
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Mathematical Biosciences 341 (2021) 108712

G

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original Research Article

Retrospective analysis of interventions to epidemics using dynamic
simulation of population behavior
Jenna Osborn, Shayna Berman, Sara Bender-Bier, Gavin D’Souza, Matthew Myers ∗

Division of Applied Mechanics, U.S. FDA/CDRH, Silver Spring, MD 20993, USA

A R T I C L E I N F O

Keywords:
COVID-19
SIR model
Infection-spread model
Personal protective equipment
Facemask

A B S T R A C T

Retrospective analyses of interventions to epidemics, in which the effectiveness of strategies implemented are
compared to hypothetical alternatives, are valuable for performing the cost–benefit calculations necessary to
optimize infection countermeasures. SIR (susceptible–infected–removed) models are useful in this regard but
are limited by the challenge of deciding how and when to update the numerous parameters as the epidemic
changes in response to population behaviors. Behaviors of particular interest include facemask adoption
(at various levels) and social distancing. We present a method that uses a ‘‘dynamic spread function’’ to
systematically capture the continuous variation in the population behavior and the gradual change in infection
evolution, resulting from interventions. No parameter updates are made by the user. We use the tool to quantify
the reduction in infection rate realizable from the population of New York City adopting different facemask
strategies during COVID-19. Assuming a baseline facemask of 67% filtration efficiency, calculations show that
increasing the efficiency to 80% could have reduced the roughly 5000 new infections per day occurring at the
peak of the epidemic to around 4000. Population behavior that may not be varied as part of the retrospective
analysis, such as social distancing in a facemask analysis, are automatically captured as part of the calibration
of the dynamic spread function.
1. Introduction

Retrospective analyses of strategies used to contain epidemics such
as COVID-19 are valuable for countering successive waves of the in-
fection, selecting countermeasures for future epidemics, and educat-
ing the population regarding the efficacy of implementing behavioral
modifications. In particular, public-health agencies responsible for rec-
ommending types of personal protective equipment (PPE) to stockpile
in anticipation of a future epidemic can benefit from the cost–benefit
information yielded by retrospective analyses. Mathematical models,
including those of the SIR type, can be helpful in providing a quantita-
tive framework for the analyses. SIR models have been applied during
the COVID-19 pandemic [1–4], primarily in a predictive capacity. Some
of the studies [5,6] have predicted the infection dynamics for different
intervention strategies, using a specific infection scenario (e.g. New
York State).

A formidable challenge in applying SIR models is prescribing the
values of the numerous parameters, and updating them to simulate
evolving infection dynamics, as population behaviors (such as facemask
adoption and social distancing) change in response to interventions.
Typically, behaviors will change in a continuous manner rather than
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abruptly, for example, the gradual adoption of face masks by an af-
fected population. Such gradual changes are difficult to capture in SIR
models by periodically adjusting the parameters manually. The chal-
lenge is further accentuated by the high sensitivity of the predictions
to some of the parameter values [2]. Often, parameter choices are based
upon best guesses, or closeness of fit (sometimes visual) of computed
profiles with published curves [3] .

In this paper, we introduce a modification of traditional SIR models
that incorporates a ‘‘dynamic spread’’ function that captures changes
in population behavior in a continuous manner. There is no need to
adjust parameters manually as interventions are implemented during
the course of the infection. The dynamic spread function satisfies a dif-
ferential equation with variable coefficients. These coefficient functions
are obtained from a calibration procedure employing the published in-
fection profile for the region of interest. The computed dynamic spread
function reproduces the infection profile resulting from the baseline
intervention strategy implemented over the course of the epidemic.
Subsequently, the spread function can be systematically modified to
analyze the effect of alternate intervention strategies. We illustrate
the process using the COVID-19 crisis in New York City (CNYC) and
New York State. The reduction in infection rate realizable in CNYC
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from alternative intervention strategies, including increased levels of
mask usage and deployment of masks with higher levels of filtration,
is estimated.

2. Methods

We illustrate the technique using a 4-equation SIR model [7,8].
The evolution of the susceptible, infected, and removed populations is
simulated, as is the droplet transmission. The model assumes that the
infection dynamics are dominated by one transmission mode (e.g. air-
borne particulates), and the parameter values are appropriate for all
particle sizes contributing to that mode (though interpretation of the
resulting equations as an average for a broad particle distribution is
possible [8]). More complicated SIR models can be useful, particularly
if it is desired to model the details of the infection dynamics, e.g. quan-
tifying the roles played by symptomatic and asymptomatic individuals
[1]. Our intention is to use the simplest model that can capture the
baseline population behaviors and vary the critical ones retrospectively,
with the hope that the model can be understood and used by non-
experts such as policy makers. Additionally, as noted by Siegenfeld
et al. [9], simpler models can prove more useful than complex ones, in
part because accurate data is often not available to inform complicated
formulations. Finally, we expect that some of the technique we present
can be extended to more complex models.

2.1. Overview of strategy

The dynamic-spread function is the critical element of a systematic
procedure for re-purposing SIR models to perform retrospective stud-
ies. The 5 steps in the procedure are listed below and implemented
subsequently.

(1) Use the rate of change (measured by the number of new infec-
tions per day), dS/dt, of the susceptible population S, as the primary
dependent variable. The derivative profile, which we call T(t), does not
require the number of recovered patients to be tracked.

(2) Normalize variables and identify critical dimensionless param-
eters. Formulating the model in terms of dimensionless clusters of
parameters reduces the number of independent quantities that must be
prescribed to run the model, and aids in identifying the most critical
parameters.

