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Abstract

Multiple Myeloma (MM) is a plasma cell malignancy with significantly greater incidence and

mortality rates among African Americans (AA) compared to Caucasians (CA). The overall

goal of this study is to elucidate differences in molecular alterations in MM as a function of

self-reported race and genetic ancestry. Our study utilized somatic whole exome, RNA-

sequencing, and correlated clinical data from 718 MM patients from the Multiple Myeloma

Research Foundation CoMMpass study Interim Analysis 9. Somatic mutational analyses

based upon self-reported race corrected for ancestry revealed significant differences in

mutation frequency between groups. Of interest, BCL7A, BRWD3, and AUTS2 demonstrate

significantly higher mutation frequencies among AA cases. These genes are all involved in

translocations in B-cell malignancies. Moreover, we detected a significant difference in

mutation frequency of TP53 and IRF4 with frequencies higher among CA cases. Our study

provides rationale for interrogating diverse tumor cohorts to best understand tumor geno-

mics across populations.

Author summary

This study represents the largest comprehensive molecular analysis of ethnically defined

newly diagnosed treatment naïve Multiple Myeloma (MM). We revealed significant dif-

ferences in mutation frequencies for important cancer genes between AA and CA MM.

This study provides support for interrogating diverse tumor cohorts to best understand

tumor genomics across populations.
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Introduction

Multiple Myeloma (MM) is a malignancy of plasma cells provoked by immunoglobulin gene

rearrangements, accounting for slightly more than 10% of all hematologic cancer diagnoses in

the US [1–3]. Pathogenesis evolves from an asymptomatic premalignant stage of clonal plasma

cell proliferation termed “monoclonal gammopathy of undetermined significance” (MGUS)

[4, 5]. MGUS is present in more than 3% of the population above the age of 50 and progresses

to MM, or related malignancy at a rate of 1% per year [2, 6]. High-levels of pathogenic hetero-

geneity in MM among distinct racial/ethnic distributions have been outlined by epidemiology

[7]. For instance, African American (AA) patients matched for socioeconomics, age, and gen-

der are three times more likely to be diagnosed with MM, and with death rates that double

those observed among Caucasians (CA) [4, 8, 9]. In addition, reports have shown that AA

have decreased frequency of IgM monoclonal gammopathy, and have an earlier age of onset

compared to CA patients [4, 8, 10]. However, over the past decade there were effective im-

provements in treatments and disease management that contributed to an astonishing increase

in overall survival for MM, but these improvements were observed predominantly in CA

patients [10, 11]. Therefore, a deeper understanding of oncogenic processes driving MM path-

ogenesis in statistically powered multi-ethnic cohorts is still needed to addressing disparities in

incidence and outcomes observed among AA or otherwise African descent patients.

Several previous profiling studies have provided a view of the somatic landscape of MM

[12, 13]. However, the representation of tumors from AA has been critically limited. To date,

only one study has been reported comparing the frequencies of molecular alterations in MM

between AA and CA cases [14]. This study revealed lower frequencies of IgH translocations by

Fluorescence In Situ Hybridization among AA [14]. Although seminal, the small sample size

of tumors from AA, lack of coding mutation data, and incomplete access to clinical data repre-

sented limitations of this study [14].

Recently, a comprehensive longitudinal study (CoMMpass) was initiated with the overall

goal to prospectively observe the natural history of MM through comprehensively profiling

1,000 MM cases at diagnosis, with multiple biological and clinical follow-up points throughout

the course of clinical management. Genomic profiling includes whole exome sequencing of

germline and MM tumors, low pass whole genome sequencing, and RNA sequencing of

tumors. Data are publicly distributed as Interim Analyses throughout the course of the study.

