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Four‑copy number alteration 
(CNA)‑related lncRNA prognostic 
signature for liver cancer
Zhenyun Cheng1,2, Yan Guo1,2, Jingjing Sun1,2 & Lei Zheng1,2*

The objective of this study was to identify CNA‑related lncRNAs that can better evaluate the 
prognosis of patients with liver cancer. Prognostic molecular subtypes were identified, followed by 
tumor mutation and differential expression analyses. Genomic copy number anomalies and their 
association with lncRNAs were also evaluated. A risk model was built based on lncRNAs, as well as a 
nomogram, and the differences in the tumor immune microenvironment and drug sensitivity between 
the High_ and Low_risk groups were compared. Weighted gene co‑expression network analysis was 
used to identify modules with significant enrichment in prognostic‑related lncRNAs. In total, two 
subtypes were identified, TP53 and CTNNB1 were common high‑frequency mutated genes in the two 
subtypes. A total of 8,372 differentially expressed (DE) mRNAs and 798 DElncRNAs were identified 
between cluster1 and cluster2. In addition, a four‑lncRNA signature was constructed, and statistically 
significant differences between the Low_ and High_risk groups were found in terms of CD8 T cells, 
resting memory CD4 T cells, etc. Enrichment analysis showed that prognostic‑related lncRNAs were 
involved in the cell cycle, p53 signaling pathway, non‑alcoholic fatty liver disease, etc. A prognostic 
prediction signature, based on four‑CNA‑related lncRNAs, could contribute to a more accurate 
prognosis of patients with liver cancer.

Abbreviations
lncRNA  Long non-coding RNAs
DE  Differential expression
mRNAs  Messenger RNAs
TCGA   The Cancer Genome Atlas
OS  Overall survival
LASSO  Least absolute shrinkage and selection operator
WGCNA  Weighted correlation network analysis
KEGG  Kyoto Encyclopedia of Genes and Genomes

Liver cancer is the most prevalent primary malignancy of the liver and the fourth leading form of life-threatening 
cancer  worldwide1. Early screening and diagnosis of liver cancer, such as imaging examination and serological 
indicators, have been widely used and have greatly improved in recent  years2,3. However, the early diagnosis rate 
of liver cancer is rather low; only 30–40% of patients are diagnosed at an early  stage4. At present, the most effec-
tive way to treat liver cancer is radical tumor resection; nevertheless, the survival rate of patients remains poor, 
the 5-year survival rate being only 18%5. Therefore, new prognostic biomarkers are urgently needed to promote 
the treatment and accurate diagnosis of patients with liver cancer.

Long noncoding RNAs (lncRNAs) are RNAs that are greater than 200 nucleotides in length and lack protein-
coding  ability6. Although lncRNAs are one of the least understood classes of molecules, recent studies have 
shown that they are involved in a wide range of biological processes and are associated with many diseases, 
such as autoimmune thyroid diseases, cancer, and cardiovascular  diseases7–9. There is evidence that abnormally 
expressed lncRNAs are associated with the progression of  cancers10, including liver cancer. Wang et al. found that 
by activating the Wnt signaling pathway, lnctcf7 improved the self-renewal of human hepatoma stem  cells11. Xin 
et al. suggested that lncRNA HULC inhibits PTEN and accelerates liver cancer through autophagy cooperation 
with  miR15a12. Fu et al. illustrated that lncRNA PURPL accelerates cell proliferation in liver cancer through the 
regulation of  p5313.
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Copy number alteration (CNA) is a significant cause of genetic  variation14 and defines as somatic copy number 
changes, which has been reported to be strongly associated with morbid consequences, such as developmental 
disorders and  cancer15. There is evidence that CNA has important functions in the pathogenesis of numerous 
 tumors16,17. The gain or loss of the tumor genome copy number is closely related to differential gene expres-
sion, particularly for oncogenes and tumor suppressor  genes15. Numerous studies have reported the association 
between lncRNAs and CNAs in cancers. For instance, Zhong et al. have identified CNA-related lncRNAs that 
can better predict cervical cancer  prognosis18, Athie et al. shown that the lncRNA ALAL-1 could be used as a 
regulator of lung cancer immune evasion via CNA  analysis19, and Zhong et al. revealed the prognosis-related 
lncRNAs by analyzing the expression profiles of lncRNAs and CNAs in bladder  cancer20, however, few studies 
have explored the regulatory relationships between lncRNAs and CNAs in liver cancer, and the CNA-related 
lncRNA prognostic model in liver cancer is largely unknown.

Accordingly, the goal of the present study was to analyze the regulatory relationships between lncRNAs 
and CNAs in liver cancer. This was achieved by screening CNA-related lncRNAs that can evaluate liver cancer 
prognosis based on CNA, methylation, and gene expression data (a schematic of the study design is shown in 
Fig. 1). The results of this study offer predictive biomarkers for liver cancer.

