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Abstract

Training studies typically investigate the cumulative rather than the analytically chal-

lenging immediate effect of exercise on cognitive outcomes. We investigated the

dynamic interplay between single-session exercise intensity and time-locked recog-

nition speed-accuracy scores in older adults with Alzheimer’s dementia (N = 17)

undergoing a 24-week dual-task regime. We specified a state-of-the-art hierarchi-

cal Bayesian continuous-time dynamic model with fully connected state variables to

analyze the bi-directional effects between physical and recognition scores over time.

Higher physical performancewas dynamically linked to improved recognition (−1.335,

SD = 0.201, 95% Bayesian credible interval [BCI] [−1.725, −0.954]). The effect was

short-term, lasting up to 5 days (−0.368, SD= 0.05, 95% BCI [−0.479,−0.266]). Clini-

cal scores supported the validity of themodel andobserved temporal dynamics.Higher

physical performance predicted improved recognition speed accuracy in a day-by-day

manner, providing a proof-of-concept for the feasibility of linking exercise training and

recognition in patients with Alzheimer’s dementia.
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Highlights

∙ Hierarchical Bayesian continuous-time dynamicmodeling approach

∙ A total of 72 repeated physical exercise (PP) and integrated recognition speed-

accuracy (IRSA) measurements

∙ PP is dynamically linked to session-to-session variability of IRSA

∙ Higher PP improved IRSA in subsequent sessions in subjects with Alzheimer’s

dementia

∙ Short-term effect: lasting up to 4 days after training session
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1 BACKGROUND

Alzheimer’s disease (AD) involves neuropathological changes including

accumulation of amyloid plaques, neurofibrillary tangles, and neu-

ronal and synaptic loss resulting in macrostructural atrophy of the

brain.1 AD causes a progressive decline in functional independence,

particularly affecting episodic memory early on.1,2 Regular physical

activity (for definition see Supplemental Material) seems to reduce

AD risk substantially3 by reducing Aβ plaques, increasing hippocam-

pal plasticity/neurogenesis, and improving memory.4–7 Acute exercise

already has small effects on episodic memory,8,9 whereas training

seems to enhance hippocampal structure and function, episodic mem-

ory (g = 0.28), such as recognition performance, but also processing

speed (g= 0.158) and executive functions (g= 0.123).4,7,10–12

Therefore, targeted interventions focusing on physical inactivity

are under investigation to delay the progression of memory decline.13

Several intervention studies reported positive effects of aerobic exer-

cise training on physical fitness and episodic memory performance

in patients with AD or mild cognitive impairment,14 while others

observed no effects despite physical improvements.15,16 This incon-

sistency may arise from differences in training methodology. While

moderate-intensity exercise training for at least 24 weeks (three ses-

sions and 40 minutes/week) seems to most strongly enhance episodic

memory performance, studies vary in parameters like intensity and

length.14,17

Exercise interventions in dementia are typically envisioned as pro-

longed regimes of regular weekly training sessions spanning several

months. During this time, the exercise intensity is gradually increased

according to individual parameters (eg, heart rate, resistance). Given

the prolonged nature of exercise interventions, it is clinically relevant

to understand how each training session and changing parameters

affect cognition, both during training and shortly after training. These

time-locked, immediate effects of training, examinable via dual-task

regimes, are important for several reasons. First, they can provide

mechanistic insights into the training-related day-to-day fluctuations

of cognition of a patient to develop more effective approaches and

guide care and clinical decision-making. Second, they can provide indi-

vidual guidance for adaptively choosing the optimal training intensity

from a cognitive point of view.

