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Abstract: During lytic infection, herpes simplex virus (HSV) 1 induces a rapid shutoff of host RNA
synthesis while redirecting transcriptional machinery to viral genes. In addition to being a major
human pathogen, there is burgeoning clinical interest in HSV as a vector in gene delivery and
oncolytic therapies, necessitating research into transcriptional control. This review summarizes
the array of impacts that HSV has on RNA Polymerase (Pol) II, which transcribes all mRNA in
infected cells. We discuss alterations in Pol II holoenzymes, post-translational modifications, and
how viral proteins regulate specific activities such as promoter-proximal pausing, splicing, histone
repositioning, and termination with respect to host genes. Recent technological innovations that have
reshaped our understanding of previous observations are summarized in detail, along with specific
research directions and technical considerations for future studies.

Keywords: herpes simplex virus; RNA polymerase II; transcription; host shutoff; promoter-proximal
pausing; C-terminal domain; polyadenylation; splicing

1. Introduction

Herpes simplex virus type 1 (HSV-1) is the cause of the common cold sore as well as
a leading agent in infectious blindness and is capable of establishing severe skin lesions
in addition to life-threatening encephalitis. A hallmark of herpes viral infections is a
cytopathic lytic phase of viral replication coupled with lifelong, latent infections that
periodically reactivate to produce new viral progeny. The lytic phase of HSV infection
has long served as a paradigm for how viruses shut down the expression of host genes
in infected cells. While host shutoff broadly serves to reroute macromolecular synthesis
towards viral replication, antagonizing the array of cellular immune responses is essential
for viral spread in vivo. RNA viruses such as influenza and members of the Alphaviridae,
which encode their own polymerases, have evolved to globally inhibit specific events in
host transcription [1], or degrade cellular RNA polymerases directly [2]. HSV, like all other
herpes viruses, requires the machinery of the host to express viral RNA. What is unique to
HSV, however, is the multitude of cellular transcriptional events the virus antagonizes on
host chromatin while simultaneously preserving these activities on viral genes.

Though RNA metabolism in HSV-infected cells has been investigated since the
1950′s [3,4], technological advances in RNA sequencing have revolutionized describing
new phenomena in co-transcriptional RNA processing, identifying novel regulatory net-
works, and elaborating the fates of individual gene products. Other papers have discussed
the elements of viral DNA that recruit Pol II and regulate the temporal cascade of viral
gene expression [5,6]. Here, we focus on summarizing our current understanding of how
HSV disrupts the transcription of host genes in favor of its own gene expression by dis-
secting major events during RNA biogenesis. These topics include promoter recruitment,
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promoter-proximal pausing, pre-mRNA splicing, as well as polyadenylation and alter-
ations of the Pol II holoenzyme (Figure 1). Most of the research discussed here has utilized
HSV-1 due to increased global prevalence and reduced virulence for staff safety. Still, the
high conservation between relevant proteins makes it likely that the phenotypes also occur
with HSV type 2, more commonly referred to as genital herpes, though naturally, this is
worth experimental confirmation.
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(hpi) [7–19], concomitant with a shift of remaining transcriptional activity towards viral 
DNA. Although this loss of activity eventually occurs with all three mammalian DNA-
dependent RNA polymerases, a drastic reduction in transcription of Pol II genes was vis-
ible by 3 hpi in nuclear run-on assays [20]. Over the years, a significant body of work 
demonstrated that regulation of RNA Polymerase (Pol) II and its associated cofactors are 
essential in expressing viral genes [21,22] and are the primary targets for viral proteins 
involved in shutting off host transcriptional responses. Evidence that Pol II has different 
global activity on cellular and viral DNA was observed with robust expression of a β-
globin gene with its native promoter inserted into the viral genome, while transcription 
of the endogenous cellular β-globin was ablated by 5 hpi [23]. HSV facilitates this apparent 
disparity by sequestering its genome into a selectively accessible viral replication com-
partment which allows and simultaneously prevents access of certain cellular factors to 
the viral DNA [24,25]. 

RNA Pol II is responsible for transcribing all protein-coding and several non-coding 
RNAs, including lincRNA, miRNA, snoRNA, and multiple snRNAs [26]. In mammals, the 
Pol II complex is composed of 12 individual protein subunits, while activity is regulated 
by dozens of additional factors in global and gene-/response-specific fashions. In addition 
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2. Alterations in RNA Polymerase II Holoenzyme and Activity

Early studies of transcription in HSV-infected cells measuring radioactive nucleotide
incorporation observed a ~50% reduction in total RNA synthesis by 4 hours post-infection
(hpi) [7–19], concomitant with a shift of remaining transcriptional activity towards viral
DNA. Although this loss of activity eventually occurs with all three mammalian DNA-
dependent RNA polymerases, a drastic reduction in transcription of Pol II genes was
visible by 3 hpi in nuclear run-on assays [20]. Over the years, a significant body of work
demonstrated that regulation of RNA Polymerase (Pol) II and its associated cofactors are
essential in expressing viral genes [21,22] and are the primary targets for viral proteins
involved in shutting off host transcriptional responses. Evidence that Pol II has different
global activity on cellular and viral DNA was observed with robust expression of a β-globin
gene with its native promoter inserted into the viral genome, while transcription of the
endogenous cellular β-globin was ablated by 5 hpi [23]. HSV facilitates this apparent
disparity by sequestering its genome into a selectively accessible viral replication compart-
ment which allows and simultaneously prevents access of certain cellular factors to the
viral DNA [24,25].

