesterol, might works as an exogenous substrate
engaging in testosterone production, had been found to
increase (90). Moreover, in both the colony stimulating factor1
(CSF1) mutation mouse lacked most macrophage populations
and the transient macrophage depletion mouse model,
intratesticular testosterone were reduced (91, 92). Testosterone
regulated downstream gene expression like Rhox5 through
interacting with androgen receptor in Sertoli cells, and then
regulated spermatogenesis processes, including maintenance of
spermatogonial numbers and BTB, completion of meiosis by
spermatocytes, adherence of elongated spermatids to Sertoli cells,
and the release of mature spermatozoa (93, 94). On the other hand,
dihydrotestosterone, a derivative of testosterone, modulates levels
of glycolysis-related transporters (glucose and monocarboxylate
transporter) and enzymes (phosphofructokinase1and lactate
dehydrogenase), and consequently acts on glucose metabolism in
rat Sertoli cells (95, 96). Glucose metabolism within Sertoli cells is
Frontiers in Immunology | www.frontiersin.org 5
crucial for spermatogenesis since developing germ cells consume
lactate produced by Sertoli cells as their main energy source (97).
Testicular macrophages might express CSF1 and retinoic acid
biosynthesis enzymes ALDH1A2 and RDH10 to promote
spermatogonial proliferation and differentiation. In
macrophages-depleted testes, followed by ALDH1A2 and
RDH10 decrease, spermatogonia differentiation would be
disrupted (98). However, it can’t identify whether these
evidences resulted from peritubular macrophages depletion or
interstitial macrophages depletion leading to reduce these factors
production by Leydig cells, since the depletion models targeted all
macrophages. Winnall and Hedger summarized four subsets of rat
testicular macrophages, including CD68+CD163- (21.7%) newly-
arrived macrophages and CD68+CD163- infiltrating macrophages
accounting for 21.7%, CD68+CD163+ intermediate macrophages
(36.7%), and CD68-CD163+ resident macrophages (42%) (83).
Recently, this idea has been renewed by the data, utilizing flow
cytometric analyses, that all, not only 57%, testicular macrophages
are positive for CD68 and comprised by CD68+CD163+ (80%) and
CD68+CD163- cells (20%) (81).