(3) Allow the dimensionless parameter 𝛿, which contains the prod-
uct of the infection transmission rate and the virus production rate, to
vary with time, and account for its time dependence in the governing
differential equation for T(t) . We denote 𝛿(t) the ‘‘dynamic-spread’’
function, as it contains the elements that both vary with time and
govern the rate of spread of the infection. The dynamic spread function
is the critical element of the proposed strategy.

(4) Derive the governing equation for 𝛿(t). Provide the required
coefficient functions using published T(t) profiles for a baseline infec-
tion scenario. Systematically alter the baseline spread function, and
solve the governing equations, to simulate alternative strategies for
countering the infection.

(5) Designate the time origin for the dynamic analysis as the point
of the first intervention into the epidemic. For CNYC, we identify this
as day 17 (from the first reported infection), when shelter-in-place
was instituted. Prior to that point, it is assumed that 𝛿 is constant
in time, and a traditional SIR model applies. The parameters for the
traditional SIR model can be estimated from the published growth
rate and reproduction number. The resulting values serve as initial

conditions for the dynamic-spread-function analysis.

2

2.2. Development of governing equations

The model is based upon a 4-equation set consisting of 3 standard
SIR equations for the susceptible, infected, and removed populations,
plus an additional relation to describe droplet dynamics. The set was
introduced by Stilianakis and Drossinos [7] and extended by Myers
et al. [8] to explicitly account for the influence of protective equipment.
We introduce the equations using a notation in which the primes denote
dimensional quantities, with units such as numbers of persons or 1/day.
The primes will be dropped following nondimensionalization. The basic
set is as follows

𝑇 ′ = 𝑑𝑆′

𝑑𝑡′
= −𝛽𝐷′ 𝑆′

𝑁
(1a)

𝑑𝐼 ′

𝑑𝑡′
= −𝑑𝑆′

𝑑𝑡′
− 𝜇𝐼𝐼

′ (1b)

𝑑𝐷′

𝑑𝑡′
= 𝜅𝐼 ′ − 1

𝜈
𝐷′ (1c)

𝑑𝑅′

𝑑𝑡′
= 𝜇𝐼𝐼

′ (1d)

Here 𝑆′ is the number of susceptible individuals in the total population
N, 𝐼 ′ is the number of infected individuals, 𝑅′ is the number of removed
(recovered or died) individuals, 𝐷′ is the total number of droplets
contributing to the spread of the disease, 𝛽 is the transmission rate, 𝜇𝐼
is the infection recovery rate, 𝜅 is the droplet production rate, and 𝑣−1

is the droplet removal rate. We allow the transmission rate 𝛽 and the
production rate 𝜅 to vary with time. The removed population is not of
interest in the model, hence, the equation for 𝑅′ will not be considered
further.

In the model applications, it is convenient to work with a nondimen-
sional set of equations. Nondimensionalization of the dependent and
independent variables, followed by arrangement of the resulting param-
eters in each equation in clusters, effectively reduces the total number
of parameters. The resulting parameter combinations represent ratios
than can lend insight into the infection dynamics. For example, the
significance of a droplet production rate 𝜅 given in number of droplets
per day can be difficult to appreciate, but the ratio 𝜅 /𝑣−1 of the
droplet production rate to the droplet removal rate can help explain a
rapid increase in the number of infection. In the nondimensionalization
procedure we attempt to use scalings that represent order-of-magnitude
estimates for the relevant variable. In that way, the values of the
dimensionless parameters represent realistic estimates for the ratio of
two competing effects in the infection scenario. Retrospective analy-
ses possess the advantage that some of the representative scales can
be obtained from the known (baseline) infection curves. Properties
of the subsequent retrospective simulations can often be anticipated
based upon parameter values derived from the baseline computations.
This is not generally possible with forecasting models. Details of the
nondimensionalization process are as follows.

We introduce the maximum number of new infections recorded per
day (roughly 5000/day for CNYC) 𝛼 for characterizing the infection
quantities. For the relevant time scale, which we label 𝛥, we choose the
time interval between the first intervention (roughly day 17, measured
from the first reported infection, for CNYC) and the day when the
number of new infections per day reaches a maximum (day 37 for
CNYC). This time scale was chosen because it is representative of
the interval over which the number of new infections changes by a
significant (e.g. half the maximum) amount. 𝛥 is 20 days for CNYC.
The parameters 𝛼 and 𝛥 together characterize the infection scenario
and can be used to nondimensionalize the system. When the population
is large (e.g. New York City or New York State), it is convenient to
work in terms of the difference between the susceptible population
𝑆′ and the total population N, because throughout the epidemic the
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entire susceptible population deviates only slightly from N. We call
his difference population 𝑆′

1 and set 𝑆′ = 𝑁 − 𝑆′
1. The relations used

o relate the dimensional (primed) variables to the nondimensionalize
unprimed) variables are:
′ = 𝛥𝑡 (2a)

′ = 𝛼𝑇 (2b)

′ = 𝑁 − 𝛼𝛥𝑆1 (2c)

𝐼 ′ = 𝛼𝛥𝐼 (2d)

′ = 𝜅𝛼𝛥2𝐷 (2e)

sing these relations in Eqs. ((1a) – (1c)) and combining terms yields:

= −𝛿𝐷(1 − 𝛼𝛥𝑆1∕𝑁) (3a)

𝑑𝐼
𝑑𝑡

= −𝑇 − 𝛾𝐼 (3b)

𝑑𝐷
𝑑𝑡

= 𝐼 −𝐷(𝜆 + 1
𝜅
𝑑𝜅
𝑑𝑡

) (3c)

where 𝛾 = 𝛥𝜇𝐼 is the dimensionless infection recovery rate, 𝜆 = 𝛥
𝜈 is

the dimensionless droplet removal rate, and

𝛿 = 𝛽𝜅𝛥2. (3d)

Since 𝛽 and 𝜅 vary with time, 𝛿 is also a function of time. As noted
above, we designate 𝛿(t) the ‘‘spread function’’.

