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Abstract

Background: Treatment of multidrug-resistant tuberculosis (MDR-TB) is complex, lengthy, and involves a minimum of
four drugs termed a background regimen (BR), that have not previously been prescribed or that have proven susceptible
to patient sputum culture isolates. In recent years, promising new treatment options have emerged as add-on therapies
to a BR. The aim of this study was to evaluate the long-term costs and effectiveness of adding the novel or
group 5 interventions bedaquiline, delamanid, and linezolid to a background regimen (BR) of drugs for the
treatment of adult patients with pulmonary multidrug-resistant tuberculosis (MDR-TB), within their marketing
authorisations, from a German healthcare cost-effectiveness perspective.

Methods: A cohort-based Markov model was developed to simulate the incremental cost-effectiveness ratio
of bedaquiline plus BR, delamanid plus BR, or linezolid plus BR versus BR alone in the treatment of MDR-TB,
over a 10-year time horizon. Effectiveness of treatment was evaluated in Quality-Adjusted Life-Years (QALYs) and Life-
Years Gained (LYG), using inputs from clinical trials for bedaquiline and delamanid and from a German observational
study for linezolid. Cost data were obtained from German Drug Directory costs (€/2015), published literature, and expert
opinion. A 3% yearly discount rate was applied. Probabilistic and deterministic sensitivity analyses were conducted.

Results: The total discounted costs per-patient were €85,575 for bedaquiline plus BR, €81,079 for delamanid plus BR,
and €80,460 for linezolid plus BR, compared with a cost of €60,962 for BR alone. The total discounted QALYs per-patient
were 5.95 for bedaquiline plus BR, 5.36 for delamanid plus BR, and 3.91 for linezolid plus BR, compared with 3.68 for BR
alone. All interventions were therefore associated with higher QALYs and higher costs than BR alone, with incremental
costs per QALY gained of €22,238 for bedaquiline, €38,703 for delamanid, and €87,484 for linezolid, versus BR alone. In a
fully incremental analysis, bedaquiline plus BR was the most cost-effective treatment option at thresholds greater than
€22,000 per QALY gained. In probabilistic analyses, the probability that bedaquiline plus BR was the most cost-effective
treatment strategy at a willingness-to-pay threshold of €30,000 was 54.5%, compared with 22.9% for BR alone, 18.2% for
delamanid plus BR, and 4.4% for linezolid.

Conclusions: In Germany, the addition of bedaquiline, delamanid, or linezolid to a BR would result in QALY gains over
BR alone. Based on this analysis, bedaquiline is likely to be the most cost-effective intervention for the treatment of MDR-
TB, when added to a BR regimen at thresholds greater than €22,000 per QALY.
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Background
Multidrug-resistant tuberculosis (MDR-TB) is a form of
tuberculosis (TB) that is resistant to at least the two
most effective first-line therapeutic drugs, isoniazid and
rifampicin [1]. MDR-TB is a persistent, and in some re-
gions, increasing public health concern: the incidence of
MDR-TB in Europe in 2013 was 16.9% among new TB
cases and 48.0% among previously treated cases [2].
In Germany, the total number of MDR-TB cases has

increased year-on-year between 2010 and 2013, reaching
100 to 102 reported cases in 2013, depending on the
reporting method used [2, 3]. Further, three cases of ex-
tensively drug-resistant (XDR)-TB in Germany were re-
ported in 2013 [3]. These statistics reflect a trend
towards increasing antibiotic resistance that is mirrored
throughout many regions of Europe, both in tuberculosis
and in other infectious diseases [4].
Treatment of MDR-TB is complex and involves a

minimum of four drugs that have not previously been
prescribed or that have proven susceptible to patient iso-
lates (termed a background regimen, or BR). The recom-
mended total duration of treatment is 18–24 months
and patient isolation is recommended until sputum cul-
ture conversion is achieved [5–8].
Despite these lengthy and resource-intensive regimens,

success rates are suboptimal; the European Centre for
Disease Control (ECDC) estimated that just 38% of pa-
tients who started MDR-TB treatment in 2011 were
cured 24 months later. 235 of 1386 patients starting
MDR-TB treatment died, representing a 17% mortality
rate [2, 9]. For Germany, the Robert Koch Institute pub-
lished very recent data with similar treatment success
rates (34%) [10]. Further, many MDR-TB therapies are
highly toxic and are associated with side effects includ-
ing nausea, vomiting, peripheral neuropathy, nephrotox-
icity, haemotoxicity, and ototoxicity. These side effects
contribute to an additional treatment and monitoring
burden, negatively affect patient quality of life, and de-
crease patient adherence, therefore affecting the prob-
ability of treatment success [6]. All of these factors
contribute to the high economic burden of MDR-TB; a
recent study estimated that the direct costs (in 2012€) of
MDR-TB treatment in Germany totalled €64,429 per pa-
tient, with a further €17,722 to €44,304 in lost product-
ivity costs [11].
It is therefore necessary to introduce more effective

