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General and efficient approaches for the synthesis of new 5-amino and

5-iminoimidazo[1,2-a]imidazoles were developed through a three-component reaction

of 1-unsubstituted 2-aminoimidazoles with various aldehydes and isocyanides mediated

by zirconium(IV) chloride. The protocols were established considering the reactivity of

the starting substrate, which varies depending on the presence of a substituent on the

2-aminoimidazole moiety. A library of new N-fused ring systems with wide structural

diversification, novel synthetic, and potential pharmacological interest was obtained in

moderate to good yields.

Keywords: multicomponent reactions, isocyanide Ugi reaction, zirconium(IV) chloride, catalysis, N-heterocycles,

fused-ring systems, 2-aminoimidazole

INTRODUCTION

The development of innovative synthetic approaches that allow rapid access to a wide variety
of new heterocyclic derivatives is of crucial interest. The use of multicomponent reactions
(MCRs) offers significant advantages in organic synthesis, such as the combination of chemical
transformations of three or more different starting materials in a one-pot procedure without
isolating the intermediates (Dömling and Ugi, 2000; Dömling, 2006; Abdelraheem et al., 2017;
Bariwal et al., 2018; Murlykina et al., 2018). In 1998, the groups of Groebke, Blackburn, and
Bienayme simultaneously developed a new subclass of MCRs to produce a series of azine-
and azole-fused aminoimidazoles, using diverse 2-aminoazines or 2-aminoazoles, aldehydes and
isocyanides in the presence of Lewis or Brønsted acid catalysts (Bienayme and Bouzid, 1998;
Blackburn, 1998; Groebke et al., 1998).

This reaction recently attracted much attention in organic and medicinal chemistry because of
its simplicity, efficiency and the ability to generate diverse compound libraries (Devi et al., 2015;
Kaur et al., 2016; Shaaban and Abdel-Wahab, 2016; Shaabani and Hooshmand, 2016).
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The fused bicyclic 5-5 systems containing three nitrogen
atoms with one in the bridgehead position are an important
class of fused heterocyclic compounds in organic and medicinal
chemistry due to their relevant biological properties, such
as anti-cancer (Baviskar et al., 2011; Grosse et al., 2014;
Sidduri et al., 2014; Meta et al., 2017), anti-viral (Elleder
et al., 2012), anti-inflammatory (Bruno et al., 2007; Brullo
et al., 2012), and anti-diabetic effects (Mascitti et al.). Our
group has been involved over the last few years in the
development of powerful tools for the synthesis of such
systems (El Akkaoui et al., 2012; Grosse et al., 2012, 2013,
2014; Arnould et al., 2013; Tber et al., 2015a,b; Driowya et al.,
2018). For instance, we very recently reported an efficient
one-pot three component procedure for the synthesis of
new functionalized imidazo[1,2-b]pyrazole derivatives in
addition to a library of hitherto undescribed 7,7′-(substituted
methylene)bis-imidazo[1,2-b]pyrazoles starting from 3-
aminopyrazoles, various aldehydes and isocyanides, using a
catalytic amount of perchloric acid or zirconium(IV) chloride
(Driowya et al., 2018).

The imidazo-imidazole scaffolds hold a special place in
this category, since they are found in compounds showing
a wide range of pharmaceutical activities. In particular,
they have been described as antifungal (Lila et al., 2003),
antithrombotic (Imaeda et al., 2008; Fujimoto et al., 2009),
anxiolytic and anti-depressive agents (Han et al., 2005; Tellew
and Luo, 2008; Zuev et al., 2010). In addition, they have
been reported as androgen receptor agonists and antagonists
that are useful in the treatment of a variety of disorders
(Zhang et al., 2006). Several synthetic methods based on
multistep synthesis have been employed by our group and
others to prepare these medicinally important N-fused
imidazoles (Langer et al., 2001; Poje and Poje, 2003; Adib
et al., 2008; Saima et al., 2012; Chen et al., 2013; Grosse
et al., 2015; Castanedo et al., 2016; Loubidi et al., 2016;
Kheder and Farghaly, 2017).