We apply the model only to large-population scenarios, where
(𝛼𝛥) ≪ 𝑁 . For CNYC, this inequality is well satisfied throughout
the course of the COVID-19 epidemic. In that case, the last term
in Eq. (3a) (𝛼𝛥𝑆1∕𝑁) can be ignored. Additionally, the last term in
Eq. (3c), which can be written as 𝑑

𝑑𝑡 ln (𝜅), is considerably smaller than
𝜆. In dimensional terms (removing the time scale 𝛥 from dt and 𝜆),
𝑑
𝑑𝑡′ ln (𝜅) ≪ 1∕𝜈, i.e. the rate of change of the logarithm of the droplet
roduction is much smaller than the rate of droplet removal from all
ources (droplet inactivation, inhalation, filtration ) Results from the
omputations featured in Section 3 showed that the rate of change of
he logarithm of the production rate is on the order of 0.01/day. A
ange of removal rates was considered in our calculations; all were on
he order of 1/day. Ignoring the final terms in Eqs. (3a) and (3c) gives

= −𝛿𝐷 (4a)

𝑑𝐼
𝑑𝑡

= −𝑇 − 𝛾𝐼 (4b)

𝑑𝐷
𝑑𝑡

= 𝐼 − 𝜆𝐷 (4c)

Using Eq. (4a) for T in Eq. (4c), and carrying out the differentiation
and multiplying by 𝛿, gives the two-equation system:
𝑑𝑇
𝑑𝑡

= −𝛿𝐼 − 𝜆𝑇 + 𝑇
𝛿
𝑑𝛿
𝑑𝑡

(5a)

𝑑𝐼
𝑑𝑡

= −𝑇 − 𝛾𝐼 (5b)

s noted above, we take the origin to be the time of first intervention.
3

To determine the dynamic spread function for the baseline scenario,
e reformulate Eq. (5a) as an equation for 𝛿(t), assuming T(t) and I(t)

o be known. The T(t) profile is obtained from the published number
f new infections per day in the locale of interest (e.g. New York City).
e label this published profile 𝑇𝑏(t), where the ‘‘b’’ subscript denotes

baseline, and the resulting (from Eq. (5b)) infection profile 𝐼𝑏(t), and
we insert them into the equation for 𝛿(t). The resulting equation for the
baseline dynamic spread function is:
𝑑𝛿𝑏
𝑑𝑡

=
𝐼𝑏
𝑇𝑏

𝛿2𝑏 +
(

𝜆 + 1
𝑇𝑏

𝑑𝑇𝑏
𝑑𝑡

)

𝛿𝑏 (5c)

Because the governing equation for 𝛿𝑏(t) is informed by the published
𝑇𝑏(t) profile, solving Eqs. ((5a), (5b)) using this dynamic spread func-
tion will reproduce (within numerical tolerances) the published 𝑇𝑏(t)
curve. The utility of 𝛿(t) derives from modifying it to model alternative
intervention strategies and solving Eqs. (5) to determine the new
infection curves (i.e., T(t) and I(t) profiles). Modifications to account
for protective strategies were performed in the following manner.

2.3. Accounting for protective equipment

We build upon a previously developed SIR model [8,10] that sys-
tematically accounts for the presence of protective equipment. Assum-
ing both 𝛽 and 𝜅 vary with time, we can write (Eq. (3d))

𝑑𝛿
𝑑𝑡

= 𝜕𝛿
𝜕𝛽

𝑑𝛽
𝑑𝑡

+ 𝜕𝛿
𝜕𝜅

𝑑𝜅
𝑑𝑡

. (6)

We apportion a fraction 𝜖𝜅 (e.g. 1/5) of the change in 𝛿 to changes in
droplet production, and accordingly set

𝜖𝜅
𝑑𝛿
𝑑𝑡

= 𝜕𝛿
𝜕𝜅

𝑑𝜅
𝑑𝑡

(7)

Since from Eq. (3d)
𝜕𝛿
𝜕𝜅

= 𝛿
𝜅
, (8a)

then

𝜖𝜅
𝑑𝛿
𝑑𝑡

= 𝛿
𝜅
𝑑𝜅
𝑑𝑡

, (8b)

hich can be integrated to

(𝑡) = 𝜅 (0) [𝛿(𝑡)∕𝛿 (0)]𝜖𝜅 . (9)

n Myers et al. [8], it was shown that the droplet production rate in the
resence of protective equipment can be written as

(𝑡) = 𝜅 (0)
[

1 − 𝐹𝐸𝑜𝑢𝑡 ∗ 𝑓𝑖(𝑡)
]

. (10)

ere 𝐹𝐸𝑜𝑢𝑡 is the filtration efficiency (e.g. the FE for an N95 respirator
s 95%) of the mask against outward-going particles produced by the in-
ected individual wearing the mask (also referred to as source control).
f 𝐹𝐸𝑜𝑢𝑡 varies with particle size, we assume that a dominant particle
ize exists in the distribution generated by the infected population,
nd the FE for that size applies. The quantity 𝑓𝑖 is the fraction of the
nfected population wearing the mask at any given time, also known
s compliance rate. We assume that the infected population wearing
asks includes both symptomatic and asymptomatic persons, and that

he masks have an equal effect on reducing the droplet production rate
f symptomatic and asymptomatic persons. Eqs. (9) and (10) can be
ombined to give