RNA Pol II is responsible for transcribing all protein-coding and several non-coding
RNAs, including lincRNA, miRNA, snoRNA, and multiple snRNAs [26]. In mammals, the
Pol II complex is composed of 12 individual protein subunits, while activity is regulated by
dozens of additional factors in global and gene-/response-specific fashions. In addition to
clarifying details about the general reduction in host gene transcription, high-throughput
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sequencing techniques have identified that nearly every major step in Pol II transcription
of host genes is impacted during lytic HSV infection, as discussed below.

Pol II holoenzymes shift from a ~2MDa fraction by size exclusion chromatography to
670KDa fractions and below in HSV-infected cells, including a loss of TFIIE involved in
DNA unwinding at the promoter, in the remaining high molecular weight pool [27]. This
study also identified three viral immediate-early proteins—ICP0, ICP4 and ICP27—that
co-eluted with Pol II, predominately in the lower molecular weight fractions. Another
group confirmed Pol II coprecipitates with ICP27, as was observed for the early gene
ICP8 [28]. While these studies demonstrate extensive changes in overall holoenzyme
composition, several individual molecular interactions and disruptions on host genes have
been described.

The potential to undergo thousands-fold amplification and predominantly nucleosome-
free nature of viral DNA during lytic infection may certainly contribute to the sequestration
of transcription complexes from host chromatin, but studies performed at time points
before DNA replication or with viral mutants have shown that individual viral proteins
directly contribute to the loss of Pol II on host chromatin, and in particular gene promoters.
While known as both an activator and repressor of viral promoters, immediate-early pro-
tein ICP4 was found to deplete Pol II from cellular promoters by as early as 2 hpi using
chromatin immunoprecipitation sequencing (ChIP-Seq) [29] and that ICP4 could even
be initially recruited to cellular genes. Another ChIP-Seq study identified that ICP4 was
responsible for significantly reducing Pol II levels across cellular gene bodies by 4 hpi [30].
Though Pol II has been shown by single-molecule imaging to randomly explore viral
DNA in replication compartments (RCs) [24], work with temperature-sensitive mutants
suggests that ICP4 and not DNA copy number is what sequesters Pol II and global tran-
scription factors to RCs through ICP4′s interactions with Mediator [29]. Additionally,
antisense transcription from host promoters or from within gene bodies gives rise to at
least 1000 novel virus-induced cellular transcripts, a subset being activated by transient
ICP4 expression [31]. These antisense transcripts, in turn, can regulate the expression of
the sense transcript, which may further complicate promoter analysis.

Though it is clear that ICP4 reduces Pol II occupancy on host genes, it remains to be
determined at what point transcription factors become unavailable to host genes from the
nucleoplasm or recycling from more proximal chromatin. This would clarify activities of
viral proteins beyond the competition that inhibit promoter recruitment during the earliest
stages of lytic infection or latent reactivation. Another area of interest is exploring how Pol
II condensates around sites of active cellular transcription are affected by HSV, either by
the action of viral proteins or by physical rearrangement of nuclear structures and host
chromatin, as these sites can regulate gene expression in ways not readily apparent by
sequencing-based approaches.

3. Promoter Clearance and Promoter-Proximal Pausing

Once Pol II has begun transcribing the first few RNA nucleotides (nt), it encounters
another regulatory step, promoter-proximal pausing. Pol II and other double-stranded
multi-subunit RNA polymerases inherently pause at specific DNA sequences due to
physical structures formed by the nascent RNA or DNA-RNA hybrids, termed “intrinsic”
pausing (reviewed in [32,33]). Structural studies have demonstrated that a tilted DNA-
RNA hybrid exists in paused RPB1, likely formed after the elongated DNA-RNA hybrid
translocates in the active site of RPB1 and the DNA template then backtracks without the
RNA. This leaves the DNA base within the position to accept incoming NTPs still base
paired with the post-translocated RNA in a tilted conformation, unable to accept new NTPs
and halting extension of nascent RNA. This conformation can be relieved by structural
rearrangements and cleavage of the terminally bonded RNA nucleotide to proceed into
elongation. While Pol I and III have their own domains to support these activities, this role
for Pol II is filled by RNA-cleavage stimulatory factor TFIIS. Pol II pausing is specifically
stabilized within the first 80-nt downstream of the transcription start site of most genes
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by additional extrinsic factors, referred to here as promoter-proximal pausing (reviewed
in [26]).