Interim Analysis 9 (IA9) includes whole exome sequencing (WES) data from bone marrow

tumor extracts with matching normal from 796 newly diagnosed MM cases. Patient ethnicity

was one of the demographic parameters collected for each patient that included self-identifica-

tion categories for African American, Caucasian, Asian, Hispanic, Middle Eastern, Other,

Declined, and Unknown. This enabled us to perform genomic analyses to assess potential

somatic differences from tumors based upon self-reported race. Alternatively, genetic ancestry

is characterized by population genetic informative markers derived from allele frequencies of

single nucleotide variances across biogeographical distributions [15] and is another way to

characterize populations and individuals. The strength of genetic ancestry is that it offers in-

formation on ancestral genetic contributions based upon percent admixture within a given

individual. While genetic ancestry provides molecular information with direct biological

implications within the context of a disease [16, 17], we cannot disregard the importance of

self-reporting that is influenced by socio-environmental behaviors that also play a critical role

in disease risk. Most MM studies to date have been based upon self-reported race information.

However, the availability of self-reported race and WES data from CoMMpass IA9 provided

the unprecedented opportunity to search for novel and statistically significant somatic alter-

ations relative to ancestrally-defined population differences in MM cases.
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Results

CoMMpass IA9 data metrics

For this study, we utilized a subset of the CoMMpass IA9 dataset comprised of high quality

WES and RNA-seq data from 721 newly diagnosed MM patients that were self-reported as

either AA (N = 128) or CA (N = 593) with longitudinal clinical follow-up (S1 Table). For the

CoMMpass study, MM tumor specimens were enriched from bone marrow aspirates by

CD138 antibody conjugation yielding on average 99% CD138+ plasma tumor cell purity.

Genomic data utilized for the downstream analysis for this study includes matching germline-

tumor WES data on 718 MM cases (S1 Table). Sequencing statistics are provided in (S2 Table).

For WES data, we achieved a mean coverage of 124X for MM tumor samples and 126X for

germline samples. The average percentage of reads mapping to the WES target regions at 30X

was 93% for tumor samples and 94% for germline samples. For RNA-seq, we generated an

average of 200 million read pairs per sample with 88% mapping on average to annotated gene

regions.

Characterization of CoMMpass IA9 cases by genetic ancestry

To delineate genetic ancestry, we used a population stratification principal component analysis

(PCA) to cluster MM patients by extracting 4,761 Ancestry Informative Markers (AIMs) SNP

genotypes derived from germline WES CoMMpass IA9 data (Fig 1A). This allowed us to assess

the distribution of genetic ancestry for CoMMpass cases [18]. We also utilized STRUCTURE

[19] to determine individual percent ancestry for each CoMMpass case (Fig 1B, S1 Table).

Analysis of individual ancestry data revealed that two self-reported CA had greater than 55%

African ancestry and one self-reported African American had 99.9% European ancestry (Fig

1A, red circles, S1 Table). These three cases were excluded from our analyses. This resulted in

a total of 127 African American and 591 Caucasians that were used for all downstream analy-

ses. The mean European admixture among self-reported AA was 31% (range; 11%–67.8%).

The mean west African admixture among self-reported CA was 0.1% (range; 0–34.3).

Analysis of demographics data stratified by race confirmed the previously reported finding

by Waxman et al. [10] of a significant (p = 0.004; Fisher’s) two-fold increase in early age of

onset (40–49 years) of MM among AA cases (11%) compared to CA cases (4.6%) (Fig 2A, S3

Table). In addition, there was a reverse effect in later ages of onset (70–79 years) with signifi-

cantly higher frequency (p = 0.04; Fisher’s) in CA (22%) compared to AA (14%) (Fig 2A, S3

Table). Interestingly, our data showed no significant difference in overall survival based upon,

race, age of onset, and MM karyotype in this cohort of similarly treated MM cases (Fig 2A and

2B, S1 Fig).

Comparison of somatic mutation profiles between AA and CA MM cases

Somatic mutational analysis of the WES data was performed using a modified Mutation Sig-

nificance (MutSig CV) algorithm [20] with custom scripts designed to detect differentially

mutated genes between AA and CA MM tumors (Fig 3). We did not detect a statistically signif-

icant difference in mean nonsynonymous mutation frequencies between AA (mean = 63) and

CA (mean = 68) MM cases (p = 0.574) (S3A Fig). Furthermore, there was no difference in the

mutational signature between AA and CA MM cases (S3B Fig). Somatic mutational analysis

across the entire cohort confirmed common mutated MM driver genes such as KRAS,NRAS,

