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Abstract: Intraoperative haemostasis is of paramount importance in the practice of cardiovascular
surgery. Over the past 70 years, topical haemostatic methods have advanced significantly and today
we deal with various haemostatic agents with different properties and different mechanisms of action.
The particularity of coagulation mechanisms after extracorporeal circulation, has encouraged the
introduction of new types of topic agents to achieve haemostasis, where conventional methods prove
their limits. These products have an important role in cardiac, as well as in vascular, surgery, mainly
in major vascular procedures, like aortic dissections and aortic aneurysms. This article presents
those agents used for topical application and the mechanism of haemostasis and offers general
recommendations for their use in the operating room.

Keywords: haemostasis; cardiovascular surgery; coagulation; haemostatic agents; biomaterials

1. Introduction

Intraoperative and postoperative haemorrhage is a relatively common event during
and after open heart procedures, performed with extracorporeal circulation and various
degrees of hypothermia. The average incidence is 5–9%, with limits between 0–16%, of all
unselected cardiac surgical patients [1,2]. The control of intraoperative and postoperative
bleeding is essential in the practice of cardiovascular surgery because the reopening of
the surgical wound and transfusion of blood products are both associated with poor
outcomes. The reoperated patients have approximately three-times greater mortality risk
than non-reoperated. Surgical causes of postoperative bleeding are found in 66% of cases
on re-exploration, only 33% being attributed to various types of coagulation disorders.
Surgical bleeding is considered to have its origin on important vessels, surgical suture
lines, or anastomosis, whereas nonsurgical bleeding originates in small vessels and tissue
surface, being the result of a coagulation disorder [3,4]. Haemostatic agents play a key role
in establishing haemostasis and preventing haemorrhage-associated death.

Blood transfusions occur in approximately 21% of all operations, and in 45.8% of
cardiac cases, however, they are associated with multiple risks and complications. Blood
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transfusion is also associated with immunomodulation, bacterial infection, and a multitude
of non-infectious, but important, complications [5–7].

Haemostasis should be achieved by systemic and local methods.
Systemic administration of blood products and procoagulant medication is of great

importance, but they also carry large risks. Systemic agents, such as antifibrinolytics and
recombinant Factor VII, are generally used to counter coagulation but they are expen-
sive. There is not strong evidence to support the use of recombinant Factor VII in most
cardiovascular operations [8,9].

The first local methods of direct surgical control of suturing lines, anastomosis, and
other points of the surgical field, are classical surgical procedures, like suture applications
and vessel ligation, or electrocautery. There are many haemostatic manoeuvres, from simple
digital pressure application, electrical tissue cauterization, and warm saline irrigation of
the wound to topical application of procoagulant agents [10].

Those novel adjuncts that have evolved over decades are effective towards achieving
haemostasis during cardiovascular procedures. They include topical gelatines, collagens,
oxidized celluloses, thrombin and fibrin sealants, synthetic glues, and glutaraldehyde-based
glues. The effective use of topical agents is highly dependent on the surgeon’s experience or
preference and their availability in the surgical setting. Local treatments also carry risks, and
their efficiency has not been extensively studied in large randomized, placebo-controlled
prospective studies. The relatively recent expansion of minimally invasive techniques in
cardiac surgery has led to an increasingly routine use of these novel agents in order to
achieve haemostasis where conventional suturing has proven difficult [10].

In addition, the widespread use of antiplatelet therapy, such as aspirin and clopido-
grel in the management of coronary heart disease, is likely to increase the challenge of
haemostasis, particularly in emergent patients [11].

The cardiovascular surgeon is now faced with an ever-increasing array of haemostatic
agents, each armed with subtly different qualities and proven in different contexts with
various levels of evidence. In this article, we review the aetiology of bleeding in cardiovas-
cular surgery and the coagulation cascade. We will describe the existing haemostatic topic
agents and their application techniques [12].

2. Specific Aspects Related to Bleeding in Cardiovascular Surgery

Bleeding after extracorporeal circulation is often multifactorial, can be related to intrin-
sic haemostatic abnormality, excessive anticoagulation and imperfect reversal, or platelet
disfunction [4]. Haemostasis consists of complex interactions between the extracorporeal
circuit, damaged endothelial and subendothelial cells, platelets, leucocytes, coagulation fac-
tors and coagulation inhibitors like heparin, which eventually results in the polymerisation
of fibrine monomers to form a stable clot [13]. Disfunctions in any of these components can
result in deficient intraoperative haemostasis. An important role is the effect of prolonged
extracorporeal circulation and hypothermia. Understanding the coagulation cascade and
the mechanism of action of different haemostats will aid the surgeon in choosing the most
appropriate haemostatic agent and strategy for each patient [1].