𝛿 (𝑡) ∕𝛿(0)]𝜖𝜅 = 1 − 𝐹𝐸𝑜𝑢𝑡 ∗ 𝑓𝑖 (𝑡) , (11)

nd

𝑖 (𝑡) =
1 − [𝛿 (𝑡) ∕𝛿(0)]𝜖𝜅

𝐹𝐸𝑜𝑢𝑡
. (12)

For a given scenario with spread function 𝛿𝑏(t) (derived from Eq. (5c))
and a given baseline mask material (i.e. 𝐹𝐸𝑜𝑢𝑡,𝑏), Eq. (12) allows the
population compliance rate 𝑓𝑖 to be determined as a function of time,
once the relative importance of change in production (𝜖 ) compared
𝜅
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to change in transmission (1− 𝜖𝜅) is estimated. Thus, to perform a
retrospective analysis in which a barrier material of different outgoing-
particle-capturing efficiency is investigated, the baseline compliance
rate as a function of time would first be determined from Eq. (12),
then that compliance profile and the new 𝐹𝐸𝑜𝑢𝑡 value would be used in
Eq. (10) which, with Eq. (9), would be used to create a new dynamic-
spread function. The modified spread function would then be used (in
Eqs. (5a), (5b)) to estimate the change in infection rate. A detailed
example is provided in Section 3.1.

2.4. Solution technique

The initial conditions for Eqs. (5) are obtained by first simulating
the dynamics of the infection prior to any intervention, e.g. days 1 –
17 for CNYC. In that case, the derivative of the dynamic spread function
is zero and Eqs. ((5a), (5b)) revert to a traditional SIR model. Seeking
solutions that have an exponential time dependence of the form exp(Mt)
for T(t) results in the algebraic equation

2 ∗ 𝑀 = − (𝜆 + 𝛾) ± [(𝜆 − 𝛾)2 + 4𝛿0]1∕2. (13)

The subscript ‘‘0’’ on 𝛿 implies that the value applies to the initial period
of the infection, before intervention occurs. The growth rate M can be
obtained from infection rates published during the beginning of the
epidemic, prior to any intervention, e.g. days 1–17 in CNYC. The other
parameters do not vary during the course of the epidemic and are not
subscripted. An exponentially growing solution will occur when

𝑅0 =
𝛿0
𝛾𝜆

> 1 (14)

he symbol 𝑅0 represents the reproduction number [8] for the standard
IR model. Estimates of 𝑅0 for the early stages of epidemics are also
ublished. In the simulations we perform, a range of recovery times
𝐼 (with corresponding dimensionless recovery times 𝛾) ranging from
days to 10 days was considered. For any given value of 𝛾, 𝜆 and 𝛿0
ere obtained using published values of the reproduction number 𝑅0

(Eq. (14)) and growth rate M (Eq. (13)) for the scenario of interest.
The 𝑇𝑏(t) profile for CNYC was obtained from the Johns Hopkins
Coronavirus Resource Center, wherein the data beginning at day 17
was used. I𝑏(t) was derived from 𝑇𝑏(t) using Eq. (3b), rather than using
a published infection profile, so that it was not necessary to ascertain
how well recoveries were tabulated in the published infection curves.

Uncertainties were determined by performing simulations for an
ensemble of (𝜇𝐼 , 𝑅0) combinations, with each parameter selected from
the range of published values for a given scenario. Six parameter sets
were typically used to determine the uncertainty. The mean (over the
six-parameter ensemble) T(t) profile, as well as a standard deviation
above and below the mean at each instance of time, are reported.

In the simulations performed to examine different alternate inter-
vention strategies, baseline 𝛿(t) profiles using the actual intervention
strategy were first obtained, and then modified to reflect alternatives.
The governing equations ((5a), (5b)) containing the modified spread
function were solved using a Runge–Kutta method (Matlab ode45,
Mathworks Inc.).

3. Results

We performed a variety of retrospective analyses involving protec-
tive equipment. For CNYC, days 17–37 were analyzed. This interval
was chosen because day 17 is the day of the first intervention (shelter
in place), and day 37 is the time of maximum new infections per day,
based upon a 7-day average [11]. Initial reproduction numbers between
2 and 6 were considered, along with recovery times between 2 days
and 10 days. The fraction 𝜖𝜅 required to determine the compliance
(Eq. (11)) was assumed to be 1/5. The infection scenario involving
the entire state of New York was also considered in another set of

simulations.

4

3.1. Effect of mask efficiency in CNYC

Using the procedure described in Section 2.3, we analyzed scenarios
where the infected population in New York City deployed different
types of masks. It was assumed that only the infected population
deployed the masks, i.e. we considered a source-control measure. To
illustrate the procedure of Section 2.2 for this scenario, we identify the
outward filtration efficiency of the baseline mask as 𝐹𝐸𝑜𝑢𝑡,𝑏, where the
‘‘b’’ subscript denotes baseline, and the outward filtration efficiency of
the modified mask design as 𝐹𝐸𝑜𝑢𝑡,𝑚𝑜𝑑 . Using the 7-day average data
[11] for CNYC in Eq. (5c) generates the baseline source function 𝛿𝑏(t).
The baseline mask compliance profile 𝑓𝑖,𝑏 (Eq. (12)) is

𝑓𝑖,𝑏 (𝑡) =
1 − [𝛿𝑏 (𝑡) ∕𝛿(0)]𝜖𝜅

𝐹𝐸𝑜𝑢𝑡,𝑏
. (15)