BRAF,TP53,DIS3, and FAM46C (Fig 3, S4 Table) [12, 13, 21]. Our comparison of mutated

genes between tumors from AA and CA cases identified RYR1, RPL10, PTCHD3,BCL7A,

SPEF2,MYH13,ABI3BP, BRWD3, GRM7,AUTS2, PARP4, PLD1, ANKRD26,DDX17 and
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STXBP4 as genes with significantly higher mutation frequencies in AA MM cases (Fig 3, S4

Table). FAM46C, which is commonly mutated in MM, also exhibited a trend toward higher

frequency in AA (12.6%) versus CA (8.3%) MM, however the difference did not reach statisti-

cal significance (p = 0.09). In addition, we further examined differences in BRAF mutation fre-

quency between AA and CA cases. Although we did not detect a difference in overall BRAF

mutation frequency, we did observe a difference in BRAFV600E mutation between AA (0.8%)

versus CA (4.34%), but this difference did not reach nonimnal significance (p = 0.053; Fisher’s)

(S1 Table).

Among the most interesting observations of our mutational analysis was the significantly

higher frequency of IRF4 (p = 0.041) and TP53 (p = 0.035) mutations in CA MM cases (Fig 3,

S4 Table). Specifically, this analysis revealed a TP53 somatic mutation frequency of 6.3% in the

CA MM cases compared to 1.6% in AA MM cases (p = 0.035) (Fig 3, Table 1, S2 Fig, S4 Table).

To verify our observation, we used an independent publically available MM somatic whole

exome sequencing dataset consisting of 205 MM cases as a validation cohort published by

Lohr et al (S5 Table) [13]. This dataset consisted of a mix of newly diagnosed and relapse MM

specimens. Although there were only 14 self-reported AA MM cases within this validation

Fig 1. Population stratification by principal component analysis and STRUCTURE plot defining propositions of calculated genetic ancestry.

(A) Principal component plot across all samples by self-reported race with Caucasian (blue dots) and African American (green dots) using AIMs derived

from the whole-exome deep sequencing. The red circles indicate samples that have been removed from the analysis due to misclustering. PCA is

calculated using SNP & Variation Suite v8.4.1 (Golden Helix, Inc.) PCA tool by eigenvalue (EV) implementation technique (Methadology). These samples

were identified as the self-reported race. (B) STRUCTURE plot (K = 2; 50,000 Burnin period and 100,000 MCMC repeats) used to interfere genetic

clusters and percent admixture: European Ancestry (red), African Ancestry (green).

https://doi.org/10.1371/journal.pgen.1007087.g001
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Fig 2. Overall survival of patients based upon age of MM onset and race. (A) Kaplan-Meier analysis with long-rank test

for overall survival data from CoMMpass IA9 cases stratified by the impact of the early or late onset of MM. The data in the

black box demonstrate the distribution of onset across the IA9 data set. The early (term used to label onset between 40–49

years), and late (term used to label onset between 70–79 years) that were significantly different using Fisher’s exact test

between the stratified populations. Samples size also summarized in supplemental table (S3 Table) is as following: 25–39

[AA (4/127) vs CA (10/591)], 40–49 [AA (14/127) vs CA (27/591)], 50–59 [AA (27/127) vs CA (145/591)], 60–69 [AA (49/127)

vs CA (224/591)], 70–79 [AA (118/127) vs CA (132/591)], 80–89 [AA (14/127) vs CA (48/591)], 90–99 [AA (1/127) vs CA (5/

591)]. (B) Kaplan-Meier analysis with long-rank test for overall survival data from CoMMpass IA9 impact of incidents of MM

by race-matched-ancestry.

https://doi.org/10.1371/journal.pgen.1007087.g002
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Fig 3. Frequencies of recurrently mutated genes in human MM. (Top) The total number of acquired nonsilent somatic mutations across 127 tumors

from African American patients. Percent ancestry track is indicating the distribution of genetic ancestry among each sample. (Center) mutations across

recurrent genes among African American patients colored by mutation type. (Left) Mutation significance analysis was performed using MutSigCV

(Methods) on two cohorts African American (n = 127) and Caucasian (n = 591) independently. For each analysis, significance was determined using
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cohort, we observed differences in TP53 coding mutations compared between CA (14/157;

8.9%) and AA (0/14; 0%), providing an independent validation, albeit with limited power.