Results
Identification of prognostic molecular subtype. A total of 6060 mRNAs, 3966 methylation genes, and 
4961 CNA regions with significant prognostic associations were obtained. In addition, two subtypes, including 
cluster1 (n = 101) and cluster2 (n = 234), were identified using iClusterPlus (Table  1). Cluster2 had the most 
favorable prognosis (Fig.  2A). PCA results showed the mRNA expression pattern and methylation pattern 
in the two subtypes were different (Fig. 2B,C). Moreover, based on the methylation level values of prognos-
tic related methylated genes in each sample, the hierarchical clustering analysis was conducted. Hierarchical 
clustering analysis results revealed that the samples were divided into three groups, and total 116, 218, one 
samples were included in 1, 2, 3 groups, respectively, and the two identified clusters were tending to cluster 
together (Fig. 2D). Moreover, to further observe the tendentiousness of the identified clusters contained in each 
group in the hierarchical clustering, the sample distribution proportion diagram of each cluster in group 1 and 
2 was drawn (Fig. 2E), the results shown that group 2 was mainly included cluster2, and group 1 was mainly 
contained cluster1, and the methylation pattern in the two groups were found different using chi square test 
(P < 0.05). In addition, the frequency of 102 mutated genes showed significant differences between two subtypes 
(Fig. 3A; Table 2), and there were more mutated genes in cluster1. Among the 102 mutated genes, the top10 

Figure 1.  Workflow of this study.
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high-frequency mutated genes in subtypes are shown in Fig. 3B,C, and TP53 and CTNNB1 were common high-
frequency mutated genes in the two subtypes.

Identification of differentially expressed (DE) mRNAs and DElncRNAs in two subtypes. Apply-
ing the screening criteria of P < 0.05, and |log2FC|> 0.263, a total of 8,372 DEmRNAs (7,123 up-regulated and 
1249 down-regulated) and 798 DElncRNAs (577 up- and 221 down-regulated) were identified between cluster1 
and cluster2 (Supplementary Fig. 1A,B).

LncRNAs abnormal expressions related to CNAs. The variant frequency of lncRNAs in the samples 
was calculated to evaluate the association between CNAs and lncRNA expression. The frequency of copy num-
ber gains and losses of lncRNAs on each chromosome varied (Fig. 4A); for example, numerous copies of chro-
mosomes 4, 8, 9, and 17 were deficient, whereas there were a greater number of copies of chromosomes 5, 6, 
and 7. In addition, based on the expression profile and CNA profile of 1,358 lncRNAs, the correlation distribu-
tion between the copy number and lncRNA expression profile showed an overall trend of positive association 
(Fig. 4B). Numerous regions with lncRNA copy number gain and loss were revealed (Fig. 4C), indicating that 
the abnormal lncRNAs copy number might be associated with the progression of liver cancer. In addition, as 
shown in the heatmap (Fig. 4D), the variant ratio of lncRNAs in cluster1 increased compared to that in cluster2, 
and the Chi square test results shown that among the 1,358 lncRNAs, total 1,238 lncRNAs had significant dif-
ference on CNA between cluster1 and cluster2 (Supplementary Table 1). Next, a total of 52 lncRNAs with CNA 
frequency > 75% in samples were screened, and the differences in the expression of these 52 lncRNAs with copy 
number gain, copy number loss, and normal copy number were evaluated using Kruskal–Wallis test. The results 

Table 1.  P value of the corresponding survival difference under different cluster numbers.

Cluster number P value

2 5.05E−08

3 0.01283

4 0.349192

5 0.358615

6 0.819798

7 0.032748

Figure 2.  Identification of prognostic molecular subtype. (A): Survival and prognosis of the two subtypes. (B) 
Principal component analysis (PCA) of mRNA expression pattern, (C) methylation pattern. (D) Heatmap of the 
reuslts of hierarchical clustering analysis. (E) The differences onmethylation pattern of clusters between groups 
1 and 2.
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Figure 3.  Mutation distribution of high-frequency mutation genes in the two molecular subtypes. (A) Heatmap 
of gene mutations (the gene mutations refer to SNVs only) with significant differences in mutation frequency 
between two subtypes. 0 indicates alive, and 1 indicates dead. Red dots indicate mutations and white dots 
indicate no mutations. The mutation distribution of top10 high-frequency mutation genes in (B) cluster1 and 
(C) cluster2. The barplot at the top indicate total number of different types of mutations in a sample.
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Gene Cluster1 Cluster2 P value