Contact between blood and the artificial surface of the extracorporeal circuit and car-
diac or vessel wall injury is the trigger for the initiation of the coagulation cascade (Figure 1).
This activates endothelial cells and platelets to mobilize adhesion molecules to the cell
surface, which, in turn, promotes aggregation of platelets, leucocytes, and monocytes on
the surface of the extracorporeal circuit and activated endothelial cells, thereby assisting in
localising the site of thrombus formation [14,15]. Activated endothelial cells and platelets
also release the von Willebrand factor, which binds the platelets to extravascular struc-
tures, like pericardium and subendothelial connective tissue, and promotes further platelet
aggregation [13]. The formed leucocyte–platelet aggregate provides a secure surface for
the subsequent formation of a stable fibrin clot in the ensuing process of the coagulation
cascade [15]. Tissue factor is released by injured cells and initiates a cascade of coagulation
factor activation (extrinsic pathway) that drives the production of thrombin. Small amounts
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of thrombin are produced initially [15]. The thrombin produced further activates platelets
and triggers a separate way of coagulation factors (intrinsic pathway), which results in
the production of factor IXa and VIIIa complexes [16,17]. In the presence of calcium ions,
this complex catalyses the activation of factor X and amplifies thrombin production [18].
Thrombin works by catalysing the conversion of fibrinogen to fibrin, activating factor XIII
to stabilize the clot, and activating the fibrinolysis inhibitor.
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Figure 1. Schematic representation of coagulation cascade.

Cardiovascular surgery is generally associated with perioperative blood loss and a
high risk of perioperative blood transfusion. Bleeding can have significant clinical and eco-
nomic impact, including increased health care utilization and poorer patient outcomes [19].
The wide range of cardiopulmonary bypass application distinguishes this discipline from
other surgical specialities. The evolution of haemostasis and perioperative care from the
early days of cardiovascular surgery to the modern era offers a large perspective on the de-
velopments of surgical techniques, transfusion, and cardiopulmonary by-pass technology.

The relatively recent expansion of minimally invasive approaches in cardiac surgery
have led to an increasingly routine use of these topical agents in order to achieve haemosta-
sis where conventional suturing and other techniques have proven difficult. In addition, the
widespread use of antiplatelet therapy, such as aspirin and clopidogrel, in the treatment of
cardiovascular patients is likely to have increased the challenge of haemostasis, particularly
in emergent patients.

Surgeons today are faced with an increasing array of haemostatic agents, each with
different qualities proven in different contexts with various levels of evidence. Most times,
the choice of haemostatic agents is made without an in-depth knowledge of the agent’s
composition, mechanism of action, or efficacy.

The circumstances surrounding the desire to use a haemostatic agent are crucial to the
choice of agent. Haemostatic agents that accelerate clot formation have the disadvantage of
only being effective against surgical bleeding when haemorrhage is minimal. This relegates
the agents to either a prophylactic role in which the surgeon must always anticipate
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excess haemorrhage, during cardiopulmonary bypass or after anticoagulation reversal
with protamine.

The alternative option favoured by some surgeons is to use the bovine serum albumin
and glutaraldehyde tissue adhesive with its ability to rapidly form a mechanical seal that
is independent of native clotting factors and which forms even in the presence of some
moderate bleeding. Selection of haemostatic agents to promote intraoperative haemostasis
have been published but the scarcity of literature makes development of detailed guidelines
difficult [20,21].

After achieving surgical haemostasis, it is mandatory to deploy one of the compression
haemostatic agents, such as oxidized regenerated cellulose, microporous polysaccharide
hemispheres, or microfibrillar collagens. These offer the advantages of reducing active
bleeding. The haemostatic adjuncts, such as gelatine–thrombin matrix sealant (Floseal), are
useful when bleeding is not amenable to standard techniques. The use of those products is
associated with side effects, such as immunologic reactions, antibody development, and
transmission of viral infections, particularly in active and fibrin sealants, and, potentially,
increased mortality [22]. But there are important benefits to using them. Active and
flowable haemostatic products have been shown to produce higher haemostatic success
rates compared with mechanical agents. Fibrin sealants have also shown efficacy compared
with conventional haemostasis and other mechanical agents [23–25].