We assume the compliance profile for the modified mask strategy is
identical to baseline, i.e. the population uses a higher-efficiency mask
but with the same adoption rate. Using the modified mask filtration
rate 𝐹𝐸𝑜𝑢𝑡,𝑚𝑜𝑑 , along with the baseline compliance profile (Eq (15)),
in Eq. (10) for the droplet production gives the modified droplet
production rate

𝜅𝑚𝑜𝑑 (𝑡) = 𝜅 (0)
[

1 −
𝐹𝐸𝑜𝑢𝑡,𝑚𝑜𝑑

𝐹𝐸𝑜𝑢𝑡,𝑏
∗
(

1 − [𝛿𝑏(𝑡)∕𝛿(0)]𝜖𝜅
)

]

(16)

Since the transmission rate 𝛽 does not change in this retrospective
simulation, from Eq. (3d) we can conclude

𝛿𝑚𝑜𝑑 =
𝛿𝑏
𝜅𝑏

𝜅𝑚𝑜𝑑 (17)

Using Eq. (9) to prescribe the baseline production rate and Eq. (16) to
prescribe its modification gives

𝛿𝑚𝑜𝑑 (𝑡) =

[

1 − 𝐹𝐸𝑜𝑢𝑡,𝑚𝑜𝑑
𝐹𝐸𝑜𝑢𝑡,𝑏

∗
(

1 − [𝛿𝑏(𝑡)∕𝛿(0)]𝜖𝜅
)

]

[𝛿𝑏(𝑡)∕𝛿(0)]𝜖𝜅
𝛿𝑏(𝑡) (18)

This expression used as the spread function in Eqs. (5a), (5b) enables
simulation of scenarios involving masks of different filtration efficien-
cies. For baseline, the filtration efficiency was taken to be 67%. This
value is representative of homemade masks [12], though the filtration
capability of homemade masks spans a wide range. For the modified
scenarios, higher-efficiency masks with FE’s of 75%, 80%, and 90%
were considered.

Fig. 1a shows the dynamic spread function as a function of time
for CNYC. A sharp decrease is seen initially, owing to the shelter-
in-place restriction. For larger FE, a slightly sharper decrease in the
dynamic spread function is observed. A slight decrease in dynamic
spread function value is associated with a much larger decrease in new
infections (Fig. 1b). Increasing FE from 67% to 75% , for example,
reduces the dynamic spread function value a few percent at day 37,
while the maximum number of new infections (at day 37) decreases by
about 15%. The turn-around time is decreased from about 37 days to
35 days.

For the same increase of FE from 67% to 75% , the number of
infected individuals (Fig. 1c) at day 37 is reduced by about 30%. The
uncertainty is considerably larger for the infected population (Fig. 1c)
than the number of new infections per day (Fig. 1b), because the
infected population is much more strongly influenced by the recovery
time than the number of new infections. The recovery time spanned a
factor of 5 over all the simulations performed. The uncertainty for the
dynamic spread function (Fig. 1a) is comparable to that for the infected
population, though for clarity it is not shown.

3.2. Effect of mask compliance in CNYC

To evaluate the effect of mask compliance, we assume that the
adoption rate for the mask follows a temporal profile identical to

baseline, but larger or smaller by a factor of F. As in the previous set
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Fig. 1a. Dynamic spread function for CNYC with infected population deploying masks with different filtration efficiencies (FE).
Fig. 1b. Number of new infections per day for CNYC, with infected population deploying masks with different filtration efficiencies (FE). Shadowed regions denote values within
a standard deviation of the mean, for an ensemble of simulations using different reproduction numbers and recovery rates.
of calculations, it is assumed that only the infected population deploys
the masks. Baseline compliance as a function of time is again given
by Eq. (15), and the compliance profile for the modified scenarios is F
times this expression. Using this modified compliance in Eq. (10) gives
the modified production rate

𝜅𝑚𝑜𝑑 (𝑡) = 𝜅 (0)
[

1 − 𝐹 ∗
(

1 − [𝛿𝑏(𝑡)∕𝛿(0)]𝜖𝜅
)]

, (19)

analogous to Eq. (16) for the variable filtration-efficiency simulations.
The baseline spread function 𝛿𝑏 (𝑡) is identical to that for the filtration-
fficiency study; it is given by the top curve in Fig. 1. As in the
ariable-FE case, the transmission term is not altered in the variable-
ompliance simulations. Thus, the steps used to generate the spread
unction (Eq. (18)) from the production term (Eq. (16)) can be repeated
5

here, with Eq. (19) replacing Eq. (16) as the representation for 𝜅(t). The
result is

𝛿𝑚𝑜𝑑 (𝑡) =

[

1 − 𝐹 ∗
(

1 − [𝛿𝑏(𝑡)∕𝛿(0)]𝜖𝜅
)]

[𝛿𝑏(𝑡)∕𝛿(0)]𝜖𝜅
𝛿𝑏(𝑡). (20)

For the mask compliance analysis, a mask of FE of 67% was assumed.
Upon solving for 𝑓𝑖(t), (Eq. (15)) it was found that the baseline fraction
𝑓𝑖(t) of the CNYC population wearing the mask increased from 0%
at day 17 to about 42% on day 37. The 42% maximum compliance
was increased to 50%, 60%, and 70% in a series of computations by
adjusting the F value in Eq. (20), and solving Eqs. (5a), (5b) with this
modified spread function. F was iteratively adjusted to yield the target
compliance at day 37.
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Fig. 1c. Infected population as a function of time for CNYC, when infected population deploys masks of different filtration efficiencies (FE). Shadowed regions denote values
ithin a standard deviation of the mean, for an ensemble of simulations using different reproduction numbers and recovery rates.
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Increasing the mask compliance to 50% reduced the maximum
umber of new infections per day from about 5100 to 4000 (Fig. 2).
he turn-around time is reduced from approximately 37 days to 34
ays. Similarly, increasing the mask compliance from baseline to 60%
nd 70% reduced the number of new infections per day by 42% and
8%, respectively. The corresponding turn-around times reduced to 31
ays and 28 days (Fig. 2).