MDR-TB treatment regimens that lead to improved pa-
tient outcomes and reduced disease transmission, while
also demonstrating a manageable adverse event (AE)
profile. Recently, three promising treatment options have
emerged as add-on therapies to a BR: bedaquiline, linez-
olid, and delamanid. These are novel or Group 5 inter-
ventions that have been shown to improve efficacy
outcomes in patients with MDR-TB over BR alone [12–14].

Bedaquiline and delamanid are novel interventions, while
linezolid has been repurposed as an off-label treatment op-
tion in MDR-TB.
However, new healthcare interventions must be evalu-

ated in the context of fixed healthcare budgets. In order
to effectively allocate limited healthcare resources, it is
important to establish not only the efficacy, but also the
cost-effectiveness of new interventions for MDR-TB.
Bedaquiline plus BR has previously been demonstrated
to be cost-effective versus BR alone in a range of low-
income, middle-income, and high-income settings in-
cluding Germany [15–17]. Delamanid has also been
shown to be cost-effective versus BR in the German set-
ting [18]. However, no published study to date has evalu-
ated the cost-effectiveness of these three interventions
within the same model structure, or evaluated the cost
implications of associated AEs.
The aim of this study was to evaluate the cost-

effectiveness of adding bedaquiline, delamanid, or linez-
olid to a BR of drugs in the German setting, including
the economic impact of AE management for each
intervention.

Methods
Model overview
A cohort-based Markov state transition model was de-
veloped to evaluate the long-term costs and effectiveness
of adding bedaquiline, delamanid, or linezolid to a BR,
compared with BR alone in the treatment of adult
patients with pulmonary MDR-TB. The model was ori-
ginally developed for the UK healthcare system [17], and
subsequently adjusted to the perspective of the German
Statutory Health Insurance system [16].
A cohort of 100 patients with MDR-TB was included in

the model simulation, reflecting current epidemiological
data for Germany at the time of model design [2]. Of these
patients, 87.7% were assumed to be treated in the in-
patient setting, over a mean duration of 89.1 days [11].
Outcomes considered in the model included direct

costs, quality-adjusted life-years (QALY), life-years gained
(LYG), and incremental cost-effectiveness ratio (ICER).
Both costs and effectiveness were discounted in the base
case at an annual rate of 3% following local guidelines
[19]. A 1-month cycle length and half-cycle correction
were applied to estimate costs and outcomes, with a
10 year time horizon.

Model structure
The model structure comprised six health states: active
MDR-TB, sputum culture converted MDR-TB, treat-
ment completion (representing cure), surgery, lost to
follow-up (permanent treatment failure), and death
(Fig. 1) [17]. The goal of drug treatment was to induce
and maintain sputum culture conversion until treatment
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completion (assumed equivalent to MDR-TB cure) [20].
Patients failing to achieve sputum culture conversion
during the first year of the simulation were considered
treatment failures and transitioned to the ‘active second-
ary MDR-TB’ state at month 12 to begin a new treat-
ment course. Patients who failed to achieve culture
conversion following the new treatment course were as-
sumed to occupy the ‘active secondary MDR-TB’ state
until death or loss to follow-up, for the purpose of
model simplification.
The probabilities of intervention, loss to follow-up,

and death were based on the literature [14, 21–24]. A
summary of the transition probabilities applied in the
model is shown in Table 1.

Efficacy and quality of life inputs
Efficacy data for the interventions under consideration
were sourced from the results of Phase 2, placebo-
controlled clinical trials for bedaquiline [14] and delama-
nid [12]. In both studies, the effect of treatment was
evaluated in terms of the hazard ratio for time to spu-
tum culture conversion (SCC), with bedaquiline and
delamanid added to BR being associated with statistically
significant improvements in the rate of SCC versus BR
alone.
The rate of SCC in the population treated with add-on

therapies was calculated by multiplying the hazard rate
of culture conversion in the BR alone population by the
hazard ratio of sputum culture conversion for treatment