The albumin and glutaraldehyde combination (Bio Glue) include the reported risks
of embolization, local tissue destruction, and the bovine source of the albumin with the
related risks or immunologic effects but they are useful in major aortic surgery, as aortic
dissection or thoracic aneurysms. The surgeon should evaluate when is appropriate to use
each haemostatic agent and when the benefit outweighs the risk, such as in cases where
haemostasis cannot be achieved with mechanical means and systemic administration of
blood products or other procoagulant medication. There are preliminary clinical positive
results, but there is a need for further randomised control trials comparing different topical
local haemostatic adjuncts used in cardiovascular surgery, given the important problem
of bleeding side effects [26,27]. Figure 2 presents a scheme representing the bleeding
management using haemostatic agents.
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3. Current Haemostatic Agents and Their Clinical Use in Cardiovascular Surgery

In the following sections we present the classical and novel haemostatic agents used in
cardiovascular surgery [20,21]. A classification based on the component used of available
commercial haemostatic agents is presented in Table 1.

Table 1. Classification of commercial haemostatic agents based on component used.

Commercial Haemostatic Agents

I. Without Human or Bovine Component

Commercial name Specifications/Composition

Surgicel
Oxidized cellulose polymer

Oxycel

Omnex Synthetic tissue adhesive (Cyanoacrylates)

Coseal Combination of two polyethylene glycol polymers

Arista Microporous polysaccharide hemispheres

Hem Con

Freeze-dried chitosan derived from shrimp shellContains chitosanChitoseal

Celox

Recothrom Recombinant thrombin (topical use)

II. With Bovine Component

BioGlue Bovine albumin, and glutaraldehyde

CoStasis Bovine collagen, bovine thrombin, and calcium chloride mixed with
autologous plasma at the time of surgery

Thrombin Bovine protein

Avitene

Water-insoluble acid salts of bovine collagenColgel

Helitene

III. With Human Plasma Component

Tisseel Human thrombin and fibrinogen, synthetic aprotinin

Vivostat Combination of platelets and autologous fibrin (prepare on site)

Crosseal
Tranexamic acid, human plasma protein, thrombin

Quixil

IV. With Bovine and Human plasma component
Floseal Human thrombin and bovine gelatine

Beriplast Human thrombin and fibrinogen, bovine aprotinin

3.1. Conventional Haemostatics in Cardiovascular Surgery

Bleeding from cardiac or vessel structures can easily be controlled using conventional
methods, such as simple sutures, pledged sutures, compression with cottoned patties,
electrocautery, or use of vascular ligatures and clips [5]. Diffuse capillary bleeding may
further require warm saline irrigation or the use of topic haemostatic adjuncts.

Direct placement of sutures, ligature, vascular clips, or even only simple digital pressure
can provide haemostasis. But small-vessel or capillary bleeding require different methods.

Electrocautery often achieves haemostasis adequately. This method can place adja-
cent suture lines or anastomoses at risk of thermal injuries and dramatic haemorrhagic
consequences. Furthermore, it can cause complete vessel lumen occlusion with subsequent
compromise of the perfused territory [28].

Warm saline irrigation is often used in cardiac surgery to achieve haemostasis [29]. Its
mechanism of action consists of the mechanical compression from the oedema of surround-
ing tissues and the vasodilatation of bleeding vessels that reduce intraluminal pressure.
Also, the washing effect of warm saline can stop a local fibrinolytic process.

Bone wax, consisting of bees’ wax and a softening agent, such as paraffin or Vaseline,
is commonly used to stop bleeding resulting from the sternum by physically obstructing
the spongiosa of the bone. Unfortunately, it can cause side effects, like osteomyelitis,
granuloma, or imperfect sternum healing [28].
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3.2. Haemostatic Agents with Active Mechanisms in Cardiovascular Surgery

Understanding of the coagulation cascade and the means to produce coagulation
factors safely and on a large scale has led to the introduction of novel haemostatic agents
that work independently of the coagulation mechanisms [30,31]. These agents introduce
extrinsic clotting factors on application and mimic various stages of the coagulation process.