To summarize, there is partial support for the hypothesis that reg-

ular physical activity might positively impact cognition.3,18 However,

longitudinal modeling approaches often present unclear directions or

mean trajectories rather than analyzing their dynamic changes and

interplay (CR, cross-effects) during the course of training.19,20 Tempo-

ral precedence, that is, prediction of values of a variable from previous

values of another variable, is vital for causality.21 Moreover, time

is often treated as a discrete variable and accordingly, the regres-

sion strength between time points is estimated without integrating

information regarding the interval between them.21,22 Previous lon-

gitudinal studies therefore faced challenging unequal time interval

lengths between and/orwithin participants, whichmight lead to biased

parameter estimates and conclusions.21–23 In contrast, a hierarchi-

cal Bayesian continuous-time dynamic modeling approach overcomes

problems of conventional approaches, such as the above biases and

lack of temporal precedence.19,20 This approach enables the analysis

of the dynamic change and mechanistic coupling between states of

interest, fully accounting for unequal acquisition time intervals.21,24

Herewe study the dynamic changes of physical and recognition per-

formance and their interplay using an extensive longitudinal training

study for patients with suspected AD comprised of 72 sessions over

24 weeks, including a physical and recognition dual-task regime. The

positive exercise-induced effect of physical fitness on recognition was

shown in a previous paper using a conventional linear approach.25 In

this study, we focus on the dynamic interplay between physical and

recognition performance taking advantage of state-of-the-art hierar-

chical Bayesian continuous-time dynamical system modeling.21,24,26

We hypothesize that changes in physical performance predict subse-

quent changes in recognition performance. In addition, we hypothesize

that individual dynamics relate to dementia symptom severity as well

as physical health.

2 METHODS

2.1 Sample and experimental design

We recruited older adults aged 60 to 80 years with diagnosed mild to

moderate AD (International Classification of Diseases, Tenth Revision

[ICD-10], classificationF00.1;Mini-Mental StateExamination [MMSE]:

18 to 26) from the memory clinic of the German Center for Neu-

rodegenerative Diseases (DZNE), Magdeburg (see the Supplemental

Material: Methods in supporting information). The total sample size

included N = 17 older adults (age: M = 73.33 ± 3.43 years; MMSE:

M = 23.50 ± 3.45; female = 8) who were free of depressive symp-

toms (GeriatricDepression Scale:M=1.88±0.93), and pulmonary and

cardiovascular diseases.

The study contained a 24-week (72 sessions, 15-minutes each) dual-

task regime (for details see also25) with pre-and post-assessment by

the MMSE and the 12-Item Short Form Survey (SF-12) physical health

questionnaire.27 Subjects cycled on a stationary bike (40 to 80 rota-

tions per minute), with intensity increasing every 60 seconds after

reaching the target heart rate (HR) (65% to 75%ofmaximumHR calcu-

lated via theKarvonenmethod: 220− age28),while alsomemorizing30

pictures. Recognition performance (forced-choice task) was assessed

immediately after training with 30 subsequent screens showing two

pictures, the original and a lure picture, each.

2.2 Physical and recognition performance
measures

We included up to 72 training sessions per participant in the anal-

ysis if completed (90% of the sample). The training observations

were z-standardized (grand mean centering and scaling) on the global

level. Physical performance (PP) was measured as the ratio of power

output (unit: Watt; measure of exercise intensity) and HR of each
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RESEARCH INCONTEXT

1. Systematic review: Training-induced effects on cogni-

tive outcomes in Alzheimer’s dementia and/or asso-

ciated dynamic Bayesian modelling approaches were

reviewed. Although studies showed exercise-induced

cognitive improvements or maintenance, most of these

studies fail to capture the dynamic nature of the change

and interplay of physical (PP) and integrated recognition

speed-accuracy (IRSA) performance.

2. Interpretation: Using a sophisticated hierarchical

Bayesian continuous-time dynamic modelling approach,

a fully connected state variable model was specified. PP

is dynamically linked to IRSA, i.e. higher PP predicted

improved COG in subsequent sessions. This effect was

rather short term, lasting for up to four days.

3. Future direction: Our results support exercise-induced

effects on cognition. The cognitive system was still able

to fluctuate and change favourably even in a sample with

Alzheimer’s dementia. Further studies using dynamic

modelling are necessary to replicate findings andexamine

other contributors to cognitive volatility in dementia.

training session.Higher values reflect higherPP. Integrated recognition

speed-accuracy (IRSA) as recognition performance (episodic memory)

outcome was operationalized as reaction times (RTs) corrected for the

number of errors. The RT (in seconds) within a valid range of ≤13

seconds (average per session) was used and corrected for the pro-

portion of error (PE) using the linear integrated speed-accuracy score

(LISAS)29:

𝐋𝐈𝐒𝐀𝐒 (j) = RT (j) +
SDRT

SDPE
∗ PE (j) , (1)

with mean RT and proportion of errors at the measurement occasion j,

and respective standard deviations. Lower scores reflect higher IRSA.