Fig. 1 Model structure, adopted from [16, 17]. Transitions to the “Death” state are possible from every state, but not shown on the diagram for better
clarity. MDR-TB: Multidrug resistant tuberculosis; TB: tuberculosis

Table 1 Transition probabilities in the model

Health state Transition to Monthly probability (%) Distribution for
probabilistic analysis

Source

Active TB
(MDR-TB; secondary MDR-TB and XDR-TB)

Sputum culture converted Variable Multivariate log-normal
distribution

[14]

Lost to follow-up 0.39 Beta [14]

Death MDR-TB, no cure: 2.21, MDR-TB,
cured: 0.32
XDR-TB, no cure: 2.69% XDR-TB,
cured: 0.39

Beta [21, 22]

Lost to follow-up Death 6.87 Beta [24]

Sputum culture converted Active secondary MDR-TB
(relapse)

0.98 Beta [14]

MDR-TB or active XDR-TB (relapse) (21.4 to XDR-TB; 78.6 to MDR-TB) [14]

Treatment completion and cured Active secondary MDR-TB
(reoccurrence)

0.20 Beta [21]

MDR-TB or active XDR-TB
(reoccurrence)

(21.4 to XDR-TB; 78.6 to MDR-TB) [14]

MDR multidrug-resistant, TB tuberculosis, XDR extensively drug-resistant
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plus BR, versus BR alone. This calculation generated a
treatment-related hazard rate, which was subsequently
used to estimate the probability of culture conversion
while receiving add-on therapies (Table 2). The bedaqui-
line trial publication reported the hazard ratio for SCC
versus placebo as 2.44 (95% confidence interval [CI]:
1.57–3.80) [14].
For delamanid, comparative efficacy versus placebo was

derived using a Bayesian meta-analysis. For the meta-
analysis, a fixed effects model was fitted to aggregated
summary data from the study by Gler and colleagues [12].
The Bayesian model consisted of a binomial likelihood
function, complementary log-log link function, and vague
prior distributions. The estimated hazard ratio for delama-
nid versus placebo was 1.73 (95% CI: 1.153–2.627), based
on a calculation of 1 divided by 0.58 (the reported hazard
ratio for increased time to SCC with placebo vs. delama-
nid) [12]. Data for delamanid from Gler 2012 were only
available for 8 weeks but in the model, the duration of
add-on therapy for delamanid was assumed to be
24 weeks. In the absence of additional data, it was conser-
vatively assumed that the hazard ratio for SCC at 8 weeks
was maintained for 24 weeks.
Linezolid is used in an off-label setting for MDR-TB;

data from a German observational study were used to
determine relative efficacy for linezolid [13] (Table 2). In
this study, patients were treated according to WHO rec-
ommendations, using fluoroquinolones, injectable agents
and other second-line oral agents (BR), linezolid being
one agent in this regimen. Patients who received linezo-
lid in their BR were more likely to achieve SCC com-
pared with those without linezolid (relative risk of 1.28;
95% confidence interval 0.99–1.6), although the time
taken to achieve SCC was significantly longer in the
linezolid group (mean time to SCC of 102.9 days for li-
nezolid versus 65.4 days without linezolid). The effect of
linezolid was modelled using the relative risk of SCC,
which was assumed to represent the effect of linezolid
on time to SCC.
Treatment discontinuation with a novel or Group 5

intervention was simulated in terms of both loss to
follow-up and discontinuation of the intervention due
to AEs.

The treatment algorithm for patients with MDR-TB –
including drug treatment, dosages, and length-of-stay in
isolated care – reflected recommendations made in local
clinical guidelines and expert opinion [6–8, 25]. Surgery
was excluded from this analysis as a treatment interven-
tion, as guidelines recommend surgery in only a small
minority of MDR-TB cases [6].
The health utility weights applied in the simulation

model were adapted from a previous study in a low inci-
dence setting [17], as local data for Germany are not
available. Patients who occupied the active MDR-TB and
lost to follow-up states were assigned the utility weight
for active TB, while patients who occupied the sputum
converted MDR-TB states were assigned a utility
weight that was dependent on the time since conver-
sion (a longer duration of sustained conversion was asso-
ciated with an improvement in utility weight up to the
utility weight for the general population [treatment com-
pletion]). Accordingly, the utility weight for sputum con-
verted MDR-TB was estimated by linear interpolation of
the weights for active TB (lower bound) and the general
population (upper bound). All health utility weight inputs
are summarized in Additional file 1: Table S1.