The principal products of this category include thrombin sealants (Thrombin, Throm-
bogen, and Thrombistat), fibrin sealants (Tissel), fibrin patches (TachoSill, and TachoComb),
autologous fibrine and thrombocytes concentrates (VivoStat) and gelatine–thrombin matrix
sealant (FloSeal). Figure 3 presents the intraoperative use of TachoSill.
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3.2.1. Thrombin Sealants

It is the most used adjunctive haemostat in general surgical procedures in the United
States. Thrombin is a serum protease that cleaves fibrinogen into fibrin and activates
factor XIII generating the stabilization of the clot. Generally, the thrombin sealants used in
cardiovascular surgery are derived from bovine plasma. From January 2008, recombinant
human thrombin (Recothrom (ZymoGenetics, Seattle, WA, USA)) gained United States
Food and Drug Administration approval [32,33].

3.2.2. Fibrin Sealants and Fibrin Patches

Fibrin sealants and fibrin patches (Tisseel, Beriplast, Hemaseel, Crosseal/Quixil, and
Vivostat) have been introduced for the first time in clinical practice by Matras and co-
workers [34]. They prove to have an important role within various types of interventions
in cardiovascular surgery, redo cardiac procedures, and major aortic procedures, in treating
or preventing diffuse bleeding [34,35].

Fibrin sealants are made of two components contained in separate vials: a freeze-
dried concentrate of fibrinogen, factor XIII, and fibronectin (the sealant) and a freeze-dried
thrombin (the hardener).

Fibrinogen is the precursor of fibrin, the strong element of the clot. The transformation
of fibrinogen into stable fibrin occurs by means of thrombin and factor XIII, which in turn
are activated by thrombin. Fibrin sealants reproduce the last step of the coagulation cascade.
They have the advantage of being independent from the patient’s clotting mechanism,
and they are also effective in patients with coagulation disturbances after extracorporeal
circulation or those who are receiving antiaggregant or anticoagulants [36,37]. Fibrin
sealants contain bovine aprotinin or tranexamic acid as antifibrinolytic agents to slow
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fibrinolysis at the application site. There are reports of the adverse effects of bovine
aprotinin in sealants relating to the highly immunogenic nature of bovine aprotinin in
humans. About 125 anaphylactic reactions are reported in the literature, with an estimated
anaphylaxis incidence between 0.5 and 5 per 100,000 topical applications [38].

Vivostat (Vivostat A/S, Birkerod, Denmark) is a system that produces an autologous
fibrin sealant. The device can generate 4.5 mL of sealant from 120 mL of the patient’s
blood in 23 min. This is done before surgery. Application of the agent can be done using a
spray system. There is no randomized controlled trial using this system in cardiac surgery
where it is compared with any other sealing agents, although its tensile strength has been
compared with other fibrin sealants and has been found comparable. There are 24 trials
reported in the literature of the use of fibrin glues in cardiothoracic surgery, with 20 trials
reporting a positive benefit in terms of reducing bleeding, 4 studies reporting no difference
from controls, and no studies reporting a negative influence on bleeding [38,39].

Codispoti and Mankad published a randomized controlled trial in pediatric cardiac
surgery in 2002. They have shown a significant reduction in the use of blood products and
time to achieve haemostasis when fibrin sealant has been used in in cases with proven
coagulopathy [40]. There are reports of an increased risk of myocardial injury or even death
in coronary artery bypass grafting patients when fibrin sealant was applied on anastomoses.
The patients have had an acute occlusion of bypass grafts and immediate embolectomy
showing fresh fibrin clot in the lumen of the grafts in each case. This study specifically
emphasizes that using fibrine sealant in coronary operations must be avoided [41].

3.3. Haemostatic Agents with Nonactive Mechanisms in Cardiovascular Surgery

They are nonactive products and they do not contain clotting factors. They include
mechanical haemostatic adjuncts and synthetic sealants. Conventional topic haemostatic
adjuncts work by forming physical lattices that promote clot formation [12].

3.3.1. Gelatine Sponges

Like Gelfoam (Baxter, Hayward, CA, USA), Gelaspon, whose efficacy relies on a
porous consistency to absorb large quantities of blood, the weight of which subsequently
tamponades the underlying bleeding surface [42,43].