On the other hand, compounds containing an imidazo[1,2-
a]imidazole moiety have been understudied (Compernolle
and Toppet, 1986; Kolar and Tisler, 1995; Mas et al.,
2002). Only one paper was found in the literature
for the preparation of 5-aminoimidazo[1,2-a]imidazole
compounds by MCRs starting from 1,5-disubstituted 2-
aminoimidazoles (Pereshivko et al., 2013). However, the
reported protocol gave poor to moderate yields and showed
some limitations with 1-unsubstituted 2-aminoimidazole
substrates. Hence, there is a need to develop a new,
more efficient and general method for the preparation of
these derivatives.

In this context, and in continuation of our ongoing search
for innovative small molecules, we report herein novel and
straightforward approaches for the synthesis of new series of
5-amino and 5-iminoimidazo[1,2-a]imidazoles starting from
1-unsubstituted 2-aminoimidazoles and using zirconium(IV)
chloride as catalyst. To the best of our knowledge, this
is the first report using 1-unsubstituted 2-aminoimidazoles
in MCRs.

RESULTS AND DISCUSSION

In order to find a MCR protocol that can afford an efficient
formation of 5-aminoimidazo[1,2-a]imidazoles, we initially
performed a model reaction using ethyl 2-aminoimidazole-4-
carboxylate 1 with benzaldehyde and t-octyl isocyanide under
different conditions (Table 1). Two possible regioisomers can be
formed in this case 4a or 4a′ according on which side of the
2-aminoimidazole 1 that reacts.

In our last study, we showed that the Lewis acid zirconium(IV)
chloride delivered an efficient catalytic effect for the MCR
(Driowya et al., 2018). This catalyst was therefore chosen for the
present optimization study.

First, the reaction was carried out in methanol at room
temperature in presence of 5 mol% of ZrCl4, but unfortunately,
no product was observed (entry 1). Poor yields of the expected
product 4a or 4a′ were obtained when the reaction was
performed under heating in ethanol with either 5 or 10 mol%
of ZrCl4 (entries 2 and 3). The reaction time was significantly
reduced to 10min under MW irradiation at 140◦C, and the
yield was relatively improved to 38% (entry 4). The use of
n-BuOH as solvent instead of EtOH under MW irradiation
resulted in an improvement of the yield to 62% (entry 5),
whereas the use of PEG-400 gave a moderate yield (entry 6).
Interestingly, the reaction in PEG-400 under classical heating at
75◦C during 4 h provided a very good yield (entry 7). Moreover,
the optimal amount of catalyst (10 mol%) was confirmed, since
the use of 5 mol% resulted in a lower yield (entry 8). Finally,
replacing ZrCl4 by other catalysts such as p-TsOH or ZnCl2
was associated with a significant decrease in the yield of the
product 5-aminoimidazo[1,2-a]imidazole 4a or 4a′ (entries 9
and 10).

Hence, the optimized reaction conditions were found
to be ZrCl4 (10 mol%) as catalyst and PEG-400 as solvent
with heating at 75◦C during 4 h. This system was used
before for the preparation of imidazo[1,2-a]pyridines
(Guchhait and Madaan, 2009).

In order to disclose the structure of the formed regioisomer
of this reaction, we carried out a single-crystal X-ray
analysis of the product (Figure 1). The results reveal
the formation of the regioisomer 4a. The regioselectivity
of this reaction can be explained by the presence of
intermolecular hydrogen bonds on the ethyl 2-aminoimidazole-
4-carboxylate 1, orienting the synthesis toward the formation
of only the regioisomer 4a. Moreover, the structure of
compound 4a is stabilized by intramolecular N-H. . .O and
intermolecular N-H...N interactions as observed in the
crystalline structure (see the crystallographic section on the
Supplementary Material).

With these reaction conditions in hand, we next explored
the scope and limitation of our methodology with diverse
2-aminoimidazoles and isocyanides in the presence of a range
of aldehydes as shown in Table 2. A large chemical library
of 5-aminoimidazo[1,2-a]imidazole derivatives 4a–f and
5a–i was designed in generally good yields. The reactions
proceeded well with both ethyl 2-aminoimidazole-4-carboxylate
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TABLE 1 | Optimization of the reaction conditions.