Promoter-proximal pausing is mainly stabilized by the DRB (5,6-dichloro-1-β-D-
ribofuranosylbenzimidazole)-sensitivity-inducing factor (DSIF) and negative elongation
factor (NELF) complexes [34]. DSIF, consisting of proteins Spt4 and Spt5, binds the poly-
merase and clamps upstream DNA and exiting RNA to support proper positioning and
retention. NELF, composed of four subunits NELF-A/B/C/E, sits on the edge of the
funnel leading to the Pol II active site and requires DSIF to promote pausing by limiting
the relative mobility of Pol II modules and physically occluding the binding site of TFIIS.
Pausing generally allows for proper recruitment of factors acting later in transcription. In
contrast, the release of paused polymerases into productive elongation or premature termi-
nation is a major regulatory nexus for viruses like HIV-1 and specific biological processes
during development and stress responses [35,36]. The switch from paused to elongating
polymerases is typically mediated by positive transcription elongation factor b (P-TEFb),
which phosphorylates Pol II, DSIF, and NELF. This leads to the dissociation of NELF and a
switch of DSIF from a negative to a positive elongation factor that remains associated with
the polymerase and recruits additional downstream factors.

The first study to perform Pol II ChIP-Seq in HSV infection identified a clear loss
of promoter-proximal pausing for a subset of 61 cellular genes whose overall occupancy
was unchanged by 4 hpi in murine cells [37]. The reduction in pausing was observable
for hundreds of additional genes by precision nuclear run-on analysis (PRO-Seq) as early
as 3 hpi in human cells [38], as this technique typically has higher signal-to-noise ratios
and allows precise mapping of 3′-ends of nascent RNA [39]. Notably, pausing peaks were
observed on viral genes using both techniques [37,40], indicating that the factors disrupting
pausing—or facilitating its rescue—are not equally active on viral and cellular genes.

The ability of ICP4 to both promote and inhibit the expression of cellular genes
has been explored in a recent study centered around pausing [30] where several ICP4-
upregulated host genes, which exhibited a reduction in the relative amount of NELF-A and
in wild-type HSV infection compared to mock or a ∆ICP4 virus. While this data indicates
that ICP4 influences the activity of pausing regulators, other studies suggest viral genes
have different requirements for NELF and DSIF. Knockdown of Spt5 severely lowered ex-
pression of the viral late gC RNA in one study, while moderate effects were observed for the
early ICP8 RNA for both Spt5 and NELF-E knockdown [41]. This study also demonstrated
that the viral protein ICP27 coprecipitated with Spt5 in a DRB-responsive manner, while
another group further identified ICP22 as a major determinant for Spt5 localization to viral
DNA [42]. Spt5 is also copurified with ICP22 in HeLa nuclear extracts [43]. Affected by at
least three viral proteins and remaining associated with transcribing polymerases after the
pause release, Spt5 would thus be an interesting focus of future work. Determining the
associations between Pol II and TFIIS, which relieves the tilted conformation of the paused
RNA-DNA hybrid, could also provide mechanistic insights into pausing regulation on the
host and viral genes.

In general, these studies highlight the complicated networks that viral and cellular
proteins form. Each immediate-early protein mentioned can affect additional pathways
that in turn globally influence transcription factors already regulated by other means. One
apparent conflict regarding the loss of promoter-proximal pausing is the fact that HSV
inhibits P-TEFb kinase activity, a key facilitator of pause release and whose inhibition
globally results in increased polymerase pausing [35,36]. More on this is discussed in the
next section. It would thus be of benefit to gain detailed structural analyses of individual
polymerase complexes or observe individual activities reconstituted in vitro to separate
initial causes from downstream effects.

4. CTD Phosphorylation

The post-translational modification of the largest Pol II subunit, RPB1, is perhaps one
of the most dynamic regulatory events in gene expression and central to numerous tran-
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scriptional responses. The most well-studied changes are on the C-terminal domain (CTD),
consisting of 52 repeats of the consensus amino acid motif Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-
Ser7 (Y1-S2-P3-T4-S5-P6-S7). Each non-proline residue serves as a site of phosphorylation,
which recruits other complexes necessary for proper transcription. Numerous other modifi-
cations exist, including site-specific methylation, proline isomerization, glycosylation, and
ubiquitination (reviewed in [44]). Many non-consensus heptapeptide repeats, particularly
variants in the seventh amino acid position, are enriched in the more distal of the mam-
malian repeats while other important post-translational modifications occur in regions of
RPB1 outside of the CTD [26].

The migration pattern of RPB1 during SDS-PAGE allowed for the identification of a
complete loss of the hyperphosphorylated IIo band in HSV infection and replacement with
an intermediately phosphorylated band, dubbed IIi, by 5 hpi [45]. This required the de
novo expression of viral proteins, particularly ICP22 [46]. Since then, many groups have
identified CTD regulation as a major consequence of both host and viral gene expression.