3.3.2. Microfibrillar Collagens

Like Avitene Flour MCH (Davcol, Warwick, RI, USA), Colgel, and Helitene, promote
platelet aggregation and adhesion without direct effect on the soluble components of the
clotting system [28]. This agent was first described in 1969. It is a water-insoluble acid salt
of bovine collagen, which, when used topically, adheres to the tissue and provides some
haemostatic effect by reinforcing the fibrin clot. For redo cardiac operations, major vascular
procedures, such as ascending aortic aneurysm repair or aortic dissection necessitating
deep hypothermic circulatory arrest, or without deep hypothermic circulatory arrest, mi-
crofibrillar collagen has the ability to reduce postoperative bleeding and was found to be
useful in reducing postoperative drainage [44]. Microfibrillar collagen is reported to cause
end-organ damage if returned to the circulation by either pump suction or cell salvage
devices [45].

3.3.3. Oxidised Regenerated Cellulose

Like Surgicel (Ethicon, Somerville), this has an acidic quality that enables reaction with
blood to precipitate an artificial coagulum that provides a scaffold on which platelets can
start the adhesion and aggregation process leading to coagulation, but not interfering the
physiological clotting mechanism [46]. Oxidised regenerated cellulose is a polyanion, the
functional unit of which is polyanhydroglucuronic acid. After surgical application there is
evidence of absorption within the first few days, and complete absorption can be observed
the next 4 to 8 weeks [47]. This rate being dependent on the volume of material used, local
vascular activity, and the histological structure of the tissue on which is applied. Surgicel
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has bacteriostatic capacity with reported antimicrobial activity, even against antibiotic-
resistant micro-organisms [48,49]. Figure 4 presents the intraoperative aspect of Fibrillar
oxidised cellulose.
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3.3.4. Microporous Polysaccharide Hemispheres

Like Arista (Medafor, Minneapolis, MN, USA), by absorbing fluid and small molecular
blood components, this generates a scaffold that concentrates platelets and coagulation pro-
teins on its surface and, thereby, activates the extrinsic clotting pathway [34]. Furthermore,
this scaffold absorbs water, concentrating proteins and platelets locally at the wound’s
edge [34]. During clot formation, they should be left in place, and then removed delicately
to prevent clot elevation [50,51]. Because they do not contain specific coagulation factors,
these mechanical topic haemostatic adjuncts must be used in patients who have a relatively
normal coagulation system, in cardiac procedures, after the protamine administration
and reversal of the heparin effect [26,27]. They are not efficient in coagulation distur-
bances or/and thrombocytopenia. However, many of these conventional local haemostatic
adjuncts can be soaked in thrombin prior to use for enhanced haemostasis [32].

3.4. Haemostatic Agents with Active and Nonactive Mechanisms

There are mechanical haemostatic agents with thrombin, also known as flowable
agents. They combine mechanical and active properties and work by promoting thrombus
formation at the bleeding site [27,52].

3.4.1. Gelatine–Thrombin Matrix Sealant

Like Floseal, this was first introduced in neurosurgery in 1999 and after, in cardiovas-
cular procedures [32]. FloSeal Haemostatic Matrix (Baxter Healthcare Corp, Freemont, CA,
USA) is a combination of a bovine gelatine scaffold and a human thrombin. In contact
with fluids in the surgical wound, the gelatine particles swell and tamponade the bleeding,
and the high thrombin concentration accelerates clot formation. The thrombin used has a
significantly reduce viral load, but no procedure has been shown to be completely effective
in removing viral infectivity from derivatives of human biological products. Absorption of
FloSeal starts in the first 2–4 days and is complete after 6–8 weeks. FloSeal is superior in
achieving haemostasis before reversal of the heparin effect with protamine [53,54].
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3.4.2. Composite Collagen and Thrombin Sealant

Like CoStasis (Cohesion Technologies, Palo Alto, CA, USA), this agent is a composite
of bovine microfibrillar collagen and bovine thrombin in a calcium chloride buffer. This
composite is mixed during the surgical procedure with an equal volume of autologous
plasma. The patient’s plasma provides fibrinogen that is fractionated by thrombin to form
a collagen–fibrin scaffold. The agent is used as a spray over the surgical field. CoStasis has
been shown to achieve haemostasis within 3 min in cardiac surgery patients undergoing
or coronary artery bypass grafting. But has no impact on reducing transfusion of blood
products [55]. Unfortunately, bovine thrombin preparation can induce the development
of bovine thrombin associated factor V antibodies, which may lead also to coagulation
disturbances [56]. The risk of acquired factor V antibodies has declined due to the use of
recombinant human forms of thrombin [54].

3.5. Tissue Sealants

Tissue sealants carry no intrinsic haemostatic factors, but, instead, act as physical
barriers at the bleeding site.