2.3 Dynamical Bayesian modeling and statistical
analysis

All statistical analyses were conducted in R version 4.0.2 using RStudio

version 1.3.1056. The modeling approach was previously established

and implemented in the R package ctsem26 relying on Stan software.30

Results were visualized using ctsem and ggplot2 from tidyverse.31

Model fit was compared using chi-square tests. The alpha level for

additional frequentist statistical tests was defined as p< 0.05.

Hierarchical Bayesian continuous-time dynamic modeling was used

to simultaneously analyze the temporal dynamics of PP and IRSA

reflected in a 2-dimensional state variable η(t) = [PP(t), IRSA(t)]T at

time t.26 At the core is a subject-level latent dynamic model using a

stochastic differential equation (or state equation):

d𝜼 (t) =
(
𝐀𝛈 (t) + 𝐛 +𝐌𝛘 (t)

)
dt + 𝐆d𝐖 (t) , (2)

with time-varying latent process η(t) and its temporal derivative dη(t)
encoding the system’s current state and its change over time, respec-

tively. The DRIFT-matrix A contains free parameters and defines the

temporal dynamics of the process with auto-effects (self-connections:

main-diagonal) and cross-effects (coupling: off-diagonal). Equation (2)

contains the continuous-time intercept (CINT) b, the effectM of time-

dependent predictors χ on η(t), and dW(t), the stochastic noise term

(random fluctuations) with G capturing the effect of the these on the

process (DIFFUSION).

The continuous-time parameters of A contain changes of η over a

small time interval in the differential equation and can be transformed

into better interpretable discrete-time equivalents (A*) for any given

time interval length (Δt):

𝐀∗
Δtu

= e𝐀(tu−tu−1), (3)

where 𝐀∗
Δtu

includes the associated auto- and cross-regression effect

for the effect of η at the measurement occasion u-1 on η at mea-

surement occasion u.26 The approach utilized also includes a linear

measurementmodel relating latent states η(t) to observables y(t):

𝐲 (t) = 𝚲𝜂 (t) + 𝝉 + 𝜺 (t) , (4)

using factor loadings Λ, the manifest intercepts τ and residuals ε with
covariancematrixΘ (see SupplementalMaterial).

The dynamic model was specified with two fully connected state

variables enabling bi-directional coupling between PP and IRSA over

72 measurement occasions. The observable indicator Power/HR of

each session were loading on PP and LISAS on IRSA. All other parame-

ters (except b andM,which were set to zero) of the state equation and

measurement model were left free to be estimated using the data. The

latent processmeans at t= 0, 𝝉 (intercepts) andA (DRIFT-matrix) were

allowed to vary freely across participants, resulting in 49 parameters.

Population and individual-level parameters are estimated simultane-

ously using all data from all subjects. The hierarchical Bayesian model

estimation was set to default priors and initial starting values using

four chains and 8000 iterations (under Stan’s optimizer for maximum

a posteriori estimates).

Four models were hypothesized and further compared: a full 2-CR

model (both auto- and cross-effects, 13 free population mean parame-

ters), two 1-CR models with unidirectional interactions PP→ISRA (CR

of interest) and ISRA→PP (withoutCRof interest) and a zero-model (0-

CR) with auto-effects only. The full 2-CR model was compared against

both the 1-CR and 0-CR models with regard to their model fit using a

chi-square difference test.26

Furthermore, we ran a second-level model with the MMSE and the

SF12 baseline scores as time-independent covariates for validation

with the temporal dynamics. A higher score in both covariates is asso-

ciated with higher cognitive and physical health status respectively.
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TABLE 1 Demographic data.

Demographic data

Age (years) 67–80 (M= 73.41, SD= 3.43)

Sex 7:10 (ratio female tomale)

Neurological characteristics

ICD-10 diagnosis Alzheimer’s disease (F00.1)

MMSE pre M= 23.35, SD= 3.50

MMSE post* M= 22.75, SD= 4.06

Notes: Demographic data and neurological characteristics of the sample

(N = 17). ICD-10, International Classification of Diseases, Tenth Revision;

MMSE pre, Mini-Mental State Examination score before the start of the

intervention. MMSE post, Mini-Mental State Examination score after the

end of the 24-week intervention (assessment within 12 days to 8 weeks

after the intervention).

*N = 16 due to one missing post-assessment. M, mean. SD, standard
deviation.

All other model specifications were the same as the above full 2-CR

model.