Cost inputs
Direct medical costs were assumed to consist of drug ac-
quisition costs, costs of treatment monitoring, costs of
administered care (inpatient and outpatient care), costs
of end of life care, and costs of managing AEs.
Unit costs for each drug in the BR, the cost of each

monitoring resource, outpatient visits, and inpatient
costs were sourced from publicly available tariffs and
formularies in Germany [26]. Drug costs (€/2015) were
based on the German Drug Directory (Lauer-Taxe On-
line 2015), and calculated based on the smallest pack
available for the minimum period of treatment neces-
sary, assuming use of generics when available [27]. The
cost of resource use and monitoring was adapted from a
previous study [11].
The cost of AEs included medication costs and moni-

toring costs, and was based on expert opinion and clin-
ical study data [14] [analysis with data on file] [12, 28].
AEs that were at least potentially causally related to the

Table 2 Summary of relative efficacy of adding novel or group 5 interventions to a BR

Intervention Time to SCC Mean treatment effect as Relative Risk RR (SE) Discontinuation rate per month (%) Source/assumption

Bedaquiline vs.
placebo

83 days vs. 125 days 2.44 (0.57) 0.87% [14]

Delamanid vs.
placebo

Not reported (HR of 0.58
reported only for placebo
vs. delamanid)

1.73 (0.38) 1.26% Analysis of data
reported in [12]

Linezolid vs.
placebo

103 days vs. 65 days 1.28 (0.57) 3.1% [13] see main text

BR Background regimen, RR relative risk, SE Standard Error, SCC sputum culture conversion
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investigational study drug and occurring in >5% of pa-
tients were included for each intervention. Inputs for the
cost and duration of treatment-associated AEs are pre-
sented in Additional file 2: Table S2. The cost of electro-
cardiogram and liver enzyme monitoring was absorbed
within overall monitoring costs. A summary of costs for
the total costs of treatment, split by interventions and
cost category (hospitalisations, outpatient costs, medica-
tion costs etc.) is displayed in Additional file 3: Table S3.

Sensitivity analysis
Both probabilistic and deterministic sensitivity analyses
were conducted following international recommenda-
tions [29]. In the deterministic simulations, key model
parameters and assumptions were varied by ±20%, in-
cluding clinical efficacy for each intervention, transition
probabilities, utility weights, discount rates, the cost of
AEs, and drug costs.
In probabilistic analyses, the likelihood of bedaquiline,

linezolid, or delamanid plus BR being cost-effective ver-
sus BR alone was explored at different willingness-to-
pay thresholds.

Results
Base-case results
Over the 10-year time horizon, the total discounted per-
patient costs associated with the interventions under
evaluation were €85,575 for bedaquiline, €81,079 for
delamanid, €80,460 for linezolid plus BR, and €60,962
for BR only. Total costs were largely driven by TB drug
costs and hospitalisation costs; costs associated with AE
management were relatively small (Table 3).
The differing cost of BR treatment across regimens

displayed in Table 3 primarily reflects two model as-
sumptions. Firstly, patients who fail to achieve sputum
culture conversion in the first 20 months of treatment
are considered treatment failures, and go on to receive

further BR treatment in the secondary MDR-TB state
until cure, loss to follow-up, or death. With add-on ther-
apies, more patients achieve cure, fewer patients fail
treatment, and fewer patients go on to receive BR in the
secondary MDR-TB state. Secondly, the model assumes a
difference in the mortality rate between culture-converted
and unconverted patients. The higher rate of cure with
add-on therapies means that patients will on average live
longer, and consequently, a higher percentage of patients
will complete the full course of BR treatment.
The total discounted cost and discounted QALYs for

the single cohort of 100 patients assigned to bedaquiline
plus BR was €8,557,529 and 479 QALYs, respectively
(Table 4). The total discounted cost and discounted
QALYs for the patients assigned to delamanid plus BR
was €8,107,888 and 421 QALYs, respectively, and to li-
nezolid plus BR, €8,045,981 and 391 QALYs, respect-
ively. In terms of life-years gained (LYG), the total
discounted LYG for the patients assigned to bedaquiline
plus BR was 595; delamanid plus BR, 536; to linezolid
plus BR, 507; and BR alone, 482 (Table 4).
The incremental cost per QALY gained versus BR

alone was €22,238 for bedaquiline, €38,703 for delama-
nid, and €87,484 for linezolid (Table 4).
The results of the fully incremental analysis are pre-

sented graphically using the cost-efficiency frontier
(Fig. 2), which compares the expected costs (x-axis) and
benefits (y-axis) of each intervention in the evaluation
[30]. The cost-efficiency frontier is plotted by connecting
those treatments that represent the most cost-efficient
use of healthcare resources, relative to any other therapy
or their combinations.
In this analysis, BR alone and bedaquiline plus BR

were considered the most cost-efficient interventions,
with delamanid plus BR and linezolid plus BR being
dominated by a combination of BR alone with or with-
out bedaquiline. By excluding delamanid and linezolid