In fact, rat testicular macrophages characterized by high level
of CD163 that were related to maintain testicular immune
privilege through secreting large amounts of the anti-
inflammatory cytokine like IL-10, and inducing expansion of
immunosuppressive Tregs (81, 85, 99). Similarly, macrophages
in mouse testes also display an immunosuppressive phenotype
by expressing significantly higher levels of immunosuppressive
genes, namely Mrc1, Dab2, Igf1, and Lgals3 (88). In accordance
with these evidences, previous data suggested that the number of
CD25+Foxp3+ Tregs would increase after coculture of testicular
macrophages and splenic T cells (81). In general, classically
activated macrophage phenotype or M1 macrophages activated
by the stimulation of TLRs through bacterial lipopolysaccharides
(LPS) or the cytokine IFN-g are pro-inflammatory, like
peritoneal macrophage. However, rat testicular macrophages
are specifically polarized to regulatory phenotype with similar
properties as M2 phenotype under LPS/IFN-g stimulation (99,
100). Even during inflammation resulting from uropathogenic
Escherichia coli (UPEC), mouse resident macrophages (F4/
80hiCD11blo) were only number proliferation, but not
transformed to inflammatory macrophages (F4/80loCD11bhi)
that impaired testis tissues and spermatogenesis (88). It can be
confirmed by the evidence that focal impairment of
spermatogenesis induced by UPEC infection in wild type mice
was ameliorated in chemokine receptor 2-deficient mice, which
lack peripheral blood monocytes due to defective egress of
Ly6Chi monocytes from the bone marrow (88). This is partly
because testicular macrophages exhibit an attenuated response to
inflammatory cues by inhibiting TLR cascade gene expression
and blocking the nuclear factor-kB (NF-kB, a proinflammatory
transcription factor) signaling pathway (101). As a consequence,
the process leads to the low production of pra facilitating the
protection of the delicate germ cells from a ‘cytokine storm’ (82).
Meanwhile, testicular macrophages also produce much lower
concentration proinflammatory cytokines than peritoneal
macrophages to retain bactericidal activities through the
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activation protein transcription factor 1 (AP-1) and cAMP
response element binding protein (CREB) signaling pathways
(100). Secondly, high amounts of testosterone (around100-fold
higher than in serum), prostaglandins (PGs, like PGE2 and PGI2,
around 3000-fold higher than in serum), and corticosterone
(around 7-fold higher than in serum) in testicular interstitial
fluid are associated with the establishment and maintenance of
the immunosuppressive phenotype of M2 macrophage (81). In
support, these molecules polarized GM-CSF-induced monocyte-
derived M1 macrophages to the M2 macrophage phenotype
characterized by significantly expression of IL-10 and CD163
(81). Among these molecules, testosterone and PGE2 suppressed
the activation of the NF-kB signaling pathway by deferring IkBa
degradation, and PGE2 concomitantly activated the CREB and
signal transducer and activator of transcription 3 (STAT3) anti-
inflammatory signaling pathways in LPS stimulated macrophages.
However, corticosterone did not attenuate the activation of theNF-
kB signaling pathway and increase the activation of STAT3, but
activated theCREBsignaling. Endogenous corticosteroneproduced
by testicular macrophages was the principal molecule in
maintaining testicular macrophages phenotype and function.
This idea could be supported when peritoneal macrophages
cultured in testicular macrophages supernatant, the secretion of
TNF-a was significantly reduced upon stimulation with LPS, an
effect abolished using a corticosterone inhibitor (81). Furthermore,
the metabolic reprogramming of immune cells is required for the
polarization and activation of macrophages, which is increasingly
apparent in macrophage populations derived from the
mouse peritoneum (102) and bone-marrow (103, 104).
Immunosuppressive M2 macrophages induced by IL-4/IL-13
maintain high levels of oxygen consumption rate to reduce
glucose flow through the pentose phosphate pathway (PPP) to
oxidative phosphorylation (OXPHOS) and tricarboxylic acid
(TCA) cycle (102–104). M2 macrophages also exhibited a
significant increase of uptake and oxidation of fatty acids (FAs)
which are suppressed inM1macrophages (105). Testicular somatic
cells, such as Sertoli cells, Leydig cells and macrophages, synthesize
high levels of FAs metabolites to sustain the M2 phenotype.
Coinciding with this, rat testicular prostaglandins that were
mainly produced by these cells from arachidonic acid by the
action cyclooxygenase (COX) are much higher than in serum
under physiological condition (81, 106). However, COX/
prostaglandins system was related with infertile patients with
impaired spermatogenesis (106). This discrepancy may imply that
PGs play distinctly different roles in testes of different species. Thus,
the potential mechanism of COX/prostaglandins system on male
infertility need to be further investigated. Different from
inflammatory macrophages, M2 macrophages metabolize
arginine to polyamines that are highly immunosuppressive acting
byhigh levels of arginase 1 (ARG1) (107). Elevated lactate produced
by tumor cells has been shown to promote theM2-like polarization
and increase ARG1 expression (108). Concomitantly with efficient
glycolysis process, Sertoli cells produced abundant lactate and
secreted them into seminiferous epithelium for germ cells (97).
But whether Sertoli cells-produced lactate polarized testicular
macrophages toward the M2 phenotype is less clear.
Frontiers in Immunology | www.frontiersin.org 6
Conversely, inflammatory M1 macrophages, induced by
IFN-g/LPS, exhibited glucose metabolism shift towards the
anaerobic glycolytic pathway and the PPP to meet the rapid
energy requirements, and increased demands for biosynthetic
precursors used for the synthesis of pro-inflammatory factors
(e.g., NO, TNF-a, IL-6) (109). Consequently, this metabolic
reprogramming leads to increased lactate, succinate, NADPH
necessary for reactive oxygen species (ROS) production (107).
Arginine is also a critical nutrient for M1 macrophages to
generate cytotoxic nitric oxide (an important pro-inflammatory
mediator) by inducible nitric oxide synthase (iNOS) (107).
However, in nutrient deficits tumor tissue, an immunologically
privileged site, when glycolysis, PPP and TCA cycle were
suppressed, the generation of succinate, NADPH and ROS
were concomitantly limited, M1 macrophages function were
severely limited (107). In this context, testicular interstitial
space maintained immunosuppressive state whether partially
due to the nutrient constitution, where remains to
be investigated.

Overall, the above evidences indicate that testicular
macrophages might enhance oxidative metabolism and
decrease anaerobic metabolism to maintainM2 macrophages
phenotype. In fact, further studies are needed for the
metabolism pattern of macrophages in testes, which may help
to understand the role of macrophages in spermatogenesis.