TP53 0.489362 0.218341 2.51E−06

CTNNB1 0.159574 0.283843 0.027226

CSMD1 0.138298 0.061135 0.039913

COL12A1 0.117021 0.043668 0.02923

RB1 0.095745 0.030568 0.030015

KMT2A 0.085106 0.017467 0.00944

KIAA2026 0.074468 0.008734 0.003872

TSC2 0.074468 0.0131 0.011125

PIKFYVE 0.074468 0.0131 0.011125

PCDH11X 0.074468 0.017467 0.025886

MEIS2 0.06383 0.004367 0.003578

PDZRN4 0.06383 0.008734 0.012421

NOS3 0.06383 0.0131 0.032023

AATK 0.053191 0 0.002517

OR5T2 0.053191 0 0.002517

MYO1B 0.053191 0 0.002517

ANKRD36C 0.053191 0 0.002517

SHROOM4 0.053191 0.004367 0.012476

LY75 0.053191 0.004367 0.012476

NFATC2 0.053191 0.008734 0.038275

TRPM3 0.053191 0.008734 0.038275

ZNF681 0.053191 0.008734 0.038275

ATP13A5 0.053191 0.008734 0.038275

CASP8AP2 0.053191 0.008734 0.038275

MGLL 0.053191 0.008734 0.038275

TNKS1BP1 0.053191 0.008734 0.038275

SLC6A11 0.042553 0 0.009672

CYTH1 0.042553 0 0.009672

ZNF582 0.042553 0 0.009672

FOXC1 0.042553 0 0.009672

IQGAP3 0.042553 0 0.009672

NT5DC1 0.042553 0 0.009672

CMKLR1 0.042553 0.004367 0.042453

ZNF107 0.042553 0.004367 0.042453

PLA2G4E 0.042553 0.004367 0.042453

FAM129A 0.042553 0.004367 0.042453

COL4A6 0.042553 0.004367 0.042453

OPN4 0.042553 0.004367 0.042453

PCNXL3 0.042553 0.004367 0.042453

ZNF585B 0.042553 0.004367 0.042453

FBXO43 0.042553 0.004367 0.042453

LIPI 0.042553 0.004367 0.042453

ADCY9 0.042553 0.004367 0.042453

CP 0.042553 0.004367 0.042453

CLASRP 0.042553 0.004367 0.042453

SPIDR 0.042553 0.004367 0.042453

OR5M10 0.042553 0.004367 0.042453

ASB5 0.031915 0 0.037749

CCDC6 0.031915 0 0.037749

ZNF567 0.031915 0 0.037749

UBXN4 0.031915 0 0.037749

CCR9 0.031915 0 0.037749

CCDC62 0.031915 0 0.037749

EPM2A 0.031915 0 0.037749

FHL5 0.031915 0 0.037749

PGLYRP2 0.031915 0 0.037749

Continued



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14261  | https://doi.org/10.1038/s41598-022-17927-0

www.nature.com/scientificreports/

showed that the expression of most lncRNAs were significantly difference among the three groups (P < 0.05; 
Supplementary Fig. 2 and Supplementary Table 2), suggesting that lncRNA abnormal expressions are associated 
with CNAs.

Establishment of a lncRNA signature. A total of 34 lncRNAs were screened as candidate lncRNAs, as 
described in the Methods section. Univariate Cox regression analysis was conducted, and a total of 12 prognos-
tic-related lncRNAs were identified (Table 3). LASSO Cox regression analysis was performed, and four lncRNAs 
were utilized to build the signature (Fig. 5A), containing LOC339803, F11-AS1, PCAT2, and TMEM220-AS1. 