To explore potential changes in thedomain interplay over the course

of the training, the strength of PP on IRSA (PP→IRSA) was compared

between the baseline (days 1 to 84) and second half (days 85 to 168) of

the training (both free parameters to estimate). By specifying a slightly

extended full 2-CR model, we included a time-dependent predictor χ
(named “secondhalf”), which is zero except onday84,when it is 1. Addi-

tionally, an extra latent process (named “step2ndhalf”) was included,

with all parameters and covariances fixed to zero, except the element

on the time-dependent predictor was set to 1 (step function), that is,

the extra latent process shifts on day84 to1 and stays there. The cross-

effect in question was defined as a function of PP→IRSA on baseline

added by PP→IRSA on the second half of the training multiplied by

the extra latent process. A negative value reflects a stronger effect of

PP→IRSA (ie, when PP increases the RT decreases) in the second half

of the training and vice versa. The model was compared with a model

for which χ= 0 using a nested chi-square difference test.

3 RESULTS

3.1 Demographic data

Table 1 provides the demographic data and associated neurological

characteristics of the participants.

3.2 Analysis of cross-domain interplay using
dynamic modeling

The range of valid measurement occasions of all 17 participants was

between 59 and 70 sessions (M = 64.71 ± 4.26) resulting in 1100

manifest observations per latent state (or domain) with 25 (≈2.3%)

missing values for PP. The time interval between successive measure-

ment occasions ranged from 1 to 14 days (M = 2.54 ± 1.04). The

longitudinal data were analyzed using a two-state dynamical model as

illustrated in Figure 1 (for details seeMethods).

A chi-square difference test for model comparison revealed a sig-

nificant difference between the full 2-CR model and the 0-CR model,

χ2(17) = 235.1, p < 0.001. In addition, a significant difference was also

observed between the 2-CR model and the PP→IRSA 1-CR model,

χ2(9)= 149.8, p< 0.001, and the IRSA→PP 1-CRmodel, χ2(9)= 194.6,

p < 0.001. Correspondingly, the full 2-CR model (Table 2) containing

both cross-effects that enable a bi-directional interplay between IRSA

and PP fitted the data best and is further reported (see Table S1 for

estimated population parameters for the other models).

Changes in PP predict later changes in IRSA in the opposite direc-

tion as found by a more substantial negative cross-effect driftPP→IRSA

(−1.335, SD = 0.201, 95% Bayesian credible interval [BCI] [−1.725,

−0.954]). As such, when physical performance levels are above base-

line (suggesting higher PP) IRSA levels are likely to go downwards.

The cross-effect PP→IRSA also varies between participants, which

suggests that some subjects benefit more from the exercise training

resulting in recognition improvements than others (between-person

variability in driftPP→IRSA: 2.44, SD=0.29, 95%BCI [1.86, 3.02]). In con-

trast, IRSA values do partially predict later changes of PP in the same

directionas indicatedbya small andpositive cross-effect (driftIRSA→PP).

When a subject’s RT increases (ie, reduced IRSA) the PP levels did

also slightly increase over the ensuing time. Furthermore, the temporal

changes of PP last longer than the temporal dynamic of IRSA (higher

auto-effect of PP [driftPP]).

Previous states of PP do impact IRSA negatively (−0.368, SD= 0.05,

95% BCI [−0.479, −0.266]) as shown via discrete-time parameters (1-

day time interval). The expected effect PP→IRSA peaks around 1 and

lasts for up to around4days, afterwhich the random-state fluctuations

dominate (Figure 2). The cross-lagged effect IRSA→PP was observed

to be close to zero (0.086, SD = 0.024, 95% BCI [0.041, 0.136]) and

accordingly there is practically no substantial effect in this direction.

Furthermore, the small autoregressive (self-connection) effect of IRSA

(0.145, SD = 0.039, 95% BCI [0.072, 0.226]) suggested low stability of

the construct over time. PP on one day had a small effect on PP on

another day (0.363, SD= 0.05, 95%BCI [0.264, 0.472]).