Given the significantly higher TP53mutation rate among CA MM cases prompted us to assess

the distribution of TP53mutation status as a function of European ancestry. The analysis dem-

onstrated that TP53mutations were strongly associated with MM cases that have high Euro-

pean ancestry (>95%) (p = 0.01; Wilcoxon rank-sum test) (Fig 4).

Comparison of somatic copy number changes between AA and CA MM

cases

To uncover potential racial or ancestry differences in copy number events across CoMMpass

IA9 WES data, we utilized GISTIC 2.0 analysis [20, 22]. This analysis identified several regions

of the genome associated with common copy number gain and loss (S4 Fig, S6 Table). How-

ever, we did not detect any statistically significant differences in specific focal copy number

events between AA and CA cases. However, to further expand upon our understanding of

TP53 loss based upon mutational analysis data, an integrated somatic copy number and muta-

tional analysis of the TP53 locus was performed. This analysis revealed a predominance of bi-

allelic TP53 events among CA MM cases (Table 1), however the difference was not statistically

significant. Furthermore, integration of genomic data with clinical outcomes demonstrated

that CoMMpass cases with tumors harboring bi-allelic perturbation in TP53 have significantly

(p = 0.027; Mental-Cox Log-rank test) poorer overall survival (Fig 5). However, there is no dif-

ference in overall survival in MM patients with tumors demonstrating mono-allelic events

(loss of copy, or mutation only) and wild type TP53 (Fig 5).

Assessment of MM transcriptional signatures among MM derived from

AA and CA cases

We performed gene expression profile analysis of RNA-seq data to compare the frequency

of the University of Arkansas UAMC 70 gene high-risk signature between AA and CA MM

cases [23]. Comparison between African and European ancestry and by self-reported race fur-

ther sub-stratified by MM karyotype did not reveal a significant difference (p = 0.662) of the

UAMC high-risk signature consistent with our previous report from an independent data set

(Table 2) [14]. Further analysis of Ki67 proliferation index showed no significant difference

(p = 0.560) of Ki67 profile among patients stratified by race or ancestry (S5 Fig)

false discovery rate (q<0.1) with significant genes labeled as following: exclusive to African American (Δ) and Caucasian (r), or if the same gene is

identified by both analysis “Both” (ψ). (Left) Histogram depicting percent of alterations in each gene between African American (black) and Caucasian

(red) cohorts using the Fisher’s exact test with significance set at (blue; * = p<0.05) between the two stratified populations.

https://doi.org/10.1371/journal.pgen.1007087.g003

Table 1. TP53 mutation profile.

TP53 Aberration African-American Caucasian p-value (Fisher’s)

Wildtype 84.3% 83.1% 0.75

Mono-Alleic 9.4% 9.1% 0.91

Bi-Alleic 0.8% 4.1% 0.07

LOH 6.3% 8.6% 0.39

Mutation 1.6% 6.6% 0.03

LOH+Mutation 7.9% 15.2% 0.03

Wildtype (both TP53 alleles are normal); Mono-Allelic (somatic mutation or copy loss event); Bi-Allelic (somatic TP53 event in both alleles); LOH (loss of

heterozygosity only), Mutation (somatic mutation only); LOH+Mutation (combined loss of heterozygosity and mutations)

https://doi.org/10.1371/journal.pgen.1007087.t001
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Fig 4. Alteration of TP-53 across ancestry. Analysis of TP53 state across the percent European ancestry.

Each dot represents individual sample. To validate statistical power, we performed Mann-Witney, Wilcoxon,

and Unpaired t-test with Welch’s correction with statistical significance set at p<0.05.

https://doi.org/10.1371/journal.pgen.1007087.g004

Fig 5. Overall survival of patients based upon TP53 locus alterations. (A) Kaplan-Meier analysis with

long-rank test for overall survival data from CoMMpass IA9 cases stratified by mono-allelic (blue) versus bi-

allelic (red) alteration as well as wildtype (black) of the TP53 locus.

https://doi.org/10.1371/journal.pgen.1007087.g005
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Discussion

Not surprisingly, the vast majority of our current understanding of MM biology has been

derived from data collected from largely European descent cohorts, even given significant

disparities in disease incidence and outcomes seen among African American patients [10].