As mentioned in the previous section, polymerases are productively released from
promoter-proximal pausing due to the kinase subunit of P-TEFb, cyclin-dependent kinase
9 (CDK9), which phosphorylates DSIF, NELF, and Ser2 of the CTD. It is important to
note that other Ser2 kinases exist, and blocking CDK9 can also affect their downstream
recruitment [36]. Still, activities of these enzymes have not yet been directly explored in HSV
infection. A specific loss of Ser2 phosphorylation (pS2) in infected Vero cells was observed
by Western blot, and this required ICP22 [47,48]. Interestingly, work from another group
indicated that pS2 is downregulated by ICP27 in HeLa cells [49]. Though these studies
varied in cellular contexts and methods such as soluble protein vs. total cell lysates, these
findings can be reconciled by the model that ICP22 inhibits CDK9′s ability to phosphorylate
Ser2. At the same time, ICP27 promotes the degradation of hyperphosphorylated RPB1.
Recently, it was found that phospho-Ser7 (pS7) is down-regulated in addition to pS2
while the other major CTD modifications are preserved. Both ICP22 and ICP27 seemed to
contribute to this loss in fibroblasts [50]. This may occur by the same means as the reduction
of pS2 in infection, though pS7 loss was not observed with transient expression of ICP22 in
HeLa cells [51]. Downregulation of pS7 may result from CDK9 inhibition evolved around
pS2. However, there may be other impacts on CTD regulation caused by pS7 loss, as this
mark stimulates CDK9 activity on other CTD residues in vitro [52]. Both pS2 and pS7 recruit
the Integrator complex to terminate non-polyadenylated transcripts such as Pol II-derived
snRNA and replication-dependent histone mRNA, but Integrator has also been shown
to be a global regulator of promoter-proximal pausing [53] and is regulated during stress
conditions to induce termination defects of mRNA [54]. Thus, clarifying the significance of
pS7 loss and Integrator function during infection may illuminate novel regulation.

CDK9 coprecipitates with ICP22 [55] and a short, transiently expressed sequence of
ICP22 amino acids 193-256 is enough to inhibit kinase activity [51], while pS2 is retained
in viral infection with ICP22 mutants lacking amino acids 240–340, but not 213–240 [56],
indicating that this entire region is not necessary for binding CDK9. Interestingly, tran-
siently expressed ICP22 was found on a cellular gene by ChIP, suggesting that the loss of
CTD phosphorylation is not a result of failure to recruit CDK9 to sites of transcription [51].
Instead, ICP22 and CDK9 are recruited to sites of transcription, and at least for cellular
genes, this leads to a local reduction in pS2 hyperphosphorylation and transcriptional
elongation as measured by ChIP qPCR [43,51].

It is important to note that ICP22 has recently been demonstrated to enhance transcrip-
tional elongation on viral genes by PRO-Seq [57], indicating that polymerases can exhibit
different activities on cellular and viral chromatin, which may be facilitated through the
recruitment of transcriptional Pol II co-factors by ICP22. Furthermore, ICP22 coprecipitates
with another Ser2 kinase, CDK12, and numerous other transcription elongation factors,
while the functional consequences during infection remain unclear [43]. An additional
consideration is that VP16 can coprecipitate with CDK9, which might relieve the inhibitory
activity of ICP22 [43,58]. ICP22 has been found to also bind the murine CD80 promoter
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by ChIP and inhibit its transcriptional activity in vitro and in vivo [59]. CD80 is expressed
on the surface of several antigen-presenting cell types and regulates adaptive immune
responses in both positive and negative manners through interactions with proteins such as
CD28, CTLA-4, and PD-L1. Downregulation of CD80 protein levels is observed specifically
for dendritic cells in an ICP22-dependent manner [59].

Mutant viruses lacking ICP22 replicate poorly in murine ocular models and are
sensitive to interferon [60]. At the same time, recombinant expression of CD80 or deletion
of the aforementioned ligands can directly influence the degree of reactivation from latency
and corneal pathology [59,61–64]. Interestingly, the region of ICP22 responsible for reduced
CD80 promoter activity is within amino acids 305-345 [65], well outside of the region
binding CDK9, indicating multiple mechanisms by which ICP22 inhibits the transcription
of cellular genes.

HSV encodes two viral kinases, US3 and UL13, and both have been implicated in Pol
II regulation. Still, it is difficult to distinguish whether they directly target host factors or
indirectly regulate them by modifying viral proteins, particularly ICP22. Full induction
of the intermediately phosphorylated IIi required both ICP22 and UL13 [66], though both
genes supported microscopic colocalization of CDK9 and RPB1 in foci presumed to be
replication compartments [55]. UL13 was also found to be required for the localization of
ICP22 to RCs [67]. Another study found that coprecipitation of CDK9 with ICP22 required
US3, and that US3 actually supported CDK9 phosphorylation of the CTD in vitro [68]. This
study also confirmed a role for UL13 in the accumulation of IIi, while observing different
requirements for US3 in different cell types. As both kinases directly phosphorylate ICP22
in addition to numerous other proteins, there could be multiple, temporally regulated
layers of interactions that facilitate phosphorylation to the IIi form while limiting the
accumulation to hyperphosphorylated IIo. Both kinases are packaged into the virions [69],
though it is unclear if the incoming amounts are sufficient to influence transcriptional
remodeling. Additionally, the formation of both total and pS2 RPB1 foci is affected by the
mutation of three phosphorylation sites in ICP27 [70], indicating roles for kinases in the
global remodeling of transcription environments.