Dendritic Cells
Testicular DCs, a small immune cell population within testes, are
phenotypically immature and functionally tolerogenic DCs
under physiological conditions. They are involved in effector T
cell inactivation and Tregs development and are associated with
the adaptive immune system of testes under physiological
conditions (110). Moreover, immature DCs might be involved
in recognition of normal sperm antigens and induction of
immune tolerance to protect sperm cells under physiological
conditions (110). Fatty acid oxidation (FAO) and OXPHOS are
essential catabolic process for the development of immature DCs
(111, 112). Notably, drugs (e.g., vitamin-D3) that promote the
OXPHOS pathway may facilitate tolerogenic DC (adopted
tolerant status) phenotype and function such as the production
of IL-10 (113). Moreover, inhibition of FAO prohibited the
function of immature DCs and partially restored T cell
stimulatory capacity (111). Indoleamine 2,3-dioxygenase
(IDO), an enzyme for catalyzing the metabolism of tryptophan
and then generating kynurenine, usually maintains a basal level
in DCs (114). Functioning as an endogenous ligand for aryl
hydrocarbon receptors on T cells, kynurenine has been found to
induce the generation of Foxp3+ Tregs and the upregulation of
programmed cell death receptor 1 (PD-1) on activated CD8+ T
cells, both of which were associated with immunosuppression
(115, 116). IDO is reported to induce DCs to initiate immune
tolerance and to stimulate the development of Tregs in tumors
and pregnant uterus both are immunologically privileged site like
testes (117–119). Recently, the IDO-based mechanism has also
been identified to be involved in testicular immune privilege
(120). The expression of IDO is rapidly increased when DCs
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suffer from LPS/IFN-g-stimulation, leading to limited microbial
growth and reduced injurious hyperinflammatory responses
(121, 122). However, testicular DCs mildly expressed IDO,
meanwhile IDO activity is reduced in EAO rat (120, 123).
These differences might be attributed to the fact that the
Sertoli cells indirectly inhibit LPS-induced DCs maturation
through paracrine effect. Supporting this idea, when bone
marrow-derived DCs cocultured with Sertoli cells from mouse
testes that secreted galectin-1, the expression of iNOS, COX2,
and IDO are decreased, whereas the levels of IL-10 and TGF-b1
are significantly increased in LPS-stimulated DCs (124).

However, DCs maturation under the pathological conditions
overcome the immune tolerance by the local activation of
autoreactive T cells by upregulating co-stimulatory proteins
such as CD40, CD80, CD86, inflammatory cytokines, major
histocompatibility complex (MHC) class-II, which trigger
autoimmunity and causes male infertility (6). This has been
demonstrated in azoospermic testes of human with chronic
inflammation and atrophy testes of rats with EAO (12, 125).
The predominant metabolic mode of mature DCs following LPS/
IFN-g-stimulation induces a switch from OXPHOS to glycolysis,
with a decrease in TCA cycle activity, and an increase in lactate
production and flux through the PPP (126–128). Besides, mature
DCs induced by LPS also increase the expression of iNOS, which
generates NO, a reactive nitrogen species that can inhibit
mitochondrial respiration, thereby dampening OXPHOS (129).
However, it has not been reported how metabolic reprogramming
regulates the development of mature DCs in testes.

Lymphocytes
In normal human and rat testes, lymphocytes were according for
10%-20% of the total leukocyte population and sparsely
distributed throughout the interstitial space, whereas B
lymphocytes were not found (84, 86). During inflammation
induced by infection or autoimmunity, however, the number of
lymphocytes, such as effector T helper cells (Th1 and Th17), as
well as Tregs, increases significantly within the testicular
interstitial space (28, 130). Comparing with peripheral blood
where CD4+ T cells were the major lymphocyte subset, T cells in
rat testes are predominantly of the CD8+ subset, and a large
population of NK cells were also visible (131). This might be
consistent with consolidated immunosurveillance and a reduced
capacity for initiating antigen-specific immune responses. There
was reverse correlation between the largely number of NK cells and
the metastatic incidence of gastric, renal, and prostate
carcinomas (132).

Foxp3+ Tregs, the powerful immunosuppressive cells, are
found in rat, mouse and human testes under physiological
conditions, which may be associated with the immuno-
suppressive characteristics of testes (125, 133, 134). The data
about Tregs in human blood reveal that testosterone
supplement induces a strong increase in the CD4+CD25+Foxp3+

Tregs population via Foxp3 through androgen-mediated binding
of AR to the Foxp3 locus (72). However, whether or how
testosterone modulates the activation and function of T
lymphocytes remains less clear. On the other hand, testosterone
Frontiers in Immunology | www.frontiersin.org 7
might inhibit the activation of CD8+ and CD4+ T-cell subset.
When Leydig cells were destroyed by ethane dimethane sulfonate,
the number of CD8+ and CD4+ T cells rapidly increased. The
addition of testosterone cooperating with recovery Leydig cells
would reduce the number of CD8+ and CD4+ T cells to lower than
the control levels (135). Similar to Leydig cells, Sertoli cells have
been reported to induce the differentiation of Foxp3+ Tregs via
Notch pathway signaling through secreting JAGGED1 (136). In
fact, Tregs generation and suppressive functions are also highly
dependent on mitochondrial FAO and OXPHOS to oxidize
exogenous FAs, which is stalled by enhanced glycolysis.
Numerous regulators of Tregs suppressive function, including
adenosine monophosphate-activated protein kinase (AMPK), and
transcription factor Foxp3, by inhibiting glycolysis and promoting
FAs oxidation through suppression of mTOR activity (137). Foxp3
reduces glucose uptake in Tregs by inhibiting the expression of
glucose transporter 1 (GLUT1). Besides, AMPK, another regulator
of Tregs suppressive function, inhibits glycolysis, and promotes
FAO through the suppression of mTOR activity (137).
Interestingly, in response to TLR signals, Tregs upregulate
GLUT1 expression and anaerobic glycolysis to promote
proliferation and inhibit their suppressive function. In
inflammatory testes, although CD4+ and CD8+ Tregs are
increased, and TGF-b is expressed, more effector T cell subsets
can overwhelm the inhibitory effect of Tregs by producing pro-
inflammatory cytokines like TNF-a and IL-6 (138). Thus, Tregs
alone may not be sufficient to limit excessive T cells activation in
autoimmune settings.

