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The hippocampus of adult rodents harbors two systems exhibiting structural plasticity
beyond the level of synapses and dendrites. First, the persistent generation of granule
cells (adult neurogenesis); second, dynamic changes in the mossy fibers (MF), in particular
in the infrapyramidal mossy fiber (IMF) tract. Because MFs are the axons of granule cells,
the question arises whether these two types of plasticity are linked. In the first part of this
study (Römer et al., 2011) we have asked how both traits are regulated in relation to each
other. In the present part, we asked whether, besides activity-dependent co-regulation,
there would also be signs of genetic co-regulation and co-variance. For this purpose we
used the BXD panel of recombinant inbred strains of mice, a unique genetic reference
population that allows genetic association studies. In 31 BXD strains we did not find cor-
relations between the traits describing the volume of the MF subfields and measures of
adult neurogenesis. When we carried out quantitative trait locus mapping for these traits,
we found that the map for IMF volume showed little overlap with the maps for the other
parts of the projection or for adult neurogenesis, suggesting that to a large degree the
IMF is regulated independently. The highest overlapping peak in the genome-wide associ-
ation maps for IMF volume and the number of new neurons was on distal chromosome
5 (118.3–199.2 Mb) with an LRS score of 5.5 for IMF and 6.0 for new neurons. Within this
interval we identified Nos1 (neuronal nitric oxide synthase) as a cis-acting (i.e., presumably
autoregulatory) candidate gene.The expression of Nos1 is has been previously linked with
both IMF and adult neurogenesis, supporting our findings. Despite explaining on its own
very little of the variance in the highly multigenic traits studied, our results suggest Nos1
may play a part in the complex genetic control of adult neurogenesis and IMF morphology.
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INTRODUCTION
Correlational analysis between behavior and anatomical variation
can be a powerful tool to both develop and test hypotheses about
relationships between structure and function. While correlation
may not imply causation, the converse is almost always true: com-
mon causes should almost always lead to strong correlations. For
this reason, correlation can be a powerful tool to test whether
two processes share causes (Shipley, 2002). In the present study

we exploit a correlational approach to dissect common causes of
adult neuronal plasticity in the mouse hippocampus. Our source
material consists of a large genetic reference panel of extraordi-
narily well studied strains of mice. These mice are also highly
divergent in terms of levels of adult neurogenesis (Kempermann
et al., 2006) that is the lifelong production of new granule cells
in the adult dentate gyrus. This natural perturbation of adult
neurogenesis levels is an excellent platform with which to test
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common cellular and molecular mechanisms that underlie brain
plasticity.

The size of the infrapyramidal mossy fiber (IMF) projection,
which is formed by dentate granule cell axons projecting to pyra-
midal cells in region CA3, correlates positively with performance
in a variety of behavioral tasks (Schwegler et al., 1981, 1988, 1990;
Lipp et al., 1984; Crusio et al., 1987; Roullet and Lassalle, 1990;
Schopke et al., 1991; Bernasconi-Guastalla et al., 1994; Laghmouch
et al., 1997); for a review see: Crusio and Schwegler (2005). In con-
trast, the suprapyramidal mossy fiber (SMF) projection presents
the majority of the connecting fibers and is much more stable
than the immensely plastic IMF (Schwegler et al., 1981; Crusio
et al., 1989). Nevertheless, the underlying mechanism that deter-
mine, why a relatively larger IMF would positively correlate with
hippocampal function have so far remained unidentified. One pro-
posed explanation has been that IMF and SMF connect to different
sets of dendrites (Blackstad et al., 1970) so that variations in the
distribution of mossy fibers (MF) might affect how granule cells
drive pyramidal cells in CA3 (Gonzales et al., 2001).

Size of the MF connection is a classical “quantitative trait,”
in that it varies continuously between individuals (and inbred
strains). A few studies have consequently explored genetic varia-
tion of this trait (Nowakowski, 1984; Lassalle et al., 1999; Crusio
et al., 2007). Whereas the genetic variation of the trait itself
was unambiguously confirmed, the studies did not lead to the
identification of clear candidate genes.

The neuroanatomical plasticity of dentate gyrus-CA3 connec-
tions, however, might represent more than just structural reorga-
nization of pre-existing circuits given the birth of new neurons
in the dentate gyrus throughout adulthood. New neurons send
axons toward CA3 and form functional synapses with postsynap-
tic targets (Zhao et al., 2006; Toni et al., 2008). Therefore, we asked
whether adult neurogenesis and size of the IMF as two different
forms of structural plasticity in the adult hippocampus might be
related.

In the first part of the present study, we had explored, whether
MF plasticity in response to extrinsic stimuli would show co-
regulation with adult neurogenesis. We had shown that new neu-
rons contribute to the highly plastic IMF projection and that both
are co-regulated by environmental enrichment and seizure activity
(Römer et al., 2011).