Table 3 Per-patient and population level costs for the interventions included in the analysis

Patient-level

Treatment
strategy

Added costs for a novel
or group 5 intervention (€)

Cost of BR
treatment

Hospitalization
costs (€)

Outpatient
care (€)

Monitoring
costs (€)

Adverse event costs of
group 5 drugs (€)

Total (€)

Bedaquiline plus BR 30,799 28,652 24,038 98 1970 17 85,575

Delamanid plus BR 22,829 29,626 26,362 108 2152 2 81,079

Linezolid plus BR 20,302 29,968 27,392 107 2569 121 80,460

BR only 0 30,270 28,180 119 2393 – 60,962

Population-level, 100 patients with MDR-TB

Bedaquiline plus BR 3,079,915 2,865,240 2,403,791 9833 197,014 1735 8,557,529

Delamanid plus BR 2,282,920 2,962,563 2,636,180 10,755 215,241 229 8,107,888

Linezolid plus BR 2,030,217 2,996,842 2,739,250 10,715 256,867 12,091 8,045,981

BR only 0 3,026,959 2,817,995 11,919 239,279 – 6,096,152

AE adverse event, BR background regimen, TB tuberculosis, MDR-TB multidrug-resistant tuberculosis
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from further consideration in the cost-efficiency frontier,
the analysis shows that treatment with BR alone is the
most cost-efficient therapy at willingness to pay thresh-
olds up to €22,000 per QALY gained, with bedaquiline
plus BR becoming the most cost-efficient therapy at
thresholds greater than €22,000 (which falls below the
informal threshold of €30,000 to €50,000 per QALY
commonly applied in European healthcare systems).

Sensitivity analyses
The results of the deterministic sensitivity analysis are
presented in Table 5.
In the one-way sensitivity analysis, the effect of beda-

quiline on SCC was the most influential parameter, with
ICERs of €17,711 (plus 20% more effective) and €30,960
(20% less effective) in comparisons with BR alone. Other
influential parameters included the rate of SCC for BR
alone (ICERs of between €20,150 [20% higher rate of
SCC] and €26,384 [20% lower rate of SCC]), and the
utility assigned to cured patients (ICER of €18,770 for
perfect health post-cure versus €22,238 in the base case).
The model results were not sensitive to assumptions on
discounting rates, the cost of BR medication, the cost of
AEs, or the rate of relapse after cure.
In comparisons of bedaquiline plus BR versus linezolid

plus BR, all ICERs were below €15,000 per QALY gained.
In the analysis where the duration of linezolid was

reduced from 42 to 24 weeks (same duration as with
bedaquiline plus BR), the ICER comparing bedaquiline
plus BR versus linezolid plus BR increased from €5778
(base case) to €13,553 per QALY gained, which remains
below a threshold of €30,000 per QALY, which is com-
monly applied informally in European healthcare sys-
tems. In comparisons of bedaquiline plus BR versus
delamanid plus BR, all ICERs were below €20,000 per
QALY gained.
The results of the probabilistic sensitivity analysis are

presented in Fig. 3. All data on probabilistic distributions,
parameters and definitions used in the probabilistic sensi-
tivity analysis are shown in Additional file 4: Table S4.
The probability that bedaquiline plus BR was the most

cost-effective treatment strategy at a willingness to pay
threshold of €30,000 was 54.5%, versus 22.9% for BR
alone, 4.4% for linezolid plus BR and 18.2% for delamanid
plus BR. At a higher threshold of €50,000 per QALY
gained (informally, towards the upper limit of willingness-
to-pay thresholds applied in European healthcare systems
for orphan drugs), the probability that bedaquiline plus
BR is a cost-effective alternative to existing interventions
was greater than 70%.