Gene Cluster1 Cluster2 P value

GPR88 0.031915 0 0.037749

SLC26A6 0.031915 0 0.037749

STXBP4 0.031915 0 0.037749

CHDH 0.031915 0 0.037749

TRIM16L 0.031915 0 0.037749

ERICH6B 0.031915 0 0.037749

RBM17 0.031915 0 0.037749

SLC9A7P1 0.031915 0 0.037749

VWA5A 0.031915 0 0.037749

PFKP 0.031915 0 0.037749

LAT 0.031915 0 0.037749

GFM1 0.031915 0 0.037749

LCE1B 0.031915 0 0.037749

FAU 0.031915 0 0.037749

HSFY1P1 0.031915 0 0.037749

DDX19B 0.031915 0 0.037749

THBD 0.031915 0 0.037749

NR2E1 0.031915 0 0.037749

TCEB3 0.031915 0 0.037749

MOSPD2 0.031915 0 0.037749

MFSD4 0.031915 0 0.037749

GREB1L 0.031915 0 0.037749

CPT1C 0.031915 0 0.037749

R3HDM1 0.031915 0 0.037749

F13A1 0.031915 0 0.037749

HCFC1 0.031915 0 0.037749

SGPL1 0.031915 0 0.037749

PRMT1 0.031915 0 0.037749

CEBPZ 0.031915 0 0.037749

PDCD1LG2 0.031915 0 0.037749

NEURL1 0.031915 0 0.037749

NADK 0.031915 0 0.037749

FOXI1 0.031915 0 0.037749

ADAM10 0.031915 0 0.037749

PRR32 0.031915 0 0.037749

ACVR1B 0.031915 0 0.037749

UBXN7 0.031915 0 0.037749

SLITRK3 0.031915 0 0.037749

MAN1A1 0.031915 0 0.037749

SCN8A 0.031915 0 0.037749

KLF16 0.031915 0 0.037749

ITGAX 0.031915 0 0.037749

HOXA3 0.031915 0 0.037749

ZWINT 0.031915 0 0.037749

SLC25A32 0.031915 0 0.037749

POU6F2 0.031915 0 0.037749

Table 2.  Mutation distribution of high-frequency mutation genes in the two molecular subtypes.
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Figure 4.  Genomic copy number anomalies and their relationship to lncRNAs. (A) Distribution of lncRNA 
copy number gain and loss in the genome. The innermost layer indicates copy number gain, the second layer 
indicates copy number loss, and the red height indicates variation frequency. (B) The correlation distribution 
between lncRNA expressions and copy number variation (CNAs), grey represents the distribution under 
random conditions, orange represents the distribution under actual conditions. (C) The lncRNAs located in the 
focal CNA peaks. False-discovery rates and scores from GISTIC 2.0 for alterations (x-axis) are plotted against 
genome positions (y-axis); dotted lines indicate the centromeres. The losses (right, blue) and gains (left, red) of 
lncRNAs genes are also shown. (D) Heatmap of CNA in lncRNA. Blue dot indicates loss, red dot indicates gain, 
and white dot indicates no variation.
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The prognostic capacity of the lncRNA signature was also evaluated in training, testing, validation sets, and 
the patients in the High_risk group had a poorer prognosis than those in the Low_risk group (Fig. 5B–D). The 
AUCs at 1-, 3- and 5-year survival time were all approximately 0.7 (Fig. 5B–D). In addition, patients with high 
expression of F11-AS1 and TMEM220-AS1 had a favorable prognosis, whereas high expression of LOC339803 
and PCAT2 indicated poor prognosis (Fig. 6).

Construction of the nomogram. After the univariate Cox regression analysis was carried out, Risk-
Group, AJCC_PATHOLOGIC_TUMOR_STAGE, NEW_TUMOR_EVENT_AFTER_INITIAL_TREATMENT 
were identified with P < 0.05 (Fig. 7A), and these characteristics were used to build a nomogram (Fig. 7B). The 
calibration curves were matched to actual 1-, 3-, and 5-year survival (Fig. 7C).

Clinical characteristics. The distribution of each clinical characteristic in the High_ and Low_risk groups 
was statistically explored, and the results showed significant differences in Pathologic-T, Pathologic-stage, 
Grade, Vascular invasion between the Low_ and High_risk groups (Table 4). In addition, the High_risk group 
presented more cluster1 samples (Supplementary Fig. 3), which might explain the poor prognosis of patients in 
the High_risk group.

Tumor immune microenvironment. As shown in Fig. 8A, ten immune cells, including memory B cells, 
regulatory T cells (Tregs), and M0 macrophages, showed obvious differences between the Low_ and High_risk 
groups. There were also statistically significant differences in immune score, estimate score, and tumor purity 
between the Low_ and High_risk groups (Fig. 8B).

Drug sensitivity prediction. The IC50 of 138 drugs was quantified, and the differences between High_ 
and Low_risk groups were compared. In the case of 30 of these drugs (including Erlotinib, Lapatinib, and Gefi-
tinib), a significant difference in IC50 was found between the two groups (Supplementary Fig. 4; Table 5), sug-
gesting that the High_risk group may be more resistant to these drugs.

Identification of enriched lncRNA modules. The WGCNA package was employed to build a scale-free 
co-expression network, and the soft threshold power for matrix transformation was analyzed with the square 
of the related coefficient between log2k and log2p (k) being 0.85, and the power = 10 (Fig. 9A). For each mod-
ule, the minimum number of genes was set to 30, and the similarity was greater than 0.1. These modules were 
clustered, and the modules with correlation coefficients greater than 0.8 were merged, yielding a total of seven 
modules (Fig. 9B). The two lncRNAs were clustered into a gray module, and the other two lncRNAs, TMEM220-
AS1 (blue module) and F11-AS1 (brown module), were further analyzed. The enrichment analysis showed that 
the blue module was enriched in 487 GO-BP terms and 19 KEGG pathways (including cell cycle, p53 signaling 
pathway, DNA replication), and the brown module was enriched in 168 GO-BP terms and 15 KEGG pathways 
(including non-alcoholic fatty liver disease, fatty acid degradation, etc.) (Fig. 9C,D).