Entrya Catalyst (mol%) Solvent Temp (◦C) Heating method Time Yield (%)b

1 ZrCl4 (5) MeOH r.t – 14 h 0c

2 ZrCl4 (5) EtOH 80 Conventional 14 h 12c

3 ZrCl4 (10) EtOH 80 Conventional 14 h 18c

4 ZrCl4 (10) EtOH 140 MW 10min 38

5 ZrCl4 (10) n-BuOH 140 MW 10min 62

6 ZrCl4 (10) PEG-400 140 MW 10min 31

7 ZrCl4 (10) PEG-400 75 Conventional 4 h 77

8 ZrCl4 (5) PEG-400 75 Conventional 6 h 55

9 p-TsOH (10) PEG-400 75 Conventional 4 h 58

10 ZnCl2 (10) PEG-400 75 Conventional 7 h 23

a1 (1.0 mmol), benzaldehyde (1.1 mmol), t-octyl isocyanide (1.1 mmol), solvent (2 mL: entries 1–5; 1 mL: entries 6–10).
bYield of isolated product.
cStarting materials were recovered.

The bold values represent the optimized conditions.

FIGURE 1 | ORTEP representation of compound 4a.

1 and 4,5-dicyano-2-aminoimidazole 2. Unfortunately, no
reaction was observed when employing the unsubstituted
2-aminoimidazole 3 as substrate, which was recovered
after purification.

Moreover, the reaction occurred with electron-withdrawing
and electron-donating substituents of the benzaldehydes, in
addition to sterically hindered aldehydes (entry 9), aliphatic
and heteroaromatic aldehydes (entries 12 and 13, respectively).

However, a poor yield was obtained when using propionaldehyde
(entry 12).

The impact of isocyanide on our reaction was also
investigated; the tert-octyl isocyanide and tert-butyl isocyanide
gave similar good results, whereas the cyclohexyl isocyanide
showed slightly lower yields.

The MCR involving the unsubstituted 2-aminoimidazole 3

using our conditions did not yield any product. This can be
explained by the poor reactivity of the starting substrate due to
the absence of an electron-withdrawing group.

In order to find another strategy allowing us to synthetize 5-
aminoimidazo[1,2-a]imidazoles starting from the unsubstituted
2-aminoimidazole 3, we first carried out the condensation of
the latter with p-anisaldehyde as a first step model reaction
under different conditions (Table 3). The free amine 3 was
prepared from the commercially available 2-aminoimidazole
sulfate (see Supplementary Material). Initially, conventional or
MW heating of the reaction in different solvents with ZrCl4
(10 mol%) as catalyst provided the desired imine 6a in poor
yields (entries 1–4). The use of ZnCl2 as catalyst furnished a
very low yield (entry 5), while p-TsOH and InCl3 gave slightly
higher yields (entries 6 and 7). Very interestingly, using a
reduced catalytic amount of InCl3 (2 mol% instead of 10 mol%)
under conventional or MW heating in ethanol produced a real
improvement in terms of yield and reaction time (entries 9 and
11). This may explain the non-reactivity observed in the MCR
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TABLE 2 | Synthesis of 5-aminoimidazo[1,2-a]imidazole derivatives 4a–f and 5a–i.

Entrya R1, R2 R3 R4 Product Yield (%)b

1 CO2Et, H C6H5 t-octyl 4a 77 (62)c

2 CO2Et, H 4-MeOC6H4 t-octyl 4b 68

3 CO2Et, H 4-ClC6H4 t-octyl 4c 56

4 CO2Et, H 4-CF3C6H4 t-octyl 4d 71

5 CO2Et, H C6H5 t-butyl 4e 74

6 CO2Et, H C6H5 cyclohexyl 4f 59 (50)c

7 CN, CN C6H5 t-octyl 5a 67 (42)c

8 CN, CN 4-MeOC6H4 t-octyl 5b 65

9 CN, CN 2,4,6-MeOC6H2 t-octyl 5c 61

10 CN, CN 4-ClC6H4 t-octyl 5d 58

11 CN, CN 4-CF3C6H4 t-octyl 5e 76

12 CN, CN C2H5 t-octyl 5f 12 (5)c

13 CN, CN 3-Pyridyl t-octyl 5g 79

14 CN, CN 4-ClC6H4 t-butyl 5h 60 (54)c

15 CN, CN 4-ClC6H4 cyclohexyl 5i 47

16 H, H 4-MeOC6H4 t-octyl - 0 (0)c

a1, 2, or 3 (1.0 mmol), aldehyde (1.1 mmol), isocyanide (1.1 mmol), ZrCl4 (0.1 mmol), PEG-400 (1mL), 75
◦C, 4 h (entries 1–6, 16) or 55◦C, 2 h (entries 7–15).

bYield of isolated product.
c Isolated yield using the conditions: ZrCl4 (10 mol%), n-BuOH (2mL), MW (140◦C), 10 min.