Discussion
The results of this study demonstrate that, in the German
setting, adding bedaquiline, delamanid, or linezolid to a

Table 4 Incremental cost per QALY gained

Treatments
ordered from least
to most effective

Patient-level Population-level (100 MDR patients) Incremental cost per QALY gained (€)

Total
cost, €

Total QALYs
gained

Total
LYG

Total
cost, €

Total QALYs
gained

Total
LYG

Versus BR
alone

Versus Linezolid
plus BR

Versus delamanid
plus BR

BR alone 60,962 3.68 4.82 6,096,152 368 482 – 87,484 38,703

Linezolid plus BR 80,460 3.91 5.07 8,045,981 391 507 87,484 – 2026

Delamanid plus BR 81,079 4.21 5.36 8,107,888 421 536 38,703 2026 –

Bedaquiline plus BR 85,575 4.79 5.95 8,557,529 479 595 22,238 5787 7774

BR Background Regimen, QALY Quality-Adjusted Life Year, LYG life-years gained

Fig. 2 Cost-efficiency frontier. BR: Background Regimen; QALY: Quality-Adjusted Life Year
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BR would lead to QALY and LY gains under a range of
scenarios. The cost per QALY versus BR alone ranged
from €22,238 for bedaquiline, to €38,703 for delamanid,
and €87,484 for linezolid.
QALY gains for add-on therapies to a BR were driven

by improved efficacy versus BR alone. As would be ex-
pected from adding interventions to a BR, higher total
costs associated with add-on therapies were driven by
increased drug acquisition costs, although total incremen-
tal costs were partially offset by reduced hospitalisation

costs (resulting from improved sputum culture conversion
compared with BR alone and therefore assuming less time
spent in the inpatient setting). Monitoring costs and the
costs of AE management had a relatively limited effect on
the outcome, as the AEs were generally treatable with in-
expensive medications.
Where multiple treatment options are available, it is

important to identify which strategies provide the most
efficient use of limited health care resources. This is
achieved through fully incremental analysis where the

Table 5 One-way sensitivity analysis (per patient level)

Parameter Variation Cost / QALY Incremental cost per QALY gained
(€), Bedaquiline

BR
alone

Linezolid
plus BR

Delamanid
plus BR

Bedaquiline
plus BR

Versus
BR alone

Versus
Linezolid plus
BR

Versus
Delamanid
plus BR

Base case 60,962 /
3.68

80,460 /
3.91

81,079 /
4.21

85,575 /
4.79

22,238 5787 7774

BR SCC rates at 6-
months

+20% (37.2% SCC to 44.6%) 58,648 /
4.00

78,179 /
4.24

78,192 /
4.58

82,170 /
5.17

20,105 4316 6713

−20%(37.2% SCC to 29.7%) 63,037 /
3.36

82,518 /
3.56

83,807 /
3.82

89,010 /
4.35

26,384 8196 9802

Effect of bedaquiline on
SCC rates

+20% 60,962 /
3.68

80,460 /
3.91

81,079 /
4.21

84,384 /
5.01

17,711 3569 4162

−20% 60,962 /
3.68

80,460 /
3.91

81,079 /
4.21

86,986 /
4.52

30,960 10,565 18,921

Maximum duration of
linezolid treatment

42 to 24 weeks (duration of
Bedaquiline treatment)