Discussion
CNAs have important functions in tumor  progression21. In the present study, iClusterPlus was utilized for cluster 
analysis based on mRNA expression, methylation, CNA data, and iClusterplus, which can decrease the dimen-
sion of a dataset without altering the sample size. The results showed that two subtypes, cluster1 and cluster2, 
were identified. Cluster2 had the most favorable prognosis, and the CNA frequency of lncRNAs in cluster1 was 
higher than that in cluster2, which suggests that CNA-related lncRNAs were correlated with the prognosis of 
patients with liver cancer. Moreover, TP53 and CTNNB1 were common high-frequency mutated genes in both 
subtypes. In cancer, TP53 is the most frequently mutated gene, and more than 50% of human tumors carry TP53 
gene mutations, including liver  cancer22–24. Mutations in CTNNB1 have been implicated in the pathogenesis of 

Table 3.  Univariate Cox regression results.

LncRNA HR Lower.95 Upper.95 P value

TMEM220-AS1 0.475 0.326 0.691 1.039E−04

LOC101927151 1.814 1.256 2.619 1.498E−03

SNHG16 1.702 1.176 2.464 4.806E−03

LOC339803 1.685 1.169 2.430 5.206E−03

F11-AS1 0.598 0.414 0.863 5.972E−03

SVIL-AS1 1.654 1.151 2.377 6.547E−03

UBR5-AS1 1.621 1.122 2.340 1.003E−02

RAB11B-AS1 0.636 0.443 0.914 1.456E−02

TSTD3 1.568 1.091 2.254 1.509E−02

ZFAS1 1.516 1.055 2.179 2.460E−02

PCAT2 1.475 1.026 2.121 3.576E−02

LOC101929147 1.462 1.017 2.102 4.009E−02



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14261  | https://doi.org/10.1038/s41598-022-17927-0

www.nature.com/scientificreports/

liver  cancer25. These results indicate that subtype classification might help evaluate the prognosis of patients 
with liver cancer and have specific regulatory relationships at the level of transcription, genome, and epigenome.

Figure 5.  Identification of lncRNA prognostic markers with abnormal copy number and establishment of 
lncRNA signature. (A) LASSO Cox regression analysis. The left vertical line in the plot shows the CV-error 
curve hits its minimum. The right vertical line shows the most regularized model with CV-error within 1 
standard deviation of the minimum. Kaplan–Meier survival analysis, plots of risk scores distribution, time-
dependent receiver operating characteristic (ROC) analysis for the (B) training set, (C) testing set, and (D) 
validation set.
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Zheng et al. aimed to screen prognostic biomarkers of lncRNA associated with CNA in ovarian  cancer26, 
however, prognostic biomarkers of four lncRNAs associated with CNA were screened after LASSO Cox regression 
analysis in this study, containing LOC339803, F11-AS1, PCAT2, and TMEM220-AS1, and these four lncRNAs 
were further used to build the CNA-related lncRNA prognostic model for liver cancer. The patients in High_risk 
group had a poorer prognosis than patients in Low_risk group in all sets. The AUCs at 1-, 3-, and 5-year survival 
times in all sets were all approximately 0.7, suggesting that the performance of the lncRNA signature was reliable. 
In addition, patients with high expression of F11-AS1 and TMEM220-AS1 had a favorable prognosis, whereas 
high expression of LOC339803 and PCAT2 was associated with poor prognosis. Du et al. found that lncRNA 
F11-AS1 regulates PTEN expression by competitive binding with miR-3146 and inhibits the progression of liver 
hepatocellular carcinoma, and F11-AS1 may be used as a therapeutic target for liver hepatocellular  carcinoma27. 
Cao et al. revealed that TMEM220-AS1 inhibits hepatocellular carcinoma by regulating the miR-484/MAGI1 
 axis28. Xue et al. documented that lncRNA LOC339803 facilitates the invasion and migration of hepatocellular 
carcinoma cells by acting as a ceRNA of miR-30a-5p29. Han et al. implied that PCAT2 plays a vital role in pros-
tate  cancer30. Our results are consistent with those reported above. However, few studies have reported PCAT2 
expression in liver cancer. In addition, enrichment analysis showed that TMEM220-AS1 is involved in the cell 
cycle, DNA replication pathways, p53 signaling pathway, etc., and F11-AS1 is involved in non-alcoholic fatty liver 
disease, fatty acid degradation pathways, etc. The cell cycle is a complex process that is regulated by a variety of 
proteins at multiple levels, and the cell cycle pathway plays a crucial role in  tumorigenesis31. Studies have reported 
that the p53 signaling pathway plays a vital role in the regulation of tumor  progression32–34.