T cells activation leads to dynamic transformation in cell
metabolism to protect against pathogens and to coordinate the
function of other immune cells. T cells accomplish bioenergetic
demands for activation by undergoing anaerobic glycolysis, a
process frequently observed in highly proliferative cells in which
glucose is fermented into lactate rather than oxidized in
mitochondria. Recent studies have reported the dynamic
profile of CD4+ and CD8+ T cells after activation and revealed
that glucose acts as a crucial contributor to fuel effector responses
and proliferation of immune cells (139, 140). PGE2 secreted by
Leydig cells may transform T cells from proinflammatory
phenotype (Th1) to anti-inflammatory phenotype (Th2) (141).
NK cells, comparable to lymphoid lineage members, also
upregulate anaerobic glycolysis and OXPHOS during their
activation and effector function, which parallels with the
immunometabolism of effector T cells (137). Inconsistent with
glucose transport, hypoxia-inducible factor 1a (HIF-1a), and
mTOR highlight metabolic control points in both T cells and NK
cells. Despite these similar nodes of immunometabolism, NK
cells exhibit a differential reliance on OXPHOS for IFN-g
production, while T cells rely profoundly on glycolysis to
produce IFN-g (142, 143). Furthermore, numerous inhibitory
molecules, such as IDO and PD-1, alter T cells metabolism by
reducing T cells GLUT1 expression and then inhibiting glucose
uptake (144, 145). The inhibition of both IDO and PD-1 is also
observed in NK cell; however, whether they impair NK cells
effector function by altering metabolism remains elusive (146).
Given that Sertoli cells express IDO and programmed death-1
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ligand-1 (PD-L1) and also inhibit the activation of T cells, and
NK cells, it is warranted to elucidate whether Sertoli cells regulate
these effector cells by paracrine action to control their
metabolism. It is also implicated that Sertoli cells may partly
contribute to immunosuppression for the testicular immune
privilege in the similar way.

Mast Cells
Mast cells are scarce in rat and mouse, but are more frequent in
human, all of which are quiescent under physiological status.
Mast cells in testicular interstitial space have long been
recognized to regulate steroidogenesis by Leydig cells. A
growing body of evidence indicate that increasing number of
mast cells is associated with idiopathic male infertilities and
spermatogenic disorders (147). Moreover, mast cells are
intermingled with testicular peritubular cells in the tubular
wall of infertile men and may provide a possible source of
highly increased amounts of extracellular ATP. Besides, upon
the activation of immune cells, the extracellular ATP may
function as a hazardous molecule to peritubular cells by
activating their purinoceptors (P2RX4 and P2RX7).
Subsequently, ATP-mediated events in peritubular cells lead to
enhanced expression of pro-inflammatory molecules like IL-6
and CCL7 (147). Evidence shows that inhibiting glycolytic ATP
production may suppress IL-33-induced bone marrow-derived
mast cell activation and proinflammatory factor IL-6 and tumor
necrosis factor (TNF) production (148). Thus, mast cells may be
involved in testicular inflammation via their metabolic products.

In conclusion, both the microenvironment and metabolism
reprogramming of immune cells participate in the establishment
of their phenotype and immunoregulatory function. Mainly,
glucose and FA metabolism promote the cell differentiation
towards immunologically tolerant cell phenotypes; in contrast,
inflammatory phenotype cells use glycolysis as a leading source
of energy more than mitochondrial OXPHOS for rapid removal
of pathogens (Figure 2). The disruption of metabolic
reprogramming may result in inflammation, autoimmune-
diabetes, metabolic syndrome, and even male infertility.
Therefore, exploration of the functions of immune cell
metabolism in testes is imperative in further understanding the
molecular and cellular processes underlying male infertility. And,
this may facilitate the development of novel anti-inflammatory
therapeutics targeting immunometabolism.
IMMUNE DYSFUNCTION AND
METABOLIC DISORDER IN THE MALE
REPRODUCTION