60,962 /
3.68

73,307 /
3.88

81,079 /
4.21

85,575 /
4.79

22,238 13,553 7774

Relapse after cure +20% 61,232 /
3.65

80,732 /
3.87

81,421 /
4.16

85,716 /
4.77

21,809 5508 7092

−20% 60,684 /
3.72

80,180 /
3.95

80,729 /
4.26

85,433 /
4.81

22,701 6094 8552

Utility weight for no
cure

plus20% 60,962 /
3.95

80,460 /
4.16

81,079 /
4.46

85,575 /
5.02

22,988 5983 8056

−20% 60,962 /
3.48

80,460 /
3.72

81,079 /
4.04

85,575 /
4.66

20,973 5465 7337

Utility for cure Perfect health after cure 60,962 /
4.26

80,460 /
4.53

81,079 /
4.89

85,575 /
5.57

18,770 4905 6596

Discount rate 0% cost 3% outcomes 62,032 /
3.68

81,524 /
3.91

82,098 /
4.21

86,538 /
4.79

22,141 5672 7676

6% costs 3% outcomes 60,039 /
3.68

79,547 /
3.91

80,210 /
4.21

84,765 /
4.79

22,340 5903 7875

3% costs 0% outcomes 60,962 /
4.12

80,460 /
4.38

81,079 /
4.73

85,575 / 5.4 19,224 5015 6712

3% costs 6% outcomes 60,962 /
3.33

80,460 /
3.52

81,079 /
3.79

85,575 /
4.29

25,473 6611 8914

Cost for BR medication +20% 66,824 /
3.68

86,271 /
3.91

86,831 /
4.21

91,177 /
4.79

22,003 5550 7514

−20% 55,099 /
3.68

74,649 /
3.91

75,327 /
4.21

79,974 /
4.79

22,474 6024 8034

Cost for AE’s +20% 60,962 /
3.68

80,484 /
3.91

81,079 /
4.21

85,579 /
4.79

22,242 5764 7779

−20% 60,962 /
3.68

80,436 /
3.91

81,078 /
4.21

85,572 /
4.79

22,235 5811 7768

AE Adverse event, BR Background regimen, QALY Quality-adjusted life-year, SCC Sputum culture conversion
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cost-effectiveness of transitioning from one option to a
more effective option is assessed. A key conclusion from
this analysis was that a mix of strategies comprising BR
alone and BR plus bedaquiline may yield greater QALY
benefits than treatment with either linezolid or delama-
nid, but at higher total costs. More formally, linezolid
and delamanid were dominated by a combination of BR
alone and BR plus bedaquiline, and consequently, the
administration of linezolid and delamanid would be con-
sidered a cost-inefficient use of available resources. Fol-
lowing standard practice [31], linezolid and delamanid
were excluded from further cost-effectiveness analyses.
The resulting analyses suggest that BR plus bedaquiline
is the most cost-efficient treatment strategy at thresholds
greater than €22,000 per QALY gained.
At the same time, the exclusion of linezolid and dela-

manid due to cost would not be clinically justifiable,
given that dominance can only be achieved if some
patients receive BR alone. Without access to novel ther-
apies, some of these patients may go on to develop fur-
ther drug resistance because of inadequate treatment
with BR, possibly leading to active secondary MDR-TB
with an excess morbidity and mortality burden. More-
over, there is a recognition that combining several new
mechanisms of action will likely further enhance treat-
ment outcomes [32]. Thus, MDR-TB treatment strat-
egies should not be excluded based on dominance, given
the severe consequences of poor outcomes in this popu-
lation with a BR-only based treatment.
Previous studies have focused on the comparative ef-

fectiveness [33] or the cost-effectiveness of novel or
Group 5 interventions compared with BR alone [15–18],
but this is the first study to explicitly model cost-
effectiveness across novel or Group 5 interventions for
the treatment of MDR-TB within a consistent model
structure. The results of this analysis are consistent with
previous cost-effectiveness analyses of bedaquiline for

MDR-TB [15, 17, 34], reinforcing that this intervention
remains cost-effective under a range of assumptions and
different country settings. The total costs for BR alone
and ICER versus bedaquiline varied slightly to values re-
ported in a previous cost-effectiveness analysis [34], due
to a minor model variation in which treatment efficacy
was linked to discontinuation over time: patients who
leave the model (after failure to successfully treat active
secondary MDR-TB) are assumed to derive no further
benefit from treatment. Nevertheless, the conclusions
are broadly consistent.
The results of the delamanid analysis presented here dif-

fer from a previous analysis by Diel and colleagues [18]. In
the current analysis, delamanid plus BR was associated
with an ICER of €38,703 per QALY versus BR alone,
whereas in the Diel et al. publication, delamanid domi-
nated over BR with an ICER of € -3494 per QALY gained.
This discrepancy is very likely to reflect the different per-
spectives considered in these analyses: societal in the Diel
analysis; payer in the current analysis, as well as the use of
different data sources to inform the modelling by using
patient-level data and the differing definitions of outcome
parameters. To our knowledge, no economic evaluations
of linezolid in MDR-TB have been published to date.
Due to the toxicity associated with MDR-TB therapies,

it is important to consider the impact of AEs and their
time of onset when comparing treatment options. This
is the first study to comprehensively incorporate the
costs of AEs associated with Group 5 interventions into
a cost-effectiveness analysis of treatments for MDR-TB.
It was not possible to assign utility weights to these AEs
due to the lack of disease-specific data to inform utility
loss associated with MDR-TB in the German setting. Al-
though proxy data could – in theory – be substituted to
inform utility loss, attempting to apply such data on top
of a utility weight already heavily impacted by disutility
due to BR side effects proved unfeasible in this analysis.