The maintenance of other CTD marks during infection is likely a consequence of
requiring them for transcription of viral genes. Another possibility is the action of viral
proteins supersedes their normal roles in transcription and that direct regulation of the
CTD mark was not advantageous during evolution. Lacking a clearly defined role, but
whose mutation results in a range of defects [71], there is currently little to specifically
suggest pY1 is dysregulated in infection or what unique phenotypes would be discernable
among the numerous other transcriptional defects. In addition to pS2, cellular transcription
termination sites are enriched for phospho-Thr4 (pT4), and it is intriguing to think that HSV
could additionally remove pT4 as a means of shutting down host 3′-end formation. How-
ever, as discussed below, failure to terminate host mRNAs during infection predominately
operates by protein interactions with polyadenylation factors, making it unclear if pT4 is
needed for viral genes or if redundant phospho-CTD strategies were simply not adapted
to inhibit host mRNA polyadenylation. At the beginning of mRNA transcription, CDK7
phosphorylates CTD Ser5, and this helps recruit capping machinery to nascent RNA. Stud-
ies did not observe a decrease in levels of phospho-Ser5 (pS5) by Western blotting [50,72],
and ChIP studies using Pol II antibodies that were specific for pS5 or the N-terminus of
RPB1 observed similar trends on both the host and viral genome [29,30,42,73]. CDK7 also
copurifies with Pol II isolated from infected cells [27], and genes with reduced pS2 in
ICP22-expressing cells maintained an equal fraction of pS5 [51]. These data indicate S5
phosphorylation is one of the few processes that does not appear to be disrupted explicitly
by HSV, likely being critical in the transcription of viral mRNA.

Additional regulation of factors such as proline isomerization or glycosylation can
only be studied indirectly or with specific mass spectrometry-based approaches, and none
have yet been attempted in HSV infection [44]. It has been observed that ICP27 facilitates
RPB1 ubiquitination during infection, signaling for degradation as a possible means of
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clearing hyperphosphorylated Pol II [49,74]. Interestingly, these studies found prevention
of pS2 loss with proteasome inhibitors. While the majority of pS2/7 could be residing on a
small proportion of hyperphosphorylated IIo in the cell, phospho-CTD reductions occur
before a comparable drop in total RPB1 protein levels in multiple cell types indicating
that remodeling is regulated beyond bulk turnover [47,50]. In contrast to HeLa cells [72],
total RPB1 protein levels were stable through the peak of viral transcription in primary
fibroblasts, while an almost complete loss was observed by 24 hpi. This loss was partially
prevented by mutation of the Lysine 1268 polyubiquitination site, which mediates the
proteasomal degradation of RPB1 during transcription-coupled DNA repair. In contrast,
mutation of this site had no impact on phospho-serine loss. Reconciling CTD remodeling
with RPB1 degradation will provide insight into the temporal regulation of polymerases
during infection, as this data suggests that multiple pathways may be involved.

One avenue of interest in this particular regard is Pol II trafficking into virus-induced
chaperone (VICE) domains. These domains were named for their localization of multiple
cellular protein chaperones, proteins associated with heat shock, ubiquitination, and pro-
teasomal degradation. They are proposed to serve various roles in protein quality control
and early replication compartment formation [74–79]. Relevant to this discussion is that
Pol II can be trafficked to VICE domains where it has been proposed to undergo ubiquitin-
mediated degradation [74]. Proteasome inhibition, which prevents pS2/7 loss [49,50], also
prevented the formation of these domains [74]. It remains to be determined whether traf-
ficking to VICE domains facilitates CTD remodeling by localizing RPB1 to viral proteins or
other cellular factors or if RPB1 is fated only for degradation. VICE domain formation can
require viral proteins ICP0, ICP22, or ICP27 in different cell types [60,70,74,75,80], compli-
cating direct correlations to the loss of VICE domains with the different phenotypes of CTD
phosphorylation associated with these proteins. Live-cell microscopy studies to measure
the rates of RPB1 trafficking between the nucleoplasm, VICE domains, viral replication
compartments, and host chromatin could provide valuable insights into mechanisms of
global Pol II remodeling and degradation.