(Table 2, entry 16), because of the instability of the formed imine
under such acidic conditions. However, the prolonged reaction
time noted with ZrCl4 (2 mol%) or when no catalyst was used,
revealed the influence of InCl3 on this condensation reaction
(entries 8 and 10, respectively).

After developing these optimized conditions for the first
reaction step, we next focused on finding the best conditions
for the second step, which is based on the [4+1] cycloaddition
reaction of the formed imine with an isocyanide.

The resulting imine 6a was isolated and reacted with
tert-octyl isocyanide under several catalytic conditions
(Table 4). No reaction occurred when using the same
conditions as for the condensation step (entry 1). Increasing
the catalytic amount of InCl3 to 10 mol% produced the
desired product in poor yields with either conventional or
MW heating methods (entries 2 and 3). It is interesting
to note that the 5-aminoimidazo[1,2-a]imidazole product
formed was unstable and underwent a dehydrogenation
reaction in situ to generate the corresponding stable
oxidized compound 5-iminoimidazo[1,2-a]imidazole 7a.

We already observed this type of oxidation in our previous
work on the synthesis of imidazo[1,2-b]pyrazoles by MCRs
(Driowya et al., 2018).

The use of other catalysts such as p-TsOH, ZnCl2, and ZrCl4
under microwave irradiation did not produce any significant
improvement in the reaction yield (entries 4–6). However, using
ZrCl4 as catalyst and replacing EtOH by n-BuOH as solvent for
the reaction showed a slight increase in the yield to 40% (entry
8), which was the optimum result obtained for this reaction. The
same conditions used under conventional heating resulted in a
significant decrease in the yield. The low yield and the difficulty
of this reaction can be explained by the instability of the imine in
the acid medium.

With these optimized conditions in hand, we succeeded
in achieving the one-pot two-step procedure without isolating
the imine by removing EtOH at the end of the first reaction
step. The isolated product 7a was obtained with a global yield
of 32%. This protocol was next extended to the synthesis of
series of 5-iminoimidazo[1,2-a]imidazoles 7a–i starting from the
unsubstituted 2-aminoimidazole and exploring a wide range of
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TABLE 3 | Screening conditions for the synthesis of imine 6a.

Entrya Catalyst (mol%) Solvent Temp (◦C) Heating method Time (h) Yield (%)b

1 ZrCl4 (10) PEG-400 75 Conventional 16 31

2 ZrCl4 (10) n-BuOH 140 MW 2 22

3 ZrCl4 (10) Toluene 110 Conventional 16 15

4 ZrCl4 (10) EtOH 80 Conventional 16 24

5 ZnCl2 (10) EtOH 80 Conventional 16 5

6 p-TsOH (10) EtOH 80 Conventional 16 53

7 InCl3 (10) EtOH 80 Conventional 16 40

8 ZrCl4 (2) EtOH 80 Conventional 16 61

9 InCl3 (2) EtOH 80 Conventional 2 78

10 – EtOH 80 Conventional 30 60

11 InCl3 (2) EtOH 100 MW 1 75

12 InCl3 (2) n-BuOH 100 MW 2 59

a3 (0.5 mmol), p-anizaldehyde (0.55 mmol).
bYield of isolated product.

The bold values represent the optimized conditions.

TABLE 4 | Screening conditions for the synthesis of 5-iminoimidazo[1,2-a]imidazole 7a.

Entrya Catalyst (mol%) Solvent Temp (◦C) Heating method Time Yield (%)b

1 InCl3 (2) EtOH 80 Conventional 14 h 0

2 InCl3 (10) EtOH 80 Conventional 6 h <5

3 InCl3 (10) EtOH 140 MW 10min 14

4 p-TsOH (10) EtOH 140 MW 10min 19

5 ZnCl2 (10) EtOH 140 MW 10min 13

6 ZrCl4 (10) EtOH 140 MW 10min 22

7 ZrCl4 (10) PEG-400 140 MW 10min 26

8 ZrCl4 (10) n-BuOH 140 MW 10 min 40

9 ZrCl4 (10) n-BuOH 140 Conventional 3 h <5

10 ZrCl4 (5) n-BuOH 140 MW 10min 31

11 InCl3 (10) n-BuOH 140 MW 20min 25

a6a (0.2 mmol), tert-octyl isocyanide (0.22 mmol).
bYield of isolated product.