DNA replication is a basic biological process, in this process, disorder can lead to genomic instability, which 
is a hallmark of  cancer35. Non-alcoholic fatty liver disease can develop into cirrhosis via fibrosis and can be 

Figure 6.  Kaplan–Meier survival analysis of four lncRNAs in the signature.
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complicated by hepatocellular  carcinoma36,37. As fatty acids are essential for cancer cell proliferation, fatty acid 
degradation could provide a therapeutic  strategy38. Thus, LOC339803, F11-AS1, PCAT2, and TMEM220-AS1 
might have vital functions in the pathogenesis of liver cancer and could be used as prognostic markers for the 
cancer.

Because changes in the immune microenvironment have a profound effect on the progression of liver  cancer39, 
the immune microenvironment changes were analyzed using the ESTIMATE algorithm and CIBERSORT. The 
results revealed that ten immune cells, and the immune, estimate scores, and tumor purity had obvious differ-
ences between Low- and High_risk groups. It has been reported that in hepatocellular carcinoma, regulatory T 
cells (Tregs) and exhausted CD8 T cells are increased and may clonally  expand40. In patients with liver cancer, 
tumor-associated macrophages (TAMs) are regularly increased through immunohistochemical  staining41. Rohr-
Udilova et al. found that resting mast cells in hepatocellular carcinoma were increased when compared to healthy 
 livers42. In addition, high immune and estimate scores are correlated with clinicopathological characteristics and 
poor prognosis in  cancer43. In addition, statistically significant differences in IC50 of 30 drugs were found when 
Low- and High_risk groups were compared, among these drugs were Erlotinib, Lapatinib, Gefitinib, etc. These 
results revealed that these CNA-related lncRNA signatures might better predict the survival of patients with liver 
cancer, and these ten immune cells are related to the progression of liver cancer.

However, this study had some limitations. First, the data analyzed were downloaded from public databases, 
and external validation was required to show the utility of lncRNAs related signatures. Second, the fold-change 
was not calculated in the drug sensitivity prediction anlaysis dut to no quantized value that can represent resistant 
or sensitive, and further research should be conducted. Besides, the lncRNAs from which short peptide are tran-
scribed should be considered in this study. In addition, the immune cell proportion was estimated using only the 
CIBERSORT algorithm, further relevant experiments should be carried out to verify this. Moreover, that’s would 
be better if there were more relevant experiments to validate the biomarkers and pathways identified in this study.

Conclusion
In summary, a CNA-related lncRNA prognostic signature, which is closely correlated with the immune microen-
vironment, was constructed in this study. This signature is likely to improve the accuracy of liver cancer prognosis 
and provide insights into predictive biomarkers or potential targets for patients with liver cancer.

Materials and methods
Data collection and processing. The gene expression RNA-seq (log2(fpkm + 1)) data of GDC TCGA 
LIHC were downloaded from the UCSC Xene platform (https:// xenab rowser. net/)44, and the genes with expres-
sion less than 1 in more than half of the samples were filtered out. Those genes with “protein_coding” annotation 
(based on the downloaded gene annotation file in GENCODE V22 version) were reserved as mRNA, and the 
genes with “antisense,” “sense_intronic,” and “lincRNA”, etc., annotation information were reserved as lncRNA. 
In addition, the CNA (cna_hg19.seg; https:// cbiop ortal- datah ub. s3. amazo naws. com/ lihc_ tcga. tar. gz; Affymetrix 
SNP 6.0 array), 450k methylation (gene level methylation values, and the probe with the most obvious negative 
correlation with the gene was selected as the methylation value of the gene, so that each gene has a methylation 
level value), and clinical and survival information in the TCGA database were obtained from the cBioportal 

Figure 7.  Univariate and multivariate Cox analysis of the signature combined clinical features and construction 
of the nomogram. (A) Forest characteristics of clinical features and risk score using univariate and multivariate 
Cox analysis. (B) Construction of the nomogram. For each patient, three lines are drawn upward to determine 
the points received from the three predictors (RiskGroup, AJCC_PATHOLOGIC_TUMOR_STAGE, and NEW_
TUMOR_EVENT_AFTER_INITIAL_TREATMENT) in the nomogram. The nomogram is applied by adding 
up the points identified on the points scale for each variable to a total points amount. The sum of these points is 
located on the ‘Total Points’ axis. Finally, beneath the total points, the probability of 1-, 3-, 5-year overall survival 
is projected on the bottom scales. (C) The calibration plot for validation of the nomogram. The Y-axis represents 
actual survival, and the X-axis represents nomogram-predicted survival.

https://xenabrowser.net/
https://cbioportal-datahub.s3.amazonaws.com/lihc_tcga.tar.gz
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Characteristics total cases N of case 335

Riskgroup

P valueLow_risk High_risk

Age (years)