3.5.1. Absorbable Cyanoacrylate

Like OMNEX (Ethicon), this is a polymer that adheres to tissue. This agent forms a
seal adherent to both synthetic material and human tissue that acts as a physical barrier but
does not induce clot formation. The substance is a synthetic adhesive consisting of a blend
of two monomers (2-octyl cyanoacrylate and butyl lactoyl cyanoacrylate). The chemical
formulas of the monomers are presented in Figure 5. The seal degrades with time, breaking
down into smaller absorbable fragments.
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Lumsden and Heyman published in 2006 a prospective, randomized controlled trial
for assessing the efficacy of cyano–acrylate sealants in establishing haemostasis of ex-
panded polytetrafluoroethylene to arterial vascular anastomoses in arteriovenous grafts
and femoral bypass grafts. They showed that haemostasis was achieved in 54.5% of patients
receiving cyanoacrylate surgical sealant and in 10% of those receiving the control [57].

3.5.2. Glutaraldehyde/Bovine Albumin

Like BioGlue (Cryolife, Kennesaw, GA, USA), this is a tissue glue that polymerises
immediately and establishes a firm adhesive bond [31,58]. Two components are dispensed
by a double-chambered syringe. The components are mixed within the applicator tip where
polymerisation begins. The glutaraldehyde molecules bond the albumin molecules to each
other and the tissue proteins at application site, generating a mechanical seal. This process
is totally independent from the coagulation mechanism [52]. BioGlue begins to polymerize
rapidly in 20 to 30 s and reaches its maximum strength in 2–3 min. BioGlue also adheres
to synthetic graft materials through mechanical interlocks within the interstices of the
graft matrix.
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Coselli and co-workers showed in a randomized controlled trial that anastomotic
bleeding and pledged use was significantly reduced in the BioGlue group compared
with the control group [59]. The product has as side effects nerve tissue and conduction
tissue injury generating AV block, [60] leaking of the BioGlue through needle holes [61],
and impaired aortic growth causing anastomotic stenosis [62]. Therefore, BioGlue is not
recommended in pediatric surgery, and caution must be taken in the application on aortic
suture line. Disfunction of valve prosthesis has been also reported after application [63,64].
There have been reports regarding the potentially harmful effects of BioGlue to local
tissues [65].

3.5.3. Chitin and Chitosan-Based Haemostatic Agents (HemCon, Closure, Chitoseal, Celox)

Chitin polymer (-(1–4)-N-acetyl-D-glucosamine) is a polysaccharide synthesised by
arthropods and fungi as a crystalline microfibril. Its use in cardiovascular surgery was first
reported in 1983. It was shown to form a coagulum when in contact with heparinized and
defibrinated blood [66].

Chitosan is a semisynthetic biomaterial obtained by deacetylation of chitin. Reports
have indicated also that chitin and chitosan can play a role in the wound healing process [67].
The haemostatic mechanism of chitosan is independent of the classical coagulation cas-
cade and seems to be an interaction between the substance and the cell membrane of
erythrocytes [68,69]. The chemical structures of chitin and chitosan are shown in Figure 6.
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3.5.4. Polyethylene Glycol Polymers (CoSeal)

Polyethylene glycol polymers are synthetic hydrogels with application in cardiovas-
cular surgery as tissue sealants. Those polymers propagate cross linking with various
protein molecules, such as collagen, to form a cohesive scaffold that adheres to the tissue.
The sealing capability of the hydrogel is almost immediate and does not require any hu-
man blood products or bovine components to inhibit bleeding. The suture lines during
surgical placement of prosthetic vascular grafts treated with CoSeal achieved immediate
haemostasis after re-establishment of blood flow [70,71].

4. Current Novelties in Research on Biomaterials for Haemostatics
4.1. Literature Overview Regarding Nanotechnologies and Novel Biomaterial for Haemostatics

Due to its unique advantages, nanotechnology has been receiving an increased interest
and contributed to the development of haemostatic materials. Research has been conducted
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on the effects of different nanoparticles on the blood cells. Owing to their biocompatibility,
high surface modification, and bonding capacity of the functional groups, polymeric
nanoparticles seem to be promising as haemostatic agents.