Through the analysis of CoMMpass data, we were able to analyze the largest multi-ethnic MM

cohort at diagnosis to date, in an attempt to elucidate in-depth molecular differences in tumors

derived from AA and CA cases to further understand the biological determinants of MM as a

function of tumors derived from an ancestrally defined dataset. First, the nature of the CoMM-

pass dataset has allowed us to confirm previously reported results of published clinical and

molecular studies of MM. Our study results were similar to previously reported data demon-

strating earlier disease onset in MM among African Americans [10]. Furthermore, several

MM genomics sequencing studies [12, 24, 25] have been reported in both newly diagnosed

and relapse MM and we have validated commonly mutated genes in MM such as KRAS,

NRAS, FAM46C, DIS3 and TP53.

Differences in mutation frequencies in genes such as RYR1, RPL10, PTCHD3, BCL7A,

SPEF2,MYH13,ABI3BP, BRWD3, GRM7,AUTS2, PARP4, PLD1, ANKRD26,DDX17 and
STXBP4 that were more common in AA MM cases could possibly reflect differences of myelo-

magenesis by race and/or ancestry. FAM46C is among the most commonly mutated genes in

MM based on several previously reported WES studies [12]. The reported FAM46C mutation

frequency in MM ranges from 5%-11% [13, 26], and although the frequency was 8.3% in Cau-

casian cases in our study, we observed an increased frequency of 12.6% in African American

cases in our study. Although the functional role of FAM46C in myelomagenesis is still yet to be

determined, there seems to be a potential enrichment of its role in MM biology among tumors

derived from patients of African ancestry.

BRAF mutations have also been reported in MM, generally at frequencies of 2.8%-5% [27–29].

Although overall BRAF mutation frequencies were not different between AA and CA, we did

detect differences when stratifying specifically by BRAFV600E, with higher frequencies seen in CA

(4%) as compared to AA (0.8%), although this differenece did not exceed nominal significance

due to limited power. Furthermore, we did not observe a difference in overall survival in primary

MM cases harboring any BRAF mutation, nor specifically BRAFV600E mutation compared to

BRAF wildtype cases (p = 0.439, p = 0.579; Long-rank, Gehan-Breslow-Wilcoxon). These results

are of clinical consequence as BRAF mutations, particularly BRAFV600E, can be targeted with

select BRAF inhibitors, which has shown effect in mutation positive MM cases [27, 29].

Three of the genes with significantly higher mutation frequency in AA are involved in other

B-cell malignancies. BCL7A has been shown to be directly involved in a three-way gene trans-

location with Myc and IgH in high-grade B-cell non-Hodgkin lymphoma cell lines [30]. As a

result of the gene translocation, the N-terminal region of the gene product is disrupted, which

is thought to be related to the pathogenesis of a subset of high-grade B cell non-Hodgkin lym-

phoma [30]. The protein encoded by BRWD3 is a bromodomain and WD repeat containing

protein that is thought to have chromatin-modifying function, and may play a role JAK/STAT

pathway activity [31]. Importantly, this gene is involved in translocations in B-cell chronic

lymphocytic leukemia [32]. Finally, AUTS2 is involved in translocations with PAX5 in B-cell

Table 2. Frequency analysis of Arkansas 70 high-risk genes expression profile.

Risk Groups Frequency AA (%) Frequency E A (%) p value (Fisher’s Exact)

Total 28 26 0.662

Hyperdiploid 20 20 0.999

Nonhyperdiploid 33 33 0.935

https://doi.org/10.1371/journal.pgen.1007087.t002
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precursor acute lymphoblastic leukemia and other cancers [33]. These findings are of consid-

erable interest, and further validation and functional characterization of these genes in appro-

priate myeloma model systems could shed light on their potential role in myelomagenesis

particularly in patients of African descent.