 < 65 200 100 100
0.440

 ≥ 65 135 67 68

Gender

Male 230 118 112
0.503

Female 105 49 56

Pathologic M

M0 238 119 119

1.000M1 3 1 2

MX 94 47 47

Pathologic N

N0 236 114 122

0.183N1 2 0 2

NX/NA 97 53 44

Pathologic T

T1 166 96 70

0.015

T2 84 36 48

T3 70 27 43

T4 12 5 7

TX/NA 3 3 0

Pathologic stage

Stage I 159 91 68

0.038

Stage II 77 35 42

Stage III 75 28 47

Stage IV 3 1 2

NA 21 12 9

Grade

G1 50 34 16

0.004

G2 158 78 80

G3 110 49 61

G4 12 2 10

NA 5 4 1

Height 167.7 ± 9.1 168 ± 8.7 167.5 ± 9.5 0.665

Weight 73.1 ± 19.1 74.2 ± 19.1 72.1 ± 19.2 0.321

Ethnicity

Hispanic or Latino 15 5 10

0.382Not Hispanic or Latino 304 153 151

NA 16 9 7

History other malignancy

Yes 30 19 11
0.175

No 305 148 157

Family history of cancer

Yes 102 53 49

0.705No 190 91 99

NA 43 23 20

History hepato carcinoma risk factors

Yes 238 120 118

0.747No 80 38 42

NA 17 9 8

Vascular invasion

Yes 100 48 52

0.032No 184 102 82

NA 51 17 34

New tumor event after initial treatment

Continued
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website (http:// cbiop ortal. org)45. The samples corresponding to RNA-seq, CNA, 450K methylation, and clinical 
survival information (OS and OS.time) were matched one by one, and the samples with these data were retained. 
As a result of these screenings, a total of 335 samples meeting the requirements were obtained; the clinical fea-
tures of these samples are shown in Table 4.

Screening of prognostic molecular subtype. Based on the mRNA expression, 450k methylation, 
CNA, and survival information of the 335 samples, the FsbyCox function in the CancerSubtypes  package46 
was employed to perform the univariate Cox regression analysis, and the prognostic-related characteristics of 
mRNA, methylation gene, and CNA region were acquired with the cutoff value of P < 0.05. Cluster analysis was 
then carried out using  iClusterPlus47 in R software package, and the parameter was set as K = 1:6 in order to 
select the best number of clusters. Combined with the sample survival information, the log-rank test was con-
ducted, and the classification results with the lowest P value were selected to determine the molecular subtypes. 
To verify the classification results, principal component analysis (PCA) and hierarchical clustering analysis were 
performed.

Tumor mutation analysis. The somatic mutation file processed using Mutect software was obtained from 
the TCGA  database48. The oncoplot function in  maftools49 R package was employed to draw the waterfall of the 
top10 mutated genes with a high mutation frequency. The mutation frequency of each gene in different subtypes 
was calculated, and the differences were compared using the Chi-square test.

Differential expression analysis. The linear regression and empirical Bayesian methods offered in the 
limma  package50 in R software were utilized to conduct differential expression analysis, and the P values were 
adjusted using the Benjamini & Hochberg method for multiple comparisons. The DEmRNA and DElncRNA 
were screened with a cutoff value of P < 0.05 and |log2FC|> 0.263 owing to acquiring more DElncRNA for sub-
sequent analysis.

Genomic copy number anomalies and their association to lncRNAs. The GISTIC 2.0  tool51 was 
used to define CNA extracted from the TCGA-LIHC dataset with a cutoff value of gain /loss threshold > 0.1 and 
Q < 0.25 (When using GISTIC2 to the detect significantly gain or loss genomic regions in a group of samples, the 
integration of all results of gistic can be obtained, including gain and loss regions, and the samples of gain or loss 
in each region and the Q value in the peak region are acquired). Copy numbers ≥ 1 or ≤ −1 were considered gain 
and loss, respectively. The variant frequency of lncRNAs in samples was calculated, and the copy number gain 
and loss distribution of lncRNA in the genome were analyzed using the Rcircos  tool52. Samples with lncRNA 
expression profiles were chosen, and Pearson correlation coefficients between CNA and lncRNA expression were 
analyzed. In addition, the differences of the expression of lncRNA with CNA frequency > 75% between normal, 
copy loss, and gain samples were compared using Kruskal–Wallis test.