Biomaterials that can facilitate the haemostatic and wound healing processes have
been studied and developed continuously in the last decades. This perpetual research
led to identification of new biomaterials, active components, and technologies that en-
hance haemostasis and promote tissue regeneration. A future trend is designing smart
biomaterials that have the ability to mimic the native haemostatic processes.

Chitosan, a N-deacetylated form of chitin, is a promising biopolymer that exhibits
high biocompatibility and haemostatic properties. Chitosan-based agents are very efficient
in coagulopathy cases comparing to other commercial agents due to their independent
haemostatic mechanism of the patient’s coagulation pathway [72].

Wang et al. [73] investigated the efficacies of chitosan-based gauze dressings and
reported a significantly shortened time of haemostasis. Moreover, the chitosan dressing
used in the study enhanced blood absorption, prolonged partial thromboplastin time
and reduced antithrombin production. In a study performed by Gu et al. [74], chitosan
was reported as better implantable haemostatic than gelatin sponge or oxidized cellulose
related to the greater ability of chitosan to enhance platelet activation, morphological
alteration, thrombin generation, and erythrocyte aggregation. In addition, Leonhardt
et al. [75] obtained nanoscale chitosan mats and showed an increase interaction of chitosan
with coagulation factors and platelets compared to Surgicel. These results indicate the
effectiveness of chitosan as a haemostatic dressing.

In another study, Deprés-Tremblay et al. [76] reported that while interacting with the
blood separation product—PRP (platelet-rich plasma), chitosan inhibits platelet-mediated
clot retraction, increases the release of platelet growth factor, the duration of action and the
bioactivity of PRP in vivo, which causes not only stable haemostasis, but also a long and
effective antimicrobial and proregenerative effect.

Hangge et al. [77] applied nanotechnology for haemostats, reviewing the haemostatic
performance of nanoparticles as topical and intravenous agents. Wang et al. [78] reviewed
the developments in nanotechnology for both internal and external haemostatic agents, dis-
cussing the main problems of haemostatic nanomaterials. The research of Lashof-Sullivan
et al. [79] on animals suffering from haemorrhage proved that the haemostatic nanoparticles
used improved survival to 90% compared to 60% with no treatment. Biranje et al. [80]
made a porous chitosan nanoparticle dressing and showed increased pro-coagulant activity
through enhanced thrombin generation and controlled biodegradation and biocompatibility.

Future studies should focus on identification of new active components, modularizing
haemostatic imitation, and improving mechanisms of various biomaterials and technologies
to promote and strengthen active platelet aggregation in bleeding sites.

4.2. Collagen Loaded with Gelatin Microspheres as a New Composite Biomaterial for Haemostatics

Potential new biomaterials for haemostatics could be the collagen loaded with gelatin
microspheres in different concentration: 4%, 21%, and 41%. In order to characterize these
new biomaterials for haemostatics and observe the interface between collagen matrix and
gelatin microspheres, different microscopical techniques were used: Scanning Electron
Microscopy (SEM) and Atomic Force Microscopy (AFM).

SEM has been performed on a Philips XL 30 ESEM-TMP scanning electron microscope
at 25 kV. The imaging details have been obtained using a combination of secondary and
backscattered electrons. The samples have been directly mounted on the SEM sample stub
without being sputtered with a conductive layer. The measurement has been performed at
a vapor pressure of 0.7 Torr.

AFM studies have been performed on atomic force microscope type Veeco Multimode.
In order to not damage the surfaces and to reduce shear forces, the AFM system works in
“tapping mode”. Before being placed in the microscope, the samples were cut square pieces
of 5 mm and fixed on the sample holder. Scanning parameters were: scan rate: 0.3 Hz; scan
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size: between 1 and 10 µm; scan angle: 90◦; and line samples: 1024 (maximum value for a
best resolution).