5. RNA Processing in Splicing and Termination

Sequencing newly synthesized RNA isolated by chemical labeling demonstrated that
3′-end formation and polyadenylation were globally disrupted on most cellular genes [81].
Studies using ChIP-Seq confirmed an increased Pol II occupancy downstream of host genes
during HSV infection [37]. Disruption of host Pol II transcription termination (DoTT)
turned out to be a major contributing factor to the globally observed shutdown of cellular
protein synthesis as these improperly terminated mRNAs are not exported from the nucleus
and are thus removed from the translatable mRNA pool. Mammalian cells induce global
extensive transcription downstream of genes (DoGs) in response to several abiotic stresses,
while a significant overlap exists with the genes exhibiting failure in salt, heat, and HSV
infection in fibroblasts; characteristics unique to HSV were identified [82]. The percentage
of transcripts on a gene that failed to terminate (upwards of ~70% by 8 hpi vs. ~30% in salt
or heat) and the distance they traveled downstream were much greater in HSV infection.

Another study identified that the extended length of polymerases downstream of
genes in HSV infection compared to stress was due to the viral protein ICP27, whose
transfection was sufficient to inhibit 3′-end formation of many cellular genes [83]. ICP27
was found to directly interact with the Cleavage and Polyadenylation Specificity Factor
(CPSF), in a manner that excluded the symplekin protein and prevented 3′-end formation.
ICP27 has long been known as a regulator of polyadenylation on viral genes [84], and
the presence of an ICP27-binding site proximal to the polyA site was found to rescue
3′-end formation and polyadenylation of viral, and some cellular, mRNA. While the overall
tendency for the host is disruption of CPSF function, ICP27-binding results in many
alternative polyadenylation sites on cellular genes, typically upstream of usual sequences,
and these can indeed be exported and translated [85,86].
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The disruption of transcription termination can account for several previously de-
scribed defects in the processing and expression of host mRNAs during infection, particu-
larly regarding roles assigned to ICP27. The failure of polymerases to properly terminate
resulted in elongation into downstream genes, accounting for the apparent induction
of hundreds of host mRNAs observed when only considering reads within annotated
gene bodies. Interestingly, read-in transcription into downstream genes commonly was
accompanied by impaired splicing, indicating that polyA site recognition of the nascent
mRNA by cellular factors in the nascent RNA transmits signals to the actively transcribing
polymerase that interfere with splicing mechanisms downstream. Many of the defects
described in pre-mRNA splicing could thus be only observed in downstream genes read
into by termination-incompetent polymerases. In contrast, splicing of the initial upstream
gene generally occurred normally. Furthermore, the resulting significant readthrough
transcripts are displaced from host chromatin but generally not exported to the cytoplasm.
Disruption of transcription termination thereby directly contributes to host shut-off [81,82].
Though technology at the time generally limited the ability to distinguish specific events
from broad defects of polymerases failing to terminate, ICP27-mediated regulation of
the latter two functions, splicing, and downstream nuclear export have been topics of
considerable focus.

Indications that HSV, or ICP27 in particular, can inhibit splicing were observed by host
mRNAs migrating at the higher molecular weight on Northern blots [87,88], or studying
the expression of spliced reporter plasmids or total RNA levels of individual cellular
genes [89–96]. Contemporaneously, studies with the α-globin gene indicated that there
may be a separate phenomenon explaining the accumulation of unspliced transcripts from a
global inhibition of splicing [97,98]. ICP27 was also observed to coprecipitate with antisera
against Sm proteins [99], which bind the 3′-ends of snRNAs and promote spliceosome
assembly; with Spliceosome-associated protein 145 (SAP145), which helps tether the U2
snRNP [100], as well as SR protein kinase 1 (SRPK1), which phosphorylates splicing
factors [101,102]. The structure of the recently determined ICP27 RGG domain/SRPK1
interaction [103] has revealed that this competitively precludes SRPK1 binding to splicing
factor serine/arginine-rich splicing factor 1 (SRSF1). Furthermore, redistribution of splicing
complexes in the nucleus to speckles surrounding viral DNA could be observed in infection
dependent on ICP27 [92,104–109]. These effects, in combination with ICP27′s association
with the nuclear pore and export of viral mRNA, previously lead to the conclusion that
ICP27 is a major regulator of cellular pre-mRNA splicing and that this inhibition or other
mechanisms lead to nuclear accumulation of host transcripts. There is thus a substantial
body of evidence that ICP27 can affect splicing factors, even though nascent RNA profiles
from different times of infection exclude a global and generalized inhibition of splicing [81].

An important question to resolve is whether intron retention caused by ICP27 stim-
ulates alternative polyA site usage or if ICP27 binding to GC-rich sequences near other
polyA sites terminates transcription before proper recruitment of snRNPs and splicing. An
additional complication with total RNA analysis arises from the observation that splicing
can influence sensitivity to VHS degradation [110]. We emphasize the need for investi-
gations into splicing to use techniques that distinguish RNAs generated at the proper
promoter for a gene from those of upstream genes failing to terminate. Such techniques
include those using chemical labeling (e.g., 4sU-Seq), long-read sequencing, or minimally
normalization of polyadenylated RNA to chromatin-associated rather than total/total nu-
clear RNA. Chromatin-associated RNA closely matches nascent transcriptomes determined
by chemical labeling in HSV infection [111], and is currently the most cost-effective and
procedurally simple approach to differentiate co- from post-transcriptional events directly
compatible with established HSV infection protocols for total RNA.