Another significant observation of our study was the difference in TP53mutation frequency

among patients with higher European admixture in our dataset. Integrated mutation and copy

number analysis demonstrated a trend towards higher TP53 bi-allelic inactivation in tumors

derived from CA cases. This could have translational significance as bi-allelic TP53 inactiva-

tion is a universally validated predictor of poor outcome [34]. We further detected significant

differences in IRF4mutation frequency, which was also higher among CA MM cases. IRF4 is a

credentialed MM oncogene, which is known to be an oncogenic fusion partner in MM, and is

also among the known significantly mutated genes in MM [35, 36]. Moreover, IRF4 activity is

associated with poor outcome, with potential therapeutic implications for immunomodulatory

agents in MM [37, 38]. These data suggest that the significant enrichment of IRF4mutations

in CA cases could have strong clinical translational implications. Although the collection of

longitudinal clinical data is ongoing for CoMMpass, one current limitation of this study is the

limited long-term follow-up data from IA9. However, the CoMMpass study design will allow

us to assess outcomes longitudinally, along with molecular profiles of both newly diagnosed

and relapse disease in upwards of 1,000 MM cases.

Ultimately, our study represents among the most comprehensive (WES and RNAseq) geno-

mics studies of a tumor type in patients of African descent, and sheds light on potential ances-

try-related differences in biological mechanisms of myelomagenesis. Three genes that are

known to be involved in B-cell malignancy translocations represent new candidate myeloma

genes that may have been overlooked because of the lack of AA cases in most large genomic

efforts. It is clear that there are molecular differences between MM tumors from AA and CA

cases, and that it is absolutely critical to continue to delineate these observations to better

improve clinical management of the disease. As the CoMMpass study matures, it will allow sci-

entists to validate these findings as well as expand on studies such as recurrence, better elucida-

tion of driving mutations, and clonal evolution during the course of treatment.

Materials and methods

Ethics statement

Samples were obtained under Multiple Myeloma Research Foundation (MMRF) CoMMpass

Study Network Institutional Review Board approved Informed Consent; Copernicus IRB (IRB

# QUI1-11-217).

CoMMPass study synopsis

The design of the study is to prospectively profile newly diagnosed, treatment naive MM from

1000 patients with longitudinal clinical follow up. Tumor specimens collected at diagnosis and

relapse are interrogated by whole-exome, modified low pass whole-genome, and or RNA

sequencing. The longitudinal component requires clinical follow-up of each patient with col-

lection of clinical parameters four times annually over a period of 10 years. Furthermore, each

patient participating into the study underwent an IMID and/or Proteasome inhibitor based

treatment regimen at diagnosis determined by the treating oncologist.

CoMMpass data are systematically analyzed and periodically released in the form of Interim

Analyses on a biannual basis. Interim Analysis 9 (IA9) is comprised of 796 unique baseline

newly diagnosed bone-marrow samples with high quality WES data of which, 75 have con-

firmed progression with comprehensive clinical annotation. In addition, IA9 is comprised of

Multiethnic molecular pathogenesis of Multiple Myeloma

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007087 November 22, 2017 10 / 18

https://doi.org/10.1371/journal.pgen.1007087


520 bone marrow baseline samples that were analyzed by both whole-exome and RNAseq plat-

forms. The data is publically available at dbGAP accession number phs000748.

In this study, we performed our analysis on whole-exome data from 741 of treatment-naïve

bone marrow derived MM matched normal samples from IA9, from those cases who self-

reported race as either African American or Caucasian. To ensure high quality WES data for

downstream copy number analysis, we removed samples that had maximum segmentation

count above 2,500 to be in concordance with GISTIC 2.0 recommendation of maximum seg-

ment counts [22]. This resulted in final 721 samples that passed the quality threshold and were

used to determine genetic ancestry across the samples.

Sample preparation

Bone marrow aspirates and peripheral blood samples were collected from each patient. Bone

marrow aspirates from each patient were subjected to immunomagnetic bead separation using

the Miltenyi MACS Cell Separation System (Miltenyi, San Diego, CA) to enrich for

CD138-positive malignant MM plasma cells. Only clinically eligible samples with greater than

250,000 cells recovered after CD138 enrichment, which are greater than 80% monoclonal light

chain restricted plasma cells move forward for nucleic acid extraction. Genomic DNA was

extracted from purified CD138-positive plasma cells (tumor) and matched peripheral blood

samples (constitutional) using QIAamp DNA Mini Kit (Qiagen). Total RNA was extracted

from CD138-positive plasma cells the using QiaAmp RNeasy Mini Kit (Qiagen). Nucleic acids

were quality assessed using the Qubit 2.0 (Thermo Fisher) and Agilent Tape Station to deter-

mine quantity and integrity. Samples were stored at -80˚C for subsequent molecular analyses.