Impact of Metabolic Disorders in
Immune Cells and Functions on the
Male Reproduction
Although various immune cells have been identified in testes,
metabolism of these immune cells remain to be elucidated.
Molecular and cellular alterations in the metabolic state under
Frontiers in Immunology | www.frontiersin.org 8
the physiological or pathological conditions in testes remain
mostly unexplored. Metabolic reprogramming of immune cells
plays a predominant role in regulating their phenotype as well as
their plasticity. Considering the abundant immune cells in testes,
activation and polarization of macrophages by pro-inflammatory
stimuli elicits metabolic reprogramming, further leading to a
shift in the balanced mitochondrial metabolism towards ROS
generation (149). ROS can stabilize HIF-1a, thus promoting
glycolysis and supporting the transcription of the pro-
inflammatory cytokine IL-1b (32, 129). IL-1 system may
involve in the autocrine regulation of Sertoli cell function in
vitro, and IL-1b is reported to reduce testicular steroidogenesis of
the immature rat that is 21-day-old (150, 151). Besides, it is
universally acknowledged that supraphysiological ROS levels
lead to defective sperm function by lipid peroxidation of
cytomembrane and DNA damage as well as protein oxidation
that leads to inactivation of enzymes, which ultimately results in
male infertility (152, 153). Types of cytokines secreted from
various metabolic processes of different immune cells due to
stimulations are not only limited to macrophages, but these
cytokines may also conversely influence the functions and
metabolism of immune cells (154). Hence, upon activation,
immune cells may cause alteration in the cellular metabolism,
leading to the secretion of cytokines that may affect testes’
normal immune cell functions.

Cytokines Changes in Inflammation in the
Male Reproduction
Inflammation of the male reproductive system is inevitably
related to changes in the levels of cytokines. Cytokines are
released from different immune cells present in the male
reproductive system and also in response to foreign antigens
and pathogens and chronic inflammation (155). The secretion of
cytokines represents the first indication from the innate host
defense to combat inflammation of the reproductive tract.
Orchitis is one of the common etiological factors related to
human subfertility/infertility. Studies on autoimmune orchitis
indicated that the initial phase of inflammation comprised of the
recruitment of the immune cells, followed by their activation and
increased production of pro-inflammatory cytokines such as IL-1
and TNF-a (12, 156). Theses complex array of proinflammatory
cytokines affects BTB permeability, which enters the
seminiferous epithelium, leading to the induction of apoptosis
of germ cells (12). Increasing evidence indicates that elevated
levels of cytokines exist in the semen, including IL-1b, IL-6, and
IL-8, which are frequently associated with inflammation and
infection of the male reproductive system (157–159).

Moreover, inflammation in the male reproductive system has
been identified to increase ROS levels, resulting in cell damage
concomitantly, apoptosis or necrosis (28, 160). ROS is not only
to be involved in the damage of spermatogenic cells and sperm
but also impairs Sertoli cells and Leydig cells in testes, which
contributes to spermatogenesis dysfunction (161–163). Released
pro-inflammatory cytokines in semen during inflammation
might modulate the balance of prooxidative and antioxidative
systems to the advantage of the oxidative stress, resulting in
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permanent peroxidative damage to spermatozoa, consequent
effects in the passage of defective paternal DNA on to the
conceptus and fertilizing potential (152, 153, 164, 165).

Systematic Metabolic and Immune
Disorders in the Male Reproduction
Metabolic disorders related to systematic diseases may also
disrupt the balance of cellar metabolic processes, immune
environment, and redox activities. Obesity and metabolic
syndrome are charac ter ized by hyper insu l inemia ,
hyperlipidemia, hyperleptinemia, and chronic inflammations,
which may also directly impair testicular functions by
dysregulating the HPT axis and immune functions in male
Frontiers in Immunology | www.frontiersin.org 9
reproduction (166, 167). Men with a BMI range from 35 kg
m-2 to 40 kg m-2 have more than 50% reduction in total and free
testosterone levels than lean men (168). The decreased level of
testosterone is associated with diminished LH and deteriorated
semen quality (including reduced sperm count and motility as
well as morphologically normal sperm) in men with obesity
(169). An obesogenic environment initiates a Th1-lymphocyte
and M1-macrophage chronic inflammatory responses that
induce pro-inflammatory cytokines and ultimately results in
systematic inflammation in the male reproductive system
associated with a decrease in immune regulating cells and
cytokines (170). Moreover, obesity is identified to be related to
increased ROS in semen, which exhibits adverse impacts on the
FIGURE 2 | A schematic diagram of the hypothetical metabolic homeostasis of immune cells in testes under physiological or inflammatory condition. In normal
testes, immunologically tolerant cell phenotypes, comprising with macrophages (Mj), immature DCs, Tregs, and regulatory NK cells, principally rely on OXPHOS and
fatty acid oxidation pathway to fuel immunosuppressive functions and synthesis of anti-inflammatory cytokines (e.g., IL-10 and TGF-b). However, when testes suffer
from pathogens or germ cell antigens attack, the number of macrophages and mast cells are markedly increased, and the location of these cells partially shift from
the interstitium to the tubular compartment of infertile men testes. Furthermore, inflammatory phenotype cells such as infiltrating macrophages, mature DCs, effector
T helper cells, and mast cells markedly show a metabolic shift towards the anaerobic glycolytic pathway to meet the rapid energy requirements and increased
demands for synthesis of proinflammatory cytokine, like IL-6, NO and TNF-a. Then this cause ‘cytokine storm’ to disrupt the delicate equilibrium between immune
privilege and tolerance, which trigger testes inflammation and impair normal spermatogenesis, followed by male infertility. Meanwhile, Sertoli cells also contribute to
the immune-privileged status of mammalian testes, especially, maintain immature DCs, and inhibit effector T cells and NK cells via paracrine cytokines IDO and PDL-
1. Similarly, Leydig cells play an immunoregulatory effect on maintenance of regulatory macrophage phenotype and inhibition of T cells immune responses through
secreting lipid metabolites, such as testosterone, PGE2 and PGI2. Treg, regulatory T cells; DC, dendritic cell; Th, T helper cell; FAO, fatty acids oxidation; OXPHOS,
oxidative phosphorylation; TCA, tricarboxylic acid; PPP, pentose phosphate pathway; T, testosterone; PGE2 and PGI2, prostaglandins E2 and I2; IDO, indoleamine
2,3-dioxygenase; PDL-1, programmed death ligand-1; NO, nitric oxide; BV; blood vessel. +++, most abundant; ++, relatively abundant; +, present (28).
July 2021 | Volume 12 | Article 658432