6. Histone and Chromatin Regulation

Chromatin is a dynamic structure that helps to regulate the accessibility of DNA to
transcriptional machinery, thus being closely linked to gene activity [112]. The nucleosome,
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the basic unit of chromatin, consists of a protein core composed of 147 bp of DNA wrapped
around the histone protein octamer (reviewed in [113]). The nucleosome octamer comprises
two copies of each of the canonical histones—H3, H4, H2A, H2B—which interact in an
ordered manner during the nucleosome assembly. Linker histone H1 plays an essential
role in maintaining the higher-order structure of chromatin through locking DNA wrapped
around the histone core at the dyad axis. Other reviews discuss the rich topic of chro-
matin on viral genes during lytic infection and latency [114–116]. Here, we focus on the
observations for cellular genes.

Host genes exhibited significantly more open chromatin regions (OCRs) downstream
of failed polyA sites in HSV infection, but not in salt or heat stress, as measured by assay
for transposase-accessible chromatin using sequencing (ATAC-Seq) [82]. This is suggestive
of a defect in histone repositioning for elongating polymerases due to the actions of viral
proteins. Interestingly, OCRs are exclusively observed downstream of affected polyA sites
but not within gene bodies. However, transcription into actively transcribed downstream
genes still results in OCR within the respective gene bodies. This indicates that not the
nature of the affected chromatin regions but rather signals from the partially recognized
polyA site within the nascent mRNA alter the composition of the actively transcribing Pol
II and impair histone repositioning in the wake of Pol II.

FACT and SPT6 are among several identified histone chaperones with established roles
in nucleosome assembly/disassembly during the Pol II-mediated transcription elongation.
FACT is a heterodimeric histone chaperone composed of two subunits, Spt16 (suppressor
of Ty 16) and SSRP1 (structure-specific recognition protein 1), which promote transcription
elongation through nucleosomes (reviewed in [117]). It was identified that ICP22 interacts
with both FACT subunits by Co-IP and mass spectrometry [42,43], while ICP8 is also
purified with Spt16 [118]. FACT can act with P-TEFb to alleviate promoter-proximal
pausing [119], and promote Pol II elongation through nucleosomes [120]. FACT thus
represents another regulatory nexus impacted by HSV worth further investigation.

There is evidence demonstrating histones of host chromatin are broadly affected by
HSV infection. All linker histone H1 variants were observed to increase mobilization away
from chromatin during infection by fluorescence microscopy in manners independent of
ICP0 but enhanced by early viral gene expression [121]. Similar increases in the unbound
pool were observed for core histones H2B, H4, H3.1, and variant H3.3 [122,123]. The
ChIP-qPCR analysis identified a loss of histone H3 on actively transcribed GAPDH and U3
genes during infection, but not on a non-transcribed pericentric satellite sequence [124]. An
increase in the repressive H3K9me3 mark was observed on cellular genes in the presence of
immune factor IFI16 [125]. Increased mobility of multiple histones has also been observed
with transient expression of ICP4 [126]. Furthermore, dynamic changes in the levels of a
wide array of histone post-translational modifications during HSV infection at both total
and chromatin-associated protein levels have been identified by mass spectrometry [127].
While the changes in histone locations and modifications can enhance viral gene transcrip-
tion, additional effects on host gene expression are likely. It would thus be of interest
to clarify whether the observed mobilization of linker histones is linked to the observed
dOCR formation. Furthermore, it needs to be identified in future ChIP-Seq studies which
histones show alterations and to include regions downstream of failed polyA sites rather
than limiting the analysis to the areas typically transcribed in uninfected cells.

7. Broader Networks and Future Considerations

HSV infection induces a transcriptional program in cells that gears them towards the
production of progeny virus particles. While microarray studies indicated the seeming
induction of several host genes [128–130], particularly antiviral responses, viral and cellular
profiles induced are highly variable between individual cells and depend on various
factors that include virus dose, virus stock quality, viral genetic variability, the status of
the cell and cell type tested. Notably, RNA-Seq data has to be carefully analyzed to avoid
misinterpretations as many transcripts are affected by termination failure and, in turn, are
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atypically spliced, might extend into downstream genes, and, more importantly, fail to
get exported to the cytoplasm [81,82,111]. The post-transcriptional stability and, thereby,
viral and cellular RNA levels are regulated by the nuclease activity of the aptly named
virion host shutoff (VHS) protein, further complicating conclusions of transcriptional
regulation from the level of total, cytoplasmic, or polyadenylated RNA. While recent
studies have identified many interesting findings from total RNA analysis [131–135],
general conclusions at the level of transcription are complicated by the varying technical
methods and biological contexts utilized. Interestingly, nuclease activity of VHS globally
reduced Pol II transcription of host genes, as was observed before with the SOX nuclease
from murine gamma-herpesvirus 68 (MHV68) [111,136]. A proper discussion of host
mRNA accumulation, its translation, and resulting outcomes on infection, particularly
regarding innate immunity, is outside the scope of this review.