Fig. 3 Multiway cost-effectiveness acceptability curve. BR: Background regimen
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The development of utility weights for MDR-TB spe-
cific AEs would therefore be valuable to inform future
cost-effectiveness analyses in MDR-TB. However, due to
the comparative tolerability of the interventions con-
sidered in this analysis relative to other MDR-TB drugs,
the conclusions are likely to hold even if such disutility
were to be explicitly modelled. Alternatively, a quality-
adjusted time without symptoms or toxicity (Q-TWIST)
approach [35] could be considered. Although typically
applied in oncology, such an analysis would capture dis-
ease- and treatment-related disutility, and would also
allow the user to model the patient impact of the much-
needed shortened treatment regimens that are currently
in clinical trials.
Additional future modelling work may account for re-

cent developments in the MDR-TB treatment landscape,
looking at shorter simplified regimens or different com-
binations of new and current drugs. Trials are currently
underway to assess the efficacy of innovative comb-
inations of Group 5 or novel interventions, such as the
6-month combination regimen of bedaquiline, linezolid,
and PA-824 being evaluated in the NiX-TB-(B-L-Pa) trial
(NCT02333799) [36], as well as the STREAM study.
The STREAM study is a Phase 3, multicentre, inter-
national randomised controlled trial aiming to assess the
safety and efficacy of shorter MDR-TB regimens [37].
The second stage of the STREAM study will include two
bedaquiline-containing arms [38], including an all-oral
regimen. Further, the EndTB program aims to expand
access to new TB drugs such as bedaquiline and delama-
nid in 16 countries [39], while an NIH-sponsored safety
trial is planned in South Africa.
The analysis presented here was subject to a number

of assumptions, which have been described, discussed,
and justified in detail previously [17]. Briefly, the use of
trial data for bedaquiline and delamanid may not accur-
ately reflect results found in German clinical practice.
However, the results were not found to differ substan-
tially when interim data from real-world evidence stud-
ies from a European and African setting were applied in
sensitivity analyses [40–42], and therefore, the results of
this analysis can be assumed to be applicable in the real-
world setting.
Secondly, the mortality imbalance observed in the

bedaquiline C208 clinical trial was not captured here be-
cause no causal link to study medication was found. Fur-
ther, newly published results of the C209 trial [43] as
well as recent published interim data from the ongoing
Compassionate Use program for bedaquiline in France,
South Africa, and Latvia [40–42, 44], suggest a lower
mortality rate than that observed in the C208 trial, justi-
fying this assumption.
The third assumption relates to patients after leaving

the model. Patients who were lost to follow-up were

assumed to remain in this state until death and did
not incur any costs, for the purpose of simplifying
the model structure. Data are limited on the retreat-
ment of such patients [45], and due consideration to
treatment with third-line or even fourth-line regimens
was beyond the scope of this analysis. Regardless, this
assumption is unlikely to substantially impact the re-
sults of the analysis, given that the rate of loss to
follow-up was assumed to be consistent between
treatment strategies [17].
In addition, patients who achieved sputum culture

conversion did not experience any lasting disutility and
were assigned the same utility as patients in the general
population, which is likely to be a simplistic assumption.
However, data on the utility of patients who have been
cured of MDR-TB are limited and in sensitivity analyses,
the impact of varying utility weights for the ‘cured’
health state had a relatively small effect on the ICER.
Finally, heterogeneity between the studies considered

in this analysis introduces an element of uncertainty,
and can be considered a key limitation of the model
structure. Relative efficacy outputs should be interpreted
within the appropriate context, especially given that the
hazard ratio of SCC was the most influential parameter
in one-way sensitivity analyses.
Although the best available evidence was used at the

time of model development (clinical trial data for beda-
quiline and delamanid; German observational data for li-
nezolid due to a lack of RCTs in MDR-TB), other
studies exist that could be used to model relative effi-
cacy. For example, clinical trials carried out in XDR-TB
populations in the Chinese and Korean settings [46–49],
respectively, demonstrated higher rates of sputum cul-
ture conversion for linezolid than were reported in the
German study used in this analysis [13]. In addition, re-
cent contributions to the literature reporting MDR-TB
and XDR-TB outcomes for bedaquiline [43] and XDR-
TB outcomes for delamanid [50] could also be consid-
ered in future research. Alternatively, the collection and
application of direct comparative clinical trial data
would allow for treatment effect to be modelled more
objectively.

Conclusions
The addition of bedaquiline, delamanid, or linezolid to a
BR would result in QALY gains over BR alone when ap-
plied in the German healthcare system. Bedaquiline is
likely to be the most cost-effective intervention for the
treatment of MDR-TB, when added to a BR regimen at
thresholds greater than €22,000 per QALY. These results
may be used to inform MDR-TB treatment and reim-
bursement decisions within the German healthcare sys-
tem and in other high-income countries.
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