Screening lncRNA prognostic markers with CNA and construction of lncRNA signature. First, 
the lncRNAs that met the following criteria were considered as candidate lncRNAs: CNA frequency > 5%, a 
significant positive correlation between CNA and expression (correlation coefficient > 0.3 and P < 0.05), and 
DE between different subtypes. Univariate Cox regression analysis was then performed to identify prognostic-
related lncRNAs using the Survminer package (P < 0.05)53. In addition, the samples in the TCGA database were 
categorized into training set (n = 234) and testing set (n = 101) based on 7:3, and the whole sample dataset was 
used as the validation set (n = 335). In the training set, the LASSO Cox regression analysis was performed using 
the glmnet  package54, and a 20-fold cross-validation was utilized to build the lncRNA signature. The risk score 
was analyzed using the following formula: Risk score = βlncRNA1 ×  exprlncRNA1 + βlncRNA2 ×  exprlncRNA2 + … + βlncRNAn 
×  exprlncRNAn (β represents the regression coefficient of lncRNAs, and expr represents the lncRNA expression 
level). The samples were then categorized into High_ and Low_risk groups based on the median risk score. 
Kaplan–Meier survival curve analysis was then conducted. In addition, the model was validated in the testing 
and validation sets. To verify the prognostic performance of the lncRNA signature, receiver operating character-
istic (ROC) analysis was carried out in three sets using the survivalROC  package55.

Development of the nomogram. Nomogram is a method to display the results of the signature intui-
tively and effectively, and is conveniently applied in the prediction of the outcome. It uses the length of the line 
to represent the different variables, thereby exhibiting the effect of different variable values on the outcome. 
To test whether the Riskscore model was an independent prognostic factor, univariate and multivariate Cox 

Table 4.  Clinical features of the dataset.

Characteristics total cases N of case 335

Riskgroup

P valueLow_risk High_risk

Yes 92 47 45

0.056No 154 85 69

NA 89 35 54

http://cbioportal.org
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regression analyses were carried out on RiskGroup and clinical characteristics, including AGE, AJCC_PATHO-
LOGIC_TUMOR_STAGE, and GRADE, and the characteristics with P < 0.05, were used to build a nomogram. 
The nomogram was validated by assessing the discrimination and calibration. To be clear, the calibration curve 
of the nomogram was plotted to observe the nomogram prediction probabilities against the observed rates.

Figure 8.  Tumor immune microenvironment. (A) The difference of tumor-infiltrating immune cells between 
risk groups. (B) The difference of immune score, stromal score, estimate score and tumor purity between risk 
groups. The stars in the boxplots represent mean value.
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Clinical characteristics. The distribution of each clinical characteristic in High_ and Low_risk groups was 
statistically explored, and the differences were compared using the Chi-square test. In addition, the distribution 
of subtype samples between the High_ and Low_risk groups was evaluated.

Tumor immune microenvironment. Stromal, immune, estimated scores, and tumor purity were evalu-
ated using the ESTIMATE  algorithm56. In addition,  CIBERSORT57 was employed to evaluate the fractions of 
22 tumor-infiltrating immune cells, and the differences in stromal score, immune score, estimate score, tumor 
purity, and fractions of 22 tumor-infiltrating immune cells were analyzed using the Wilcox test.

Drug sensitivity prediction. The Genomics of Drug Sensitivity in Cancer (GDSC)  database58 was utilized 
to assess the sensitivity of patients in High_ and Low_risk groups to chemotherapy drugs. The IC50 of 138 drugs 
was calculated using the pRRophetic  algorithm59 in R, and the differences were compared using the t-test.

Identification of enriched lncRNA modules by WGCNA. The WGCNA  package28 was employed to 
build a scale-free co-expression network based on the combined expression profiles of DEmRNAs and lncRNAs 
in the prognostic model, and the highly covarying gene set modules were identified. The mRNA in the same 
module serves as a potential lncRNA target gene. Enrichment analysis was conducted on the mRNA in the mod-
ules using  clusterprofiler60, with the parameters of pAdjustMethod = “BH” and P < 0.05.

Table 5.  The IC50 of 30 drugs.

Drug P value

GW.441756 2.32E−15

Erlotinib 2.57E−13

CCT007093 3.33E−13

BMS.708163 2.71E−12

Lapatinib 5.77E−11

Gefitinib 1.38E−09

AMG.706 9.53E−09

Imatinib 1.52E−07

Nutlin.3a 4.16E−07

PD.0332991 4.75E−07

Roscovitine 9.33E−07

AZD.0530 1.14E−06

KIN001.135 1.90E−06

Bicalutamide 6.27E−05

Axitinib 0.000353

AZD6244 0.000508

EHT.1864 0.000775

Metformin 0.000964

LFM.A13 0.001183

WO2009093972 0.001322

PD.0325901 0.001619

GNF.2 0.001878

AKT.inhibitor.VIII 0.003844

MG.132 0.00448

DMOG 0.004832

OSI.906 0.010286

Bryostatin.1 0.012467

CI.1040 0.016188

VX.702 0.029052

PF.02341066 0.03113
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Data availability
(1) The gene expression RNA-seq (log2(fpkm + 1)) data of GDC TCGA LIHC were downloaded from the UCSC 
Xene platform (https:// xenab rowser. net/). (2) Clinical and survival information in the TCGA database were 
obtained from the cBioportal website (http:// cbiop ortal. org).
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