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ye et al. Immunometabolism on Male Reproduction
quality and function of semen (171, 172). Similar impacts of
obesity on male reproduction, metabolic syndrome like diabetes
mellitus (DM) also disrupt the metabolism of testes that
eventually affect spermatogenesis (173).
TARGETING IMMUNOMETABOLISM AS
AN ANTI-INFLAMMATORY STRATEGY ON
MALE INFERTILITY

Male reproductive system inflammation like epididymitis and
orchitis induced by the immune disorder may be linked to male
infertility, or benign hyperplasia, or even cancer. Antibiotic
therapies are most commonly used to eradicate infection
caused by micro-organisms in the male reproductive system;
however, according to the European Association of Urology
guidelines, the treatment elicited no positive effect on
inflammatory alterations and could not reverse functional
deficits and anatomical dysfunction (174). Hence, an
appropriate selection of specific anti-inflammatory therapy is
urgently needed. Indeed, the relationship between immune and
metabolism is bidirectional and includes the integrated role of
inflammation in the pathogenesis of metabolic disorders, such as
obesity and metabolic syndrome caused by unhealthy lifestyle or
systematic diseases, and metabolic factors in the regulation of
immune cell functions (175). Collectively, these pieces of
evidence suggest that therapies targeting immunometabolism
might serve as a novel putative strategy for controlling
autoimmunity and inflammation (also can be seen in Table 1).

Antioxidant Therapy
Excessive ROS production leads to an imbalance of redox and the
production of inflammatory cytokines in large amounts (161,
183). Oxidative stress-induced by overproduction of ROS and
systematic inflammatory statuses presenting in the body, such as
obesity and metabolic syndrome, are associated with male
infertility (161). Blocking ROS production is considered as a
prior treatment for men with subfertility. Primarily, optimal
Frontiers in Immunology | www.frontiersin.org 10
management strategies, including controlling the elevated
inflammatory state and lifestyle modifications with appropriate
intervention, are required (170). Adopting a healthy lifestyle,
including proper nutritional quality, an appropriate form of
physical activity, and effective weight management, represents
the most critical strategy to manage metabolic disorders and
ensure good health status for male fertility (14). Simultaneous
administration of nutraceuticals, such as vitamin C, vitamin E, b-
carotenes, magnesium, selenium, zinc, stimulates immune
regulating properties (170). In addition, therapeutic drugs, like
a-lipoic acid, melatonin, coenzyme Q10, pentoxifylline, and
lycopene, are also suggested to reduce metabolic disorder-
related inflammatory status in humans (170). These
nutraceuticals and drugs that can relieve the inflammatory
status present antioxidant properties. Commonly used
antioxidants have a positive effect on male fertility, including
improvement in basic semen parameters as well as reduction of
the levels of ROS and sperm DNA fragment (176). And
antioxidants could also improve sperm motility and DNA
integrity for infertile men with elevated oxidative stress (177).
On the other side, recent randomized controlled trials
demonstrated that antioxidants did not improve semen
parameters or DNA integrity in infertile men (184, 185). The
recent Cochrane Review shows that different types as well as
treatment time of antioxidants had different effects on sperm
parameters (186). The contradictory conclusions of different
research about using antioxidant to improve semen quality
might partly result from the heterogeneous nature of the study
designs, such as the type of antioxidant, dosages, treatment
period, sample size, included criteria of participants with either
poor semen quality or high level of oxidative stress. However,
there is a considerable variability in the reported antioxidant
effect on semen parameters and the Cochrane Review was hard
to conclude about the effect of antioxidant on improving sperm
quality (186). Thus, the outcomes of antioxidant treatment on
male subfertility remains controversial. Further studies,
especially with larger sample size and well-designed
randomized controlled trials, are needed to confirm the
effectiveness of antioxidant supplementation on male fertility.
TABLE 1 | Summary of specific anti-inflammatory therapy on male infertility.