The bold values represent the optimized conditions.

aldehydes and isocyanides (Table 5). As mentioned previously,
the 5-aminoimidazo[1,2-a]imidazole products formed were

unstable and led directly to the corresponding imine forms 7a–
i. Despite the low yields obtained, it was nevertheless possible
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TABLE 5 | One-pot two-step synthesis of 5-iminoimidazo[1,2-a]imidazole derivatives 7a–i.

Entrya R1 R2 Product Yield (%)b

1 4-MeOC6H4 t-octyl 7a 32

2 C6H5 t-octyl 7b 24

3 2,4,6-MeOC6H2 t-octyl 7c 35

4 4-ClC6H4 t-octyl 7d 19

5 4-CF3C6H4 t-octyl 7e 13

6 C2H5 t-octyl 7f 16

7 3-Pyridyl t-octyl 7g 12

8 4-MeOC6H4 t-butyl 7h 17

9 4-MeOC6H4 cyclohexyl 7i 10

a3 (1.0 mmol), aldehyde (1.1 mmol), InCl3 (0.02 mmol), EtOH (10mL), 2–4 h (90◦C); isocyanide (1.1 mmol), ZrCl4 (0.1 mmol), n-BuOH (2mL), 10 min (140◦C).
bYield of isolated product.

TABLE 6 | Cleavage of the t-octyl group of the products 4a–d and 5a–g.

Entrya R1 R2 R3 Product Yield (%)b

1 CO2Et H C6H5 8a 70

2 CO2Et H 4-MeOC6H4 8b 74

3 CO2Et H 4-ClC6H4 8c 68

4 CO2Et H 4-CF3C6H4 8d 65

5 CN CN C6H5 9a 59

6 CN CN 4-MeOC6H4 9b 61

7 CN CN 2,4,6-MeOC6H2 9c 32

8 CN CN 4-ClC6H4 9d 57

9 CN CN 4-CF3C6H4 9e 79

10 CN CN C2H5 9f 41

11 CN CN 3-Pyridyl 9g 26

a4a–d, 5a–g (0.2 mmol), DCM/TFA 1:1 (5mL), r.t.
b Isolated yield.

to produce the targeted compounds, which proved unsuccessful
with the methods developed previously or with those cited in
the literature.

The chemical space of our synthetized compounds
was then enlarged, by removing the tert-octyl groups of

5-aminoimidazo[1,2-a]imidazoles 4a–d and 5a–g using TFA as
cleavage agent in DCM and giving access to the primary amine
compounds 8a–d and 9a–g, respectively, with yields ranging
from 26 to 79% (Table 6). In a similar way, the primary imine
imidazo[1,2-a]imidazoles 10a, 10b, 10d, 10e, and 10g were
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TABLE 7 | Dealkylation of the t-octyl group of the products 7a–g.

Entrya R1 Product Yield (%)b

1 4-MeOC6H4 10a 74

2 C6H5 10b 85

3 2,4,6-MeOC6H2 – –

4 4-ClC6H4 10d 82

5 4-CF3C6H4 10e 63

6 C2H5 – –

7 3-Pyridyl 10g 64

a7a–g (0.15 mmol), DCM/TFA 4:1 (5mL), r.t.
b Isolated yield.

prepared in good yields from their corresponding Schiff base
derivatives 7a, 7b, 7d, 7e, and 7g by deprotection of tert-octyl
groups using the same conditions (Table 7). Unfortunately,
the reaction was unsuccessful when the substituent R1 was
2,4,6-trimethoxyphenyl (entry 3) or ethyl (entry 6).

CONCLUSION

In summary, we have designed highly efficient protocols of
multicomponent isocyanide-based reactions catalyzed by

zirconium(IV) chloride which offer the synthesis of a library
of new functionalized 5-amino and 5-iminoimidazo[1,2-
a]imidazoles in moderate to good yields. The optimized
processes were successively applied to a large number of
substituted (or unsubstituted) 2-aminoimidazoles, aldehydes and
isocyanides. In addition, the use of inexpensive zirconium(IV)
chloride as catalyst delivered an efficient catalytic effect for the
reactions with a greater purity of isolated products compared to
other catalysts.
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