SEM images have been recorded at different magnifications to assess the general
aspect of the samples surface morphology as well as to investigate the interface between
the microparticles and the matrix. A general view on the samples’ appearance has been
obtained through SEM micrographs taken at two magnifications: 25× (Figure 7). Non-
loaded Collagen (sample A) has been used as control sample. It appears as a matrix
containing collagen fibrils and some salt crystals. Increasing concentration of microparticles
has been confirmed on the samples B–D as displayed in the images below. The average
dimensions of the gelatin particles range somewhere between 40 and 250 microns. Certain
irregularities have been noticed with respect to the shape of the microparticles; the geometry
of the dried particles suggests a predominant spherical-like aspect; however, irregular
shaped as well as particles agglomerations are clearly visible. Moreover, some fibrilar
bridges are little distinguishable between the microparticles of the samples B–D at 100×
magnification, but this aspect has been more detailed investigated at higher magnification
as further described.
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Figure 7. SEM results on the experimental samples collagen based loaded with gelatin microspheres
((A) sample A—0% gelatin, (B) sample B—4% gelatin, (C) sample C—21% gelatin, and (D) sample
D—41% gelatin): general view (magnification 25×) and the interface aspects between collagen fibrils
and gelatin microspheres (magnification 250×).
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Collagen fibrils clearly distinguish on a collagen background in the control sample
A. The samples loaded with gelatin present numerous fibrillar features connecting the
microparticles. SEM does not allow an assessment on the nature of those structural fea-
tures. However, some assumptions could be made, namely, the bridges may consist in
collagen fibrils which formation has been favored by the presence of the gelatin particles.
Normally, increasing the concentration of microbeads in the scaffolds leads to increasing
the number of connection bridges. The higher gelatin loading of the collagen corresponds
to a more difficult visualization of individual fibrillar linkages on a background made out
of agglomerated microparticles. More continuous connections are visible, appearing like
a “glue” layer between the beads. The inter-particles distance decreases with increasing
gelatin content. When the magnification has been increased to 250×, the bridges between
the microparticles have been even better observable. The average diameters of the observed
fibrils range in a wide interval, between approximately 10 microns to even nano-level.

AFM analysis has been performed at a maximum magnification allowing for the
screening of areas of 10 × 10 microns. This dimensional range presents an obvious limita-
tion with respect to the main purpose of the study, namely, the investigation of the interfaces
between gelatin and collagen. This observation/conclusion is based on the dimensions
of the gelatin microparticles (micro-level) making impossible to distinguish, on such low
areas, between collagen background, microparticles surface, and collagen fibrillar bridges.
However, different areas have been analyzed and the obtained results are presented below.

Collagen (sample A) appears as a network of fibrils with nano-sized diameters.
Figure 8 shows the topography of sample A. Native fibrils and fibrous long spacing fibrils,
which are specific of collagen, can be seen. Diameter of fiber is of about 95 nm. With
respect to the microparticles-containing samples B–D, characterizations have been made on
the surface of particles, as indicated in the microscopic images displayed for each sample.
Different roughness has been observed, but, unfortunately, it cannot be concluded on
interface interactions between particles and the collagen matrix.
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Figure 8. AFM 3D Images on the experimental samples collagen based loaded with gelatin micro-
spheres: (a) sample A—0% gelatin (10 µm × 10 µm, z-range = 500 nm); (b) sample B—4% gelatin
(10 µm × 10 µm, z-range = 1.5 µm); (c) sample C—21% gelatin (3 µm × 3 µm, z-range = 300 nm), and
(d) sample D—41% gelatin (3 µm × 3 µm, z-range = 500 nm).
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Based on the experimental results, collagen loaded with gelatin microspheres present
numerous fibrillar features connecting the microparticles and appear to be a good candidate
material for the haemostatic agent.

5. Conclusions

Achieving haemostasis is a critical goal for intraoperative interventions, especially
when it comes to cardiac surgery. Such interventions most commonly include mechanical
haemostats (suturing lines, and anastomosis) and electrical cauterization of the tissue;
however, the methods are in some cases deficient or inappropriate, given the different
anatomic locations and specific procedures.

Haemostatic agents appear to be highly effective at decreasing the risk of bleeding
during surgical procedures. Although some haemostatic agents were demonstrated to
achieve haemostasis faster than others, most are able to control bleeding within <10 min.
None of the current haemostatic agents meet the characteristics of an ideal haemostatic. The
development for different novel broad-spectrum biomaterials and technologies in order to
achieve all these criteria needed for a more efficacious haemostasis could be innovative.
Further randomised controlled trials comparing the current haemostatic adjuncts would be
beneficial to elucidate the efficacy and effectiveness of haemorrhage control.

The continuously growing number and diversity of haemostatic agents offers a variety
of options to clinicians. It is, therefore, important to understand the mechanism of action
and differences in order to select an optimal agent to achieve haemostasis and improve
clinical outcomes for patients. Collaboration between emergency medical and surgical
personnel, biomedical engineers, and material scientists is needed to identify and develop
innovative solutions for novel haemostatic agents to revolutionize bleeding treatment
approaches.
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