.3. New York State Scenario

To compare the model’s determination of population behaviors in
ew York City versus that of the New York State, and to compare with

esults computed by other investigators, we briefly consider the COVID-
9 scenario in New York State. Infection data for the state was obtained
rom New York Times Github Database (2020). For New York State,
ays 23–38 were analyzed. This interval was chosen because day 23 is
he day when the first lockdown order was executed [13], and day 38
s the time of maximum new infections per day in the first infection
ave, based upon a 7-day average [14].

The baseline dynamic spread function 𝛿𝑏(t) for New York State was
determined from Eq. (5c), in an equivalent manner to the CNYC case.
In this brief comparison of New York City with New York State, only
one combination of 𝜇𝐼 (or 𝛾) and 𝑅0 values (representing the lower end
f the range of published values) was considered.

The baseline dynamic spread functions for New York City and New
ork State are plotted in Fig. 3a. The initial decay in the spread

unction is steeper for New York State. This translates into considerably
ewer new infections (relative to the total population), and a shorter
urn-around time, as seen in Fig. 3b.

We note that the values plotted in Fig. 3b are just baseline infection
urves. No alternative interventions were involved.

The New York State simulation is useful for comparison with the
tudy by Ngonghala et al. [5], who also analyzed alternative COVID-
9 intervention strategies involving protective equipment and social-
istancing measures. Ngonghala et al. [5] computed numbers of deaths
nd hospitalizations in New York State as the level of social distancing
nd type of mask and mask compliance were varied. For the compari-
on, we assume that our primary dependent variable, numbers of new
6

infections, is proportional to the hospitalization rate throughout the
time range of interest (days 23–38 in New York State).

To incorporate variable social distancing into the dynamic spread
model, modifications to the spread function were made in the following
manner. The level of social distancing is related to the transmission rate
𝛽(𝑡). As described in [7] and [8], the transmission rate is proportional
o the number of contacts between a susceptible individual and an
nfected person. Thus, the level of social contact is proportional to 𝛽(𝑡).

This function is similar to the effective contact rate in [5]. Since the dy-
namic spread function 𝛿(t) is proportional to the transmission rate 𝛽(𝑡)
(Eq. (3d)), different levels of social distancing could be implemented
in a straightforward manner by scaling the baseline spread function
(dashed curve in Fig. 3a) by the desired amount. That is,

𝛿𝑚𝑜𝑑 (𝑡) =
𝐿𝑚𝑜𝑑
𝐿𝑏

𝛿𝑏(𝑡), (21)

where 𝐿𝑏 is the baseline level of social contact and 𝐿𝑚𝑜𝑑 is the modified
level of social contact, and 𝛿𝑏(𝑡) is the baseline spread function for
New York State. Solving Eqs. (5a), (5b) with the scaled spread function
yielded the infection curves for the modified level of social distancing.
Effects of mask efficacy and compliance rate in the New York State
scenario were determined by the same procedure used to generate the
CNYC results in Figs. 1 and 2.

The dynamics for COVID-19 spread in New York State as a function
of social contact level, as predicted by Ngonghala et al. [5] and the
dynamic-spread model, are presented in Table 1. For each model, the
percent reduction (relative to baseline) in the maximum number of
new infections or hospitalizations is tabulated for different reductions
in social contact (i.e. reductions in 𝛽). For the dynamic-spread model,
when the level of social contact was reduced by more than 30% , no
maximum was attained after the initial day (exponentially decaying
number of new infections following intervention), so the comparison
was made at day 38, where the baseline maximum was attained

A larger reduction in the infection metric (number of new infections
or number of hospitalizations) is predicted by the dynamic spread
model for the lowest reduction in level of social contact, but otherwise
comparable reductions are predicted by the two models.

COVID-19 infection metrics in New York State as a function of mask
efficiency and compliance are presented in Table 2. As with social
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Fig. 2. Number of new infections per day for scenarios where various fractions of the infected population in CNYC deploy masks with a 67% filtration efficiency.
Fig. 3a. COVID-19 dynamic spread function as a function of time after first intervention, for both New York City (solid) and New York State (dashed).
able 1
OVID-19 dynamics for New York state for different levels of social contact.
Reduction in
level of social
contact (%)

Reduction in maximum
number of new infections
(%)

Reduction in maximum number
of hospitalizations predicted by
Ngonghala et al. [5] (%)

10 35 24
20 48 48
30 85a 72
40 92a 92

aNo maximum at this level of social distancing; comparison performed at day 38.

distancing, high levels of mask efficiency and compliance yield expo-
nentially decaying rates of new infections after the first intervention.
Hence, comparisons are made at day 38, the time of maximum number
of new infections for the baseline case. When the product of the mask
efficiency times compliance is low, the dynamic spread model predicts
a larger decrease (up to a factor of 1.7) in the infection metric (new
infections or hospitalizations) than the model of Ngonghala et al. [5].
7

Otherwise, comparable changes in the infection metric are predicted by
the two models when different mask strategies are implemented.