Massively parallel sequencing of DNA and RNA from CoMMpass

specimens

DNA samples were used for two different assays including whole exome sequencing (WES)

and low pass long insert whole genome sequencing (WGS). WES was prioritized if material

was limiting. For WES, 50ng-250ng of genomic DNA was fragmented to an average size of

180bp in length using a Covaris focused-ultrasonicator (Covaris). An Illumina sequencing

technology compatible whole genome library was created using Kapa Biosystems Hyper Prep

Kits. These libraries were then subjected to whole exome target enrichment using Agilent Sur-

eSelect V5+UTR hybrid capture kits.

For RNA-sequencing, either 150ng or 500ng of total RNA was used to enrich for poly-ade-

nylated RNA molecules, which were subsequently fragmented to a target size of 180bp by heat

fragmentation. Fragmented molecules were then converted to cDNA using random primers

with Superscript II (Invitrogen). After second strand synthesis, the resulting molecules were

used for library prep using the Illumina TruSeqRNA library kit.

Massively parallel sequencing

Parallel sequencing of libraries was performed on Illumina HiSeq2000 or HiSeq2500 systems

using version 3 or version 4 chemistry. WES was sequenced using paired-end 83x83bp reads

while long-insert whole genome libraries were sequenced using paired-end 86x86bp reads. All

sequencing reads were converted to industry standard FASTQ files using BCL2FASTQ v1.8.4.

Bioinformatics analysis of massively parallel sequencing data alignments

FASTQ files are processed using a custom semi-automated pipeline based upon industry stan-

dard software packages and programs. Sequencing reads are initially aligned to the GRCh37
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human genome reference using v0.7.8 BWA-MEM aligner [39] to generate BAM files. SAM-

TOOLS v0.1.19 [40] was used to sort BAM files and PICARD v1.111 (http://broadinstitute.

github.io/picard/) to mark duplicate read pairs. Post alignment joint INDEL realignment and

base quality scores recalibration was performed on the BAM files using GATK v3.1–1 [41].

Variant detection and mutational analysis

For WES data, final BAM files for each patient’s constitutional and tumor data were used for

germline and somatic variant detection, respectively. Variants were called from germline and

tumor BAM files individually using GATK Haplotype Caller v3.1–1 [42] and SAMTOOLS

v0.1.19 [43]. Somatic mutations including single nucleotide variants SNVs and INDELs were

called using each patients germline and tumor BAMs by three independent software packages

including MUTECT [44], STRELKA [45], and SEURAT [46]. To make the final mutation list,

a mutation had to be detected by at least two out of three independent callers used.

Somatic copy number analysis was performed on WES germline-tumor pairs. For these

studies, we utilized the DNAcopy segmentation module in BioConductor [47]. We also uti-

lized a comparative germline-tumor copy number approach where by raw data was normal-

ized to physical coverage using circular binary segmentation as well as filtered to remove

repetitive regions prior to calculating log2 comparison across germline-tumor exome data.

Somatic events were assembled in VCF and MAF formats and further annotated using

SNPeff [48] to provide additional information on gene states and variant effects.

For RNA-sequencing analysis, we employed the TopHat v2.0.11 for alignment of RNA-seq

reads, CuffDiff v2.2.1 for differential expression analysis, and Salmon 0.7.2 for isoform quanti-

fication [49].

Secondary analysis of somatic alterations

Genotypes for germline variants with >98% detection across all samples with exome data,

and used for somatic analysis, were deduced using the SNP & Variation Suite v8.4.1 (Golden

Helix, Inc., Bozeman, MT, www.goldenhelix.com) genotype tool. Exome specific genome-

wide Ancestry Informative Markers (AIMs) were derived from Kosoy et al. [50], Price et al.

[51], Tandon et al. [52], and using informativeness estimation established by Rosenber et al.