The temporal dynamics of PP showed more inter-individual differ-

ences compared to IRSA. Some subjects showed relatively persistent

PP levels over the entire training time, while the PP fluctuated

more in other participants (between-person variability in driftPP:

9.89, SD = 0.52, 95% BCI [8.89, 10.90]). The measurement error

(MANIFESTVAR) of the manifest indicator Power/HR (0.208) was

found to be higher compared to LISAS (0.046); that is, measure-

ment limitations and short-term situational influences (eg, subjec-

tive stress or sunny days) are more present in the PP indicator

(Table 2), and IRSA showed higher session-to-session fluctuations

within-person (0.188, SD = 0.014, 95% BCI [0.163, 0.217]) compared

to PP (0.004, SD = 0.002, 95% BCI [0.001, 0.012]). The model pre-

diction of IRSA and PP over training time is illustrated in Figure 3

(see also Supplemental Material Figure S1 for five randomly selected

participants).
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F IGURE 1 Schematic illustration of the two-state model with the first three timepoints (t0, t1, t2) reflecting successive training sessions. The
graphical model contains the observed variables (manifest indicators [MANIFESVAR]), power of the bicycle ergometer and heart rate (HR; as the
ratio: Power/HR) and reaction time corrected for the proportion of error (linear integrated speed-accuracy score [LISAS]), loading on the latent
variables (ellipsoids) of physical performance (PP) and integrated recognition speed-accuracy performance (IRSA), respectively. Themain effect of
interest is the cross-effect of PP on IRSA (further denoted as cross-effect driftPP→IRSA). Themodel also contains latent error terms (w) and the
continuous-time intercept (triangle). Themodel shows regression paths (red lines) and variance and covariance (orange lines). Manifest intercepts
are not shown.

TABLE 2 Group level results, full 2-CRmodel.

Parameter Symbol Est. SD LL-BCI UL-BCI

DRIFT

driftPP A −0.851 0.146 −1.146 −0.602

driftIRSA A −1.645 0.188 −2.026 −1.300

cross-effectIRSA→PP A 0.313 0.087 0.154 0.485

cross-effectPP→IRSA A −1.335 0.201 −1.725 −0.954

T0MEANS

T0mPP η1 −0.175 0.010 −0.194 −0.154

T0mIRSA η2 0.941 0.083 0.766 1.102

DIFFUSION

diffPP Q 0.045 0.011 0.027 0.070

diffIRSA Q 0.797 0.038 0.722 0.874

diffPP_IRSA Q −0.687 0.135 −0.884 −0.354

MANIFESTVAR

mvarPower/HR Θ 0.208 0.006 0.195 0.220

mvarLISAS Θ 0.046 0.029 0.012 0.124

MANIFESTMEANS

mmPower/HR τ −0.382 0.078 −0.531 −0.234

mmLISAS τ 0.259 0.079 0.103 0.412

Note: Group-level results showing estimated population means including

Bayesian posterior intervals of the full 2-CR (cross-effect) model. Sam-

ple size n = 17 with 1100 observed sessions in total. The model contains

two latent variables (physical performance [PP) and integrated recog-

nition speed-accuracy [IRSA) performance) with one manifest indicator,

each (Power/HR and LISAS) respectively; n = 13 free population mean

parameters; Bayesian model estimation: number of chains = 4, number of

iterations = 8000. Est., mean from mean of the chains; BCI, 95% Bayesian

credible interval; LL, lower limit; UL, upper limit.

3.3 Drift coefficients as a function of clinical
baseline scores

Participants with higher MMSE baseline scores show lower persis-

tence in the cross-effect IRSA→PP (driftIRSA→PP; −0.215, SD = 0.022,

95% BCI [−0.259, −0.172], Figure 4A). Higher MMSE baseline scores

were associated with lower persistence in IRSA (driftIRSA; −0.538,

SD = 0.174, 95% BCI [−0.887, −0.209]). The effect of MMSE on the

auto-effect PP and the cross-effect PP→IRSA is close to zero (−0.02,

SD = 0.003, 95% BCI [−0.03, −0.01]). Participants with a lower health

score showa stronger cross-effect of IRSAonPP (driftIRSA→PP;−0.231,

SD = 0.035, 95% BCI [−0.303, −0.165], Figure 4B). Likewise, higher

physical health scores seem to be associated with lower persistence in

their PP (driftPP; −0.036, SD = 0.008, 95% BCI [−0.052, −0.021]). The

effects on the other auto-effect and cross-effect are close to zero.