Management Consequence Successful clinical, pre-
clinical models

Reference

Antioxidant therapy lifestyle modifications;
antioxidant-rich foods intake;
oral antioxidant drug.

reduce the levels of ROS; control the elevated inflammatory
state; reduces the sperm DNA damage; improve sperm
quality and fertility.

oxidative stress; obesity;
metabolic syndrome.

(14, 170,
176, 177)

Targeting
immunometabolism
therapy

metformin;
rapamycin.

inhibit T cells; promotes memory T cells and tissue-resident
macrophages; reduces chronic inflammation and ROS;
improves insulin sensitivity; increase cholesterol and
triglyceride and fatty acid oxidation; improve sperm quality
and fertility.

T2DM; hyperglycemia;
dyslipidemia.

(178–181)

Hormone therapy testosterone;
aromatase inhibitors.

decreased production of proinflammatory cytokines;
maintained the M2 macrophage phenotype; maintain of
testicular immunosuppressive status.

experimental autoimmune
orchitis.

(82, 182)
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Targeting Metabolism for Immune
Cell Therapy
Metformin, a hypoglycaemic medication primarily used as the
first-choice treatment for the management of T2DM, reportedly
reduces chronic inflammation and ROS directly, and improves
insulin sensitivity, hyperglycemia, and dyslipidemia (178). The
anti-inflammatory activity of metformin is predominantly
mediated by activation of AMPK and inhibition of NF-kB.
Upregulation of AMPK stimulated the levels of cholesterol and
triglyceride, and fatty acid oxidation, and inactivates acetyl-CoA
(the rate-limiting enzyme in the fatty acid synthesis), thus, led to
a switch off the anabolic process (187, 188). Furthermore,
metformin has also been proven to inhibit antigen-induced T
cell proliferation in an AMPK independent manner, and
improve impaired B cell function associated with T2DM in
vivo, and reduce B cell-intrinsic inflammation in vitro (179,
180). Although the effects of metformin on male productive
function and fertility is mainly unclear, human and animal
studies have shown that this drug also modulates fertility
status and sperm quality, particularly in T2DM, through 1)
restoring the structure and weight of testes, epididymis, and
seminal vesicles, 2) inhibiting of germ cells apoptosis by
enhancing the nutritional function of Sertoli cells to produce,
3) increasing sperm count, motility and normal morphology, 4)
reducing sperm DNA fragmentation (188, 189). However, either
in non-diabetic or in non-T2DM conditions, metformin might
cause an adverse effect on the male reproductive system (188).
Thus, further studies will be needed to clarify what mechanism is
involved in this drug’s bidirectional action at different statuses.

Moreover, rapamycin-inhibited mTOR restores cellular
homeostasis and promotes tolerance and generation of
memory T cells and tissue-resident macrophages (181).
Recently, studies have also revealed that in chronic
nonbacterial prostatitis models of rats, the activation of the
mTOR signaling pathways stimulates inflammatory immune
responses by blocking NF-kB and IL-1b while administration
of rapamycin reversed these effects (190, 191).

Hormone Therapy
As mentioned earlier, high testosterone concentration helps
maintain a testicular immunosuppressive microenvironment.
This is mainly attributed to the suppressed NF-кB signaling
pathway and decreased production of proinflammatory
cytokines, leading to sustained M2-like macrophage phenotype,
thereby reducing systemic inflammation (82). Due to
testosterone’s immunosuppressive properties, some researchers
have tried to control testosterone in an EAO animal.
Furthermore, they found that testosterone treatment
significantly attenuates inflammation progression, mediated by
blocking the infiltration of inflammatory immune cells and
promoting the expansion of competent CD4+CD25+Foxp3+

Tregs in testes (71, 192, 193). Furthermore, aromatase
inhibitors increase testosterone in obese males and improve
spermatogenesis and sperm quality; however, significant
evidence-based studies on the management of male fertility
remain lacking (182). Although the adequate concentration of
Frontiers in Immunology | www.frontiersin.org 11
testosterone is critical for spermatogenesis, excessive testosterone
through testosterone therapy generally deteriorates fertility
parameters in males via the negative feedback mechanism and
should not be used as part of fertility management (182, 194).

Basedon the immunosuppressive properties ofTregs, drugs that
stabilize Tregs (including glucocorticoids and NSAIDs) or drugs
used to stimulate Tregs differentiation (such as TGF-b and all-trans
retinoids) are expected to maximize the benefit of Tregs-based
therapies in suppressing autoimmune diseases (138).
COOPERATION OF IMMUNE,
ENDOCRINE, AND METABOLISM IN
TESTICULAR FUNCTION