[53]. Population stratification principal component analysis (PCA) was calculated using the

SNP & Variation Suite v8.4.1 (Golden Helix, Inc., Bozeman, MT, www.goldenhelix.com)

Genotype PCA tool that implements eigenvalue technique described by Patterson et al. 2006

[54] and Price et al. 2006 [51]. The genotype file containing AIMs was further formatted for

STRUCTURE analysis using plink and PGDSpider v2.1.0.3 [55]. STRUCTURE was per-

formed as described by Pritchard et al. [19] with set Burning period for each replicate at

50,000 with consecutive 100,000 iterations of MCMC repetitions. Each genetic cluster was

run with 3 independent replicates and the number of populations (K) was estimated by

implementing both L(K) and ΔK [19]. The reference populations used for the putative ances-

tral populations were derived from publically available 1000G Population Exome Phase1_v3

Genotypes [18].

The analysis to identify significant driver mutations from WES somatic mutation data was

performed using MUTSIG CV (Mutation Significance) algorithm [22] with adjusted covari-

ates file using myeloma specific expression profile with significance set at q<0.1 and p<0.05.

GISTIC 2.0 (The Genomic Identification of Significant Targets in Cancer) was applied to

define significantly altered somatic copy number focal events with q value cut off set at 0.25

[20, 22]. Mutation signatures were deduced using an industry standard publically available

analysis tool at https://bitbucket.org “analysis-of-mutational-signatures”.
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Genetic MM subgroups

Myeloma samples were further stratified by two subtypes: hyperdiploid or nonhyperdiploid.

Hyperdeploidy was defined by presence of trisomy of at least three odd-numbered chromo-

somes [14]. The rest of the samples were identified as nonhyperdiploid subtype.

High-Risk gene-expression signature

Gene expression profile was performed on RNA extracted from CD138+ plasma cells as

described above using HiSeq2500 sequencer (Illumina, Inc.). RNA-seq Sailfish TPM values

were log2 transformed prior to the analysis. To determine the high-risk score, we utilized the

UAMC 70-gene expression profile [23]. The high-risk expression signature was calculated and

reported as percent frequency across each ancestry and MM subtype.

Mutation signature

Mutation signature was deduced using all somatic point mutations except INDELs using a

publically available tool (https://bitbucket.org/jtr4v/analysis-of-mutational-signatures).

Statistical analysis

Each event between the stratified populations was analyzed appropriately either using the Fish-

er’s exact test [56], non-parametric Mann-Whitney-Wilcoxon when assumption of normality

is not maintained, and unpaired t-test with Welch’s correction when normal distribution is

assumed with unequal variances. Benjamin-Hochberg method [57] was used to adjust for mul-

tiple testing. Overall survival was inferred from the clinical follow-up data collection over the 4

years’ spam with estimations using Kaplan-Meier methods. The p-value of< 0.05 was set for

statistical significance. Statistical software packages used throughout the study were R v3.1.1.

(https://www.r-project.org) and GraphPad Prism 7 (GraphPad Software, Inc.).

Supporting information

S1 Fig. Overall survival by multiple myeloma karyotypes. Analysis was performed using

Kaplan-Meier method with long-rank test for group comparisons.

(TIF)

S2 Fig. Mutation distribution across TP53 protein structure. cBioPortal Mutation Mapper

tool as described by Gao et al. Sci. Signal. 2013 & Cerami et al. Cancer Discov. 2012 was applied

to generate the mutation profile across the TP53 domains with top representing mutation pro-

file among Caucasian, and bottom representing African American respectively.

(TIF)

S3 Fig. Somatic mutation frequency of significantly mutated genes in tumors from Afri-

can-American and Caucasian. (A) Comparison of nonsilent mutation frequency between

ancestry and self-reporting using Wilcoxon, Mann-Whitney, and Unpaired t-test to determine

statistical significance. (B) Mutation signature associated with African and European ancestry.

(TIF)

S4 Fig. GISTIC 2.0 plot. Differentially altered events indicated by arrows. The red graph indi-

cate copy number gains and blue is deletions for each stratified group.

(TIF)

S5 Fig. Expression profile. Ki67 expression profile in TPM across patients with MM.

(TIF)
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