4. Discussion

To the extent that reduction in the spread of infection is due
primarily to reductions in social contact compared to lower rates of
droplet production, i.e. assuming 𝜖𝜅 ≪ 1, then the spread function
curve (top line, Fig. 1a) represents the amount of social contact in
New York City during the COVID-19 crisis. Within the first 5 days after
the stay-at-home order, the level of contact drops by half. A slower
adoption of the stay-at-home order is observed after that, but by the
turn-around point (day 37), another factor-of-two reduction in social
contact is achieved. These trends illustrate the continuous nature by
which interventions take place during epidemics. The state of New
York adopted the required behavioral changes faster than the city of
New York (Fig. 3a). This faster rate of behavior modification resulted
in a considerably smaller number of new infections (relative to the
total population) in New York State. Besides enabling the simulation
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Fig. 3b. Numbers of new COVID-19 infections in New York City (solid) and New York State (dashed), as a function of time after the first intervention.
able 2
OVID-19 dynamics for New York state for different mask efficiencies and
ompliance.
Final compliance 𝑓i
(%) (𝑐m in [5])

Reduction in
maximum number of
new infections (%)

Reduction in maximum number
of hospitalizations predicted by
Ngonghala et al. [5] (%)

FE = 25%

10 15 8.7
25 34 22
50 56 43
75 72 64

FE = 50%

10 28 19
25 56 44
50 75 82
75 93a ∼100

FE = 75%

10 39 26
25 69 63
50 93a ∼100
75 98a ∼100

aComparison Performed at Day 38.

of alternative intervention strategies, the dynamic function in Fig. 3a
is useful in interpreting the baseline trends in Fig. 3b.

Another useful interpretation of the dynamic spread function can
be acquired by writing the function (Eq. (3d)) as (𝛽𝜅)∕(1∕𝛥2). The
op, with dimensions of (1/time)2, i.e. (rate)2, can be interpreted as

the rate at which quantities promoting the spread of the infection
are produced and transmitted. The denominator, also with units of
(1/time)2, is inversely proportional to (the square of) the time over
which the population responds to the infection. 𝛿1∕2, then, can be
thought of as the ratio of the infection spread rate to the societal
response rate. The relative intensity of epidemics at different locations,
or in a given population at different times, can be characterized by the
different values of the square root of the dynamic spread function.

The changes in infection metric (number of new cases or number
of hospitalizations during the COVID-19 epidemic in New York State)
due to a variety of interventions involving social distancing and mask
usage were computed using the dynamic-spread model and the model
implemented by Ngonghala et al. [5]. The two models agreed within
about 25% on average. This was felt to be a relatively small difference,
8

given the large number of assumptions in SIR models. Some caveats are
in order, though. First, it is unclear to what extent relative (to baseline)
changes in new infections can be compared with relative changes in
hospitalizations. Second, the time course for the hypothetical scenarios
was quite different between the dynamic spread model and that of
Ngonghala et al. [5]. For example, in [5], application of masks with
higher FE than baseline resulted in curves that are flatter than baseline,
while in the dynamic spread model the curves largely retained the same
shape (Fig. 2). This is due, at least in part, to the fact that behavioral
changes occurred gradually in the dynamic spread model, and they did
not commence until the time of first intervention. In [5], and many
other constant-parameter models, parameter values characterizing hy-
pothesized scenarios with higher degrees of protection are implemented
at the onset of the epidemic. This results in a flat infection profile. An
additional difference between [5] and the dynamic-spread model is that
we assumed only the infected population deployed masks. Adding mask
usage by the susceptible population would increase the reduction in
new infections. This would enlarge the difference between the dynamic
spread model and that of Ngonghala et al. [5] for most scenarios,
since the dynamic spread model usually showed a larger reduction.
However, since the fraction of the reduction in the dynamic spread
function attributed to masks was small (𝜖𝜅 = 1/5), incorporating mask
usage by the susceptible population would not significantly affect the
values in Tables 1 and 2. Mask usage by the susceptible population
was not included in the dynamic-spread model, owing to the fact that
the FE is often different for inward (susceptible people) and outward
(infected people) flux of pathogens, and further analysis was thought
to be necessary before assigning mask efficiencies appropriate for the
susceptible population.

While days 17 to 37 were featured in our simulations of CNYC, the
dynamic spread function technique can be applied to any time interval
where reliable numbers of new infections are available. The standard
SIR model is used prior to the time when either the production rate
or the transmission rate is altered by an intervention strategy. At that
point the dynamic simulations commence, with the results from the
standard SIR model serving as initial conditions.

The parameter 𝜖𝜅 , which quantifies the level of change in the dy-
namic spread function due to droplet production compared to that due
to transmission, was chosen to be small (1/5) based upon the intuition
that social distancing is more important than mask usage in altering
infection dynamics. Other relatively small values of 𝜖𝜅 , e.g. 1/3, yielded

similar results to those reported above. The 𝜖𝜅 parameter is useful



J. Osborn, S. Berman, S. Bender-Bier et al. Mathematical Biosciences 341 (2021) 108712

C
t
T
c
s
m

e
c
o
(
o
i
f
c
r
c
d
t

f
t
w
d
a
f
(
t
u
i
a
(
i
f
t
t
t
i
o
e
p
i
b

i
d
c
t
p
b
r
w
p
e
i
a
a
v
t
t
m

v
t
i
p
t
o
p
t
e
p

m
t
e
W
e
t
o
t
i
i
a
a
n
l
e
c
a
i
w
a
b

a
N
f
b
s
t
p
a
o
u
f
m

C

s
H
s
m
p
a
c
o
e

D

i

for estimating the mask compliance (Eq. (12)), as well as the level of
social distancing, as a function of time. Alternatively, if information is
available on the compliance profile for the scenario of interest, it can
be used in Eq. (12) to determine 𝜖𝜅 more rigorously.