3.4 Changes of dynamics over the course of
training

An extendedmodel with the drift coefficient PP→IRSA as a function of

time was specified. The model estimated if the strength of the cross-

effect PP→IRSA changed between the baseline (days 1 to 84) and

the second half (days 85 to 168) of training. Results suggested that

the cross-effect PP→IRSA becomes positive in the second half of the

training (2.08); that is, the strength and associated effect of PP on

recognition performance was found to be reduced in the second half

of training. This change was estimated as a function of PP→IRSA on

baseline (−0.11, SD= 0.63, 95% BCI [−1.34, 1.14]) added to PP→IRSA

on the second half of the training (−1.50, SD = 0.08, 95% BCI [−1.66,
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F IGURE 2 Auto- and cross-regression over time. Temporal autoregressive effects (upper panel) and cross-lagged effects (lower panel) over
time (x-axis, time interval in days), median and 95%quantiles for a change of 1 at time zero. The expected autoregressive effect (or self-connection)
of physical performance (PP; drift PP) and integrated recognition speed-accuracy (IRSA; drift IRSA) peak around approximately 1 day and decrease
with increasing time interval length. This suggests that themore time passes the less predictive is the performance for consecutive performance
levels. The expected cross-lagged effect (or interplay) of PP on IRSA peaks around 1 day and seem to improve predictions of IRSA for up to around
4 days. This can be understood as rather short-term benefits from physical training on cognitive performance. The cross-lagged effect of IRSA on
PP is very close to zero, suggesting that changes in cognitive performance do not improve predictions of physical performance.

F IGURE 3 Individual estimates of integrated recognition speed-accuracy (IRSA) and physical performance (PP), showing individual-level
analyses for all participants of the sample (n= 17) over the time interval in days (x-axis). The solid lines present themodel prediction of the
smoothed estimates of participant’s individual latent states IRSA (upper panel) and PP (lower panel) within a 95%Bayesian credible interval (BCI).
Each colored solid line presents the individual model prediction for one subject. The temporal dynamics of PP showmore individual differences
compared to IRSA.
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F IGURE 4 Estimated effect of subject-level covariate predictors on dynamic parameters.We show (A)MMSE and (B) SF12 physical health
baseline score effects on drift parameters (auto-effects and cross-effects) within a 95%Bayesian credible interval (BCI). driftPP, auto-effect PP
(red solid line); driftPP→IRSA, cross-effect PP on IRSA (green solid line); driftIRSA→PP, cross-effect IRSA on PP (blue solid line); driftIRSA, auto-effect
IRSA (purple solid line); IRSA, integrated recognition speed-accuracy;MMSE,Mini-Mental State Examination; PP, physical performance; SF12,
12-Item Short Form Survey.

−1.34]) multiplied by the extra latent step process (−1.45, SD = 0.38,

95% BCI [−2.21, −0.72]). The chi-square difference test for model

comparison revealed a significant difference between the extended

model and a model for which the time-dependent predictor is zero,

χ2(1)= 464.85, p< 0.001.

4 DISCUSSION

Recent longitudinal studies reported mixed effects of exercise training

on episodic memory performance in dementia patients,14 often failing

to capture the dynamic coupling between PP and IRSA.21 This study

utilized Bayesian hierarchical continuous-time dynamic modeling26 to

assess session-to-session changes and interplay ofPPand IRSAover72

measurements.

Under the assumption of our model, PP is dynamically linked to

IRSA, which combines LISAS to access recognition performance and

processing speed. This addresses conflicts such as slower responses in

elderly participants, error-prone processes in speeded forced choice

and the nonlinear speed-accuracy trade-off.29,32–34 Thus, increased PP

was associatedwith improved IRSA,which is in linewith previous train-

ing studies.3,18 However, this effect shows between-person variability,

suggesting that some participants benefited more from the training

than others.While we cannot rule out the possibility of nonresponders

due to a missing control group,35 the observed cross-effect supports

the notion that exercise training has a positive effect on IRSA in demen-

tia. Diagnostic tools like HR variability36 enable precise adjustments

(eg, intensity, duration), preventing physical strain or underload to

optimize immediate effects on IRSA.

In addition, an important question is how long this beneficial

exercise-induced effect on IRSA lasts (eg, how many days). Our results

suggest a rather short-termeffect: A positive change in PP can improve

the prediction of increased IRSA for up to 4 days with the strongest

influence after 1 day, after which unpredictable random fluctuations

dominate. However, unexplained or not modeled causes could act on

this effect and might appear even without training. Nevertheless, the

coupling-effect appears at least under the condition of training, consis-

tent with recent studies.3,18 Given the high cost of dementia care and

drug treatment side effects,37,38 our non-pharmacological approach

may provide a cost-effective alternative to enhance episodic memory

in AD patients.