Spermatogenesis is a sophisticatedly complex process and
involves a coordinated regulation between endocrine, immune,
and metabolism in testes. The complex but methodical co-
regulation is benefited from the multiplied cell interactions,
although BTB separates these cells. As mentioned above,
testosterone produced by Leydig cells and are controlled
through LH produced in the hypothalamus plays a critical role
in the maintenance of immunosuppressive microenvironment
for normal spermatogenesis within testes through maintaining
regulatory macrophage phenotype and function, inducing
CD4+CD25+Foxp3+ Tregs expansion, and meanwhile
inhibiting CD8+ and CD4+ T cells activation. In turn, T
lymphocyte infiltration would decrease Leydig cell population
during inflammation resulting from LPS stimulation and virus
infection (such as coronavirus disease 2019), whereas the
number of Leydig cell would be recovered in ab, gd, and CD8
lymphocytes deficient mice (195–197). Macrophage numbers
was also significantly decline after Leydig cells were destroyed
or the function of Leydig cells were inhibited (84, 198). This
might imply that there was relationship between the number of
Leydig cells with Macrophage, and T lymphocytes. On the other
hand, testosterone is also bound to AR in Sertoli cells to regulate
the expression of the spermatogenesis-related gene and regulate
glucose metabolism. Furthermore, FSH, acting as the master
endocrine regulator of Sertoli cells, stimulated lactate production
by Sertoli cells in a HIF-dependent manner (199). Since
developing germ cells cannot synthesize lactate, Sertoli cells
would converse 75% of their pyruvate production into lactate
or pyruvate to fulfill germ cells (200). Tumor cells induced the
M2 macrophage phenotype by producing a high lactate level
(108). However, there is a doubt whether Sertoli cells-produced
lactate would induce immunosuppressive macrophage in testes.
Testicular FAO metabolism, particularly PGs production via
COX2, was controlled by LH, FSH, androgens, and prolactin
(106). In turn, PGs acted as an autocrine regulator of Leydig cell
steroidogenesis and Sertoli cell function and indirectly regulated
sperm maturation (106).

Although the effect of metabolism on testicular immune
homeostasis is less clear, the data from either immunologically
privileged sites like tumor tissue and pregnant uterus or some
normal tissue except testes have been shown that metabolic
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reprogramming is necessary for the polarization and activation
of immune cells, as mentioned above. For example, oxidative
metabolism, such as OXPHOS and FAO pathway, generally
markedly increased to promote the immunologically tolerant
phenotypes of macrophages, DCs, Tregs, and regulatory NK
cells. Conversely, the activation of these immune cells needs
higher anaerobic metabolism to meet the rapid energy
requirements and produce proinflammatory cytokines, like IL-
6, NO, and TNF-a. In this context, it is unquestionable that
metabolic reprogramming also plays a vital role in the
immunologically privileged characterization of the testis, which
remains to be further investigated in subsequent studies. In
supporting this, the concentration of testosterone and PGs in
testes was higher than in peripheral blood, both of which were
synthesized through lipid metabolism by testicular somatic cells.
These molecules displayed an immunosuppressive effect on
macrophages and T lymphocytes. For example, Sertoli cells act
as immunological sentinels of spermatogenesis in partial by
forming metabolites, such as PGs, IDO to polarize M2
macrophage and inhibit T and NK cells, respectively (81, 106).
On the other hand, when the body suffers from systematic
metabolic, the immune homeostasis required for the normal
spermatogenesis process will be disturbed. The metabolic
disbalance leads to male hypogonadism as well as dysfunction
of testicular environment for spermatogenesis. Metabolic
disorder with adipose tissue increases the conversion of
testosterone to 17b-estradiol and promotes feedback at HTP
axis, inhibiting the secretion of both FSH and LH, and finally
impairs spermatogenesis (201). This suppression of HPT
induced by adipose tissue might be mediated via dysregulated
leptin signaling and pro-inflammatory cytokines (202).
Moreover, obesity and metabolic syndrome, accompanied by
excessive fat deposition on the scrotal area, would trigger pro-
inflammatory status once adipocytes rupture and ultimately
disrupt the spermatogenesis (203). Additionally, a recent
experiment revealed that high-fat diet not only induced
significant more body weight than their age-matched
littermates fed but also impair spermatogenesis by altering
glucose and lipid metabolism in Sertoli cells, which lead to
Sertoli cells dysfunction and ultimately decreased sperm
quality (204). Collectively, the interactions between endocrine,
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immune and metabolism are essential to maintain the immune
environment of the testis and the proper nutrient concentration
for the spermatogenic process.
CONCLUSIONS

In summary, the regulation of male reproduction by the HPT axis
is, at least in part, through the immune system. The immune cells
effectively provide the immunocompetent microenvironment for
normal spermatogenesis and subsequent processes, such as sperm
maturation. The immune cells develop, activate, and differentiate
into unique phenotypes and function in response to the
synergistic effects of HPT axis-regulated hormones and the
immune microenvironment of the reproductive system. In turn,
the metabolic reprogramming of immune cells plays a pivotal role
in supporting and modeling the immune microenvironment.
There is accumulating appreciation for the part of metabolic
alterations in the functions of immune cells. However, the role of
immunometabolism on male fertility and whether the HPT axis
engages in switching the metabolic flux of immune cells remain to
be elucidated. With a well-established understanding of
metabolism and immunity, it would be interesting to explore
immunometabolism further to clarify the conceptual framework
for male reproductive health.
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