The effects of different protective-equipment strategies in New York
ity and New York State were investigated without having to update
he SIR-model parameters due to interventions during the epidemics.
he continuous adoption of masks is difficult to simulate by updating
oefficients at various times in standard SIR models. With the dynamic
pread approach, the gradual adoption of masks is captured in a natural
anner.

For the conditions of the simulations, a slight increase in facemask
fficiency resulted in a larger benefit than a commensurate increase in
ompliance. At day 37, for example, a fractional increase in compliance
f 0.1 resulted in a reduction in new infections of about 500 per day
Fig. 2), while a fractional increase in FE of 0.1 reduced the number
f new infections by about 800 (Fig. 1b). For a higher baseline FE,
ncreasing the compliance would produce a larger decrease in new in-
ections. This comparison between filtration efficiency and population
ompliance illustrates the utility of the model for determining how
esources devoted to countermeasures can be optimally spent. In this
ase, the model can help inform the choice between (1) producing and
istributing barriers of higher FE, and (2) educating and incentivizing
he population to deploy barriers more readily available.

The model is not intended to be a prediction tool, in the sense of
orecasting the future course of an ongoing epidemic. The purpose of
he model is to compare different intervention strategies for scenarios
here the baseline infection profile (number of new infections per
ay) is provided. Also required are the initial reproduction number
nd an estimate of the recovery rate. Though the model is not a
orecasting tool, it can be useful for designing future countermeasures
e.g. for successive waves of an epidemic), particularly if elements of
he anticipated scenario are similar to those of the baseline scenario
sed to compute the dynamic spread function 𝛿(t). These elements
nclude, most importantly, population behaviors such as face mask
doption (affecting both 𝜅 and 𝛽 in Eq. (5)) and social distancing
affecting 𝛽) , but also environmental factors such as the pathogen
nactivation rate. We refer the reader to Stilianakis and Drossinos [7]
or the dependence of infection dynamics on the numerous properties of
he pathogen, the population, and the environment. Here we emphasize
hat the dynamic spread function implicitly captures the influence of all
hese factors, even though no functional dependence of the parameters
s introduced. Only when considering an alternative scenario that varies
ne of the factors (e.g. the production rate 𝜅 in this study) does the
xplicit parametric dependence enter. An important consequence of this
roperty is that social distancing, likely the dominant factor affecting
nfection dynamics, was captured in the CNYC study without having to
e explicitly modeled.

The method by which the dynamic-source model simulates changes
n population behavior differs from the manner in which it is typically
one with SIR models in two important ways. With most SIR models,
hanges in population behavior are addressed by updating parame-
ers at discrete times. However, the original set of parameters and
arameter updates is not unique. Depending upon the strategy used
y an investigator to minimize differences with published infection
ates, and the ‘‘best guesses’’ made for the parameters that are not
ell informed by data, the investigator can derive significantly different
arameter values from another investigator using the same equations,
ven when both investigators show good agreement with published
nfection curves. When the two investigators perform retrospective
nalyses in which a single parameter is varied, the results of the
nalyses can be sensitive to the baseline parameter values, which can
ary for the two investigators. The dynamic-source method bypasses
his potential uncertainty. The second important difference between
he dynamic-source model and traditional SIR approaches regarding

odeling behavior dynamics is the dynamic-source method treats the i

9

ariation in population behavior over time as a mechanism affecting
he infection dynamics. This mechanism is described by the last term
n Eq. (5a). Even if a traditional SIR model updates the parameters
eriodically, this term is not included. The mechanism is analogous
o transport in physical systems (e.g. fluids), where there is temporal
r spatial variation in a property (e.g. viscosity). The gradient of the
roperty multiplied by the transported entity (e.g. momentum) is a
ransport mechanism that should be included to fully capture the
ffects of property variation, in addition to simply updating the variable
roperty at different times or spatial locations.

As noted above, the lack of forecasting ability is a limitation of the
odel. Similarly, because of the model’s simplicity, it cannot quantify

he effects of the different factors affecting the infection dynamics,
.g. the roles played by symptomatic vs. asymptomatic infected persons.
hile, as mentioned above, any complicated mechanism that affects

ither the droplet generation (parameter 𝜅 in Eq. (5c)) or the infection
ransmission (parameter 𝛽 in Eq. (5c)) is automatically (i.e. as part
f the calibration process, with no user input involved) included in
he spread function during the calibration process, these effects are
ntegrated with all other effects. If it is desired to explore how an
ntervention involving a particular mechanism would retrospectively
lter the infection rate, a direct connection between that mechanism
nd either the droplet generation or the infection transmission would
eed to be specified. While that may not be possible given the model’s
evel of simplicity, we note that in future generations of the model an
nhanced level of specificity should be possible. For example, in our
alculations, all of the types of facemasks used in New York City were
veraged together into a single representative barrier. If information
s available to prescribe the levels at which different types of masks
ere deployed, it is likely that a modified spread function containing
sum over different mask designs weighted by their popularity could

e constructed.
Like previous studies [1,6], our simulations predict that consider-

ble benefit can be obtained from higher FE masks without requiring
95 levels of efficiency (Fig. 1). It is important to emphasize that

or the benefits to be realized, the FE for the barrier material must
e attainable for the particle-size range of the dominant transmis-
ion mode for the given scenario. One way of assuring this is for
he barrier material to provide the given FE across the spectrum of
article sizes. Otherwise, knowledge of the material FE for the intended
pplication (e.g. reducing airborne particulates generated by coughing
r sneezing by infected persons indoors) is required in order to generate
seful estimates. The complex issues of dominant transmission mode
or COVID-19, and the FE of different masks designs for the different
odes, will be addressed in future applications of the model.
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