Furthermore, we observed random session-to-session cognitive

fluctuations within participants over time, while the measurement

error was close to zero. In patients with AD, intra-individual cognitive

fluctuations are generally higher compared to healthy controls39 and

may be linked to pathology.40 Considering this fluctuation as measure-

ment error only would oversimplify the true cognitive state.41 Thus,

studies may examine the question of how cognitive fluctuations can be

used since they are random.

In line with recent studies,7,11,12,14 we observed exercise-induced

effects on IRSA. Using dynamic Bayesian modeling, we demonstrated

that PP is dynamically linked to IRSA, with short-term effects suggest-

ing that exercise mobilizes dormant capacities. However, the exercise-

induced causal underlying mechanism(s) are still being discussed.42,43

Evidence suggests neurotrophin-mediated neurogenesis, like brain-

derived neurotrophic factor (BDNF).44 Inhibiting hippocampal BDNF,

by blocking tyrosine receptor kinase B, also inhibited its beneficial

effects on episodic memory.45 The short-term nature of the effect that
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we report here suggests that rather than the chronic and slowplasticity

related to neurogenesis, more immediate mechanisms may play a role,

such as changes in the bodilymilieu, improved perfusion, and improved

clearance.44,46,47

We further assessed the drift coefficients as a function of clinical

baseline scores. Higher physical health (SF-12) and lower cognitive

impairment (MMSE) were associated with lower persistence, that is,

less stability, in PP and IRSA, respectively (the higher the clinical score,

the smaller the corresponding auto-effect, ceteris paribus). This sug-

gests that each baseline score corresponds to its respective latent

state, providing further support for the observed temporal dynamics.

PP showed a general increasing trend and IRSA a decreasing trend

over training time, consistent with our prior linear-mixed modeling

approach.25 Moreover, we observed changes in the coupling effect of

PP on IRSA over training time, particularly evident in the first half

(days 1 to 84), aligning with previous training studies.48 In contrast,

this coupling-effect weakened in the second half (days 85 to 168). One

explanation might be that the changes may follow a nonlinear time

course, for example, by increasing early or close to the end of the

whole training regime, warranting further investigations using time-

varying analysis. However, patients with AD show general reduced

motivational capacities.49 Animal studies observed positive effects of

environmental enrichment (combined physical, cognitive, and social

stimulation) on brain health, including increased neurotrophic factor

levels, neurogenesis, and improved memory performance.50 Although

our training was designed as a cognitive motivation, that is, the par-

ticipants had to physically exercise for new pictures to stimulate the

novelty-exploration, reduced task variability may have led to reduced

motivation and/or increased distraction from themiddle of the training

onwards.

Finally, we want to mention several limitations of the current

study. Although the model is mechanistic (or causal) it contains many

assumptions that might be wrong and/or we may have not included

all observable factors mediating the observed effects. Our approach

assumed stationary dynamics over the course of the training; that is,

we cannot rule out non-stationary dynamics during the training time.

The sample was small (N = 17) and potentially biased regarding age

and severity of AD and did not include a control group due to practi-

cal reasons, including the challenge of recruiting and maintaining such

a cohort, as well as funding. Since there is an absence of a physically

inactive control group, future studies might look if cognitive volatility

(ie, also short-reaching performance highs) is present without train-

ing and whether the coupling of physical on recognition performance

still exists without such training. With regard to the present literature

showing positive outcomes due to regular exercise,18 the latter possi-

bility might not be the case. Future longitudinal randomized controlled

studies using amore comprehensiveneuropsychological assessment to

examine transfer effects are necessary to verify our results.

The present extensive 24-week longitudinal training study exam-

ined the temporal connectivity und coupling of PP and IRSA in a sample

with AD using a hierarchical Bayesian continuous-time dynamic mod-

eling approach. PP was dynamically linked to IRSA, that is, higher

PP improved time-locked IRSA in subsequent sessions. The beneficial

effect was rather short-term, lasting up to 4 days after the train-

ing. Our observed dynamics were validated by clinical scores; that is,

higher MMSE baseline scores were associated with lower persistence

in the temporal dynamics of IRSA. To summarize, our results provided a

proof-of-concept regarding the feasibility of a time-resolved linkage of

exercise training and IRSA even in a sample with suspected AD.
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