Despite the array of transcriptional and post-transcriptional barriers blocking cellular
responses to HSV infection, cellular transcription pathways can be activated. Expression of
the embryonic transcription factor double homeobox 4 (DUX4) is induced following HSV-1
infection, and this leads to the accumulation of numerous downstream genes, including
antiviral proteins such as TRIM43 [137,138]. Genes repressed by DUX4 induction are signif-
icantly enriched in the set of genes transcriptionally downregulated during HSV infection,
further identifying DUX4 and possibly other embryonic transcription factors as master
regulators during infection [111]. Nascent RNA-Seq analysis identified that only a slight
fraction of genes not expressed in uninfected fibroblasts are transcriptionally upregulated
in infection, outside of DUX4 genes and those upregulated by type I and II interferons [111].
This study also investigated the role of VHS on transcriptional activity and observed that
VHS, through its nuclease activity, caused the downregulation of a set of genes that are
associated with the fibroblast lineage (adhesome, ECM organization, metalloproteinases,
etc.) and might thus be an important factor in driving the de-differentiation program by
destabilizing the mRNAs of certain transcription factors.

Most research on transcription during HSV infection has focused on Pol II, but there
is nothing to suggest that this is due to a lack of Pol I or III regulation during infection. As
mentioned above, transcriptional activity of all three polymerases decreases within the
first few hours after viral entry. Shortly after the development of an antibody against it,
the Pol III-associated La protein was observed to relocalize to the cytoplasm as well as the
cell surface in HSV infection [106,139,140]. 5S rRNA pseudogene transcripts can regulate
immune responses to HSV by relocalizing to the cytoplasm and binding to RIG-I [141].
Pol III has been proposed to facilitate innate immune recognition by transcribing cytosolic
DNA [142], and Pol III inhibitors reduced interferon responses to infection with HSV
and several other DNA viruses [143]. At the very least, as rRNA levels have served as
normalization controls in multiple RNA-Seq and qPCR studies, it would be of benefit to
rule out specific downregulation of these genes during lytic infection to better clarify how
global RNA synthesis is impacted by metabolic states of infected cells when quantifying
disruptions of Pol II-related activities. In addition, HSV-1 induces transcription of telomeric
repeat-containing RNA (TERRA) in an ICP0-dependent manner, though the implications
of this remain unclear [144]. Last but not least, HSV also impacts mitochondrial gene tran-
scription. The viral UL12.5 nuclease localizes to mitochondria and mediates mitochondrial
DNA depletion to interfere with intrinsic defense mechanisms [145,146], and mitochondrial
RNAs can regulate immune response to HSV infection [147].

There are many directions to explore in understanding how HSV regulates host tran-
scription. A comprehensive analysis of truly HSV-1-upregulated programs should include
the proper omics approaches and selection of genes not affected by read-in transcription
from upstream polyA site failure. Isolation of chromatin-associated RNA is a relatively
cost-effective method to study transcriptional responses that more closely match the truly
nascent profile than total RNA. Established techniques such as ChIP- and mNET-Seq
can quantify viral proteins’ impacts on histone repositioning and Pol II CTD regulation.
Non-sequencing-based techniques such as high-resolution microscopy can determine the
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exchange of histones or transcription factors at sites of cellular transcription and even
distinguish differences between individual cells. Additional structural information and
reconstituted in vitro measurements to study personal activities will help clarify the roles
of different viral proteins that converge on individual cellular factors. It is important to
emphasize again that the majority of studies discussed in this review utilized HSV-1. While
HSV-1 and -2 share considerable conservation at the genomic level, the latter exhibits
greater clinical virulence. Unlike HSV-1, which co-speciated with humans, HSV-2 evolved
in non-human ancestral hosts. It is thus of interest to determine if variations in homologous
viral gene products, particularly in the nuclear immediate-early proteins, affect interactions
with cellular transcription factors. These, in turn, can impact the cascade of viral gene
expression, host immune responses, and resulting pathology.

Accurately summarizing the array of attacks HSV performs on host transcription, Ran-
dall Jay Cohrs (Randy; 1952–2021) at the 2021 Colorado Alphaherpesvirus Latency Society
Symposium said, “HSV is like a railroad spike, it’s hard to study an individual process
because it breaks everything while VZV [varicella zoster virus, another alphaherpesvirus]
is like a nail.” We would like to thank Randy for his friendly personal discussions and innu-
merable scientific contributions and believe that ongoing research has the potential to shape
that railroad spike into a tool that can be manipulated in clinical and oncolytic settings.
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