In the present, second part we turn to a potentially shared
underlying genetics. The MF traits were analyzed in the genetic
reference population of the BXD set of recombinant inbred (RI)
strains of mice, in which we had previously studied adult hip-
pocampal neurogenesis (Kempermann et al., 2006). RI mice are
essentially inbred brother-sister matings from the F2 generation
of an initial cross between the two name-giving parental strains of
the set, here C57BL/6J (B) and DBA2/J (D). Due to the nature of
the breeding scheme, the individual RI strains represent roughly
equal mixes of the parental genome but the pattern is unique to
each strain. All strains of the BXD set are fully genotyped based
on SNPs; the parental strains have been sequenced. The genetic
information as well as numerous published phenotypes (includ-
ing those of the present study) are deposited and publicly accessible
at www.genenetwork.org.

MATERIALS AND METHODS
ANIMALS
This study used a total of 94 female mice from 29 strains of
the BXD RI panel (Taylor, 1978; Taylor et al., 1999) as well as
the parentals, C57BL/6J and DBA/2J. The average age of the ani-
mals was 71 ± 1.2 days old. The data on adult neurogenesis from
these animals have been published previously (Kempermann et al.,
2006).

Correlational studies were done in RI strains of mice from
the RI strains from the set BXD based on C57BL/6J (B) and
DBA/2J (D). Data on adult neurogenesis have been published

FIGURE 1 | Schematic highlighting the different parts of the mossy

fiber projection. The mossy fiber tract consists of the axons of granule
cells in the granule cell layer of the dentate gyrus. Adult neurogenesis
lifelong generates new granule cells, which (as this study shows) might
project through the infrapyramidal blade (IMF) or the suprapyramidal blade
(SMF) of the tract. Our question had been, whether new neurons all project
through the IMF. This figure is also shown in the publication of part 1 of this
study (Römer et al., 2011).

FIGURE 2 | Strain differences in the size of the mossy fiber subfields.

(A,B) Besides differences in the rate of neurogenesis, the parental strains
of the recombinant inbred set C57BL/6J (B) and DBA/2J (A) showed
differences in mossy fiber morphology (anti-synaptoporin staining).
C57BL/6J mice had a larger IMF [arrowheads in (A,B)] and a larger hilus (hl)
compared to DBA/2J mice, whereas the suprapyramidal mossy fiber tract
tended to be bigger in DBA/2J mice. Scale bar in (B): 100 μm. DG, dentate
gyrus; CA3, cornu ammonis area 3; SMF, suprapyramidal mossy fibers; IMF,
infrapyramidal mossy fibers.
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previously (Kempermann et al., 2006). The extent of the MF pro-
jection was measured in tissue from these animals as described
below.

MORPHOMETRIC ANALYSIS
The size of the hippocampal MF projections and terminal fields
were revealed by an immunohistochemical staining procedure
against the presynaptic vesicle protein synaptoporin. Due to its
high content of synaptoporin, the MF tract can be reliably visu-
alized using antibodies against synaptoporin (Singec et al., 2002).
Every sixth section was analyzed to assess the size of the hilus, the
suprapyramidal mossy fiber terminal fields (SMF), and the IMF
(Figure 1). A semi-automated morphometric system (Stereoinves-
tigator, Microbrightfield, Magdeburg) consisting of a CCD camera
(Hitachi) connected to a conventional light microscope (Leica
DM-RXE) and a personal computer were used. MF fields were
outlined from the projected image (magnification: 10×, NA: 0.30)
and area sizes were determined using the area measurement tool
(based on the Cavalieri estimator) of the stereology software Stereo

Investigator (MicroBrightField). To obtain the volume of the ter-
minal fields, the sum of areas measured was multiplied by the
inverse of the sampling fraction (6) and 40 (the section thickness
in micrometer).

QTL MAPPING AND STATISTICAL ANALYSES
All numerical baseline analyses were performed using Statview
5.0.1 for Macintosh or R. For all comparisons ANOVA was
performed followed by Fisher’s post hoc test, when appropriate.
Differences were considered significantly different at a p < 0.05.
Data from the Lassalle et al. (1999) study (see Discussion) were
obtained from www.genenetwork.org. All numbers in the text and
tables are mean ± SEM.

Correlations were calculated with the analysis tools at
www.genenetwork.org.

HERITABILITY
An estimate of the broad-sense heritability was calculated as the
variance of the strain means (the genetic variance) divided by

Table 1 | Volumes of the mossy fiber tract and its sub-structures in BXD strains.

Hilus SMF IMF Hilus + SMF MF (total)

Mean SE Mean SE Mean SE Mean SE Mean SE

C57 0.1246 0.0135 0.1551 0.0207 0.0440 0.0032 0.2797 0.0295 0.3237 0.0325

DBA 0.0904 0.0118 0.2173 0.0173 0.0197 0.0018 0.3077 0.0220 0.3274 0.0234

BXD1 0.1187 0.0167 0.2058 0.0192 0.0363 0.0070 0.3246 0.0318 0.3609 0.0387

BXD2 0.0929 0.0012 0.1583 0.0058 0.0422 0.0032 0.2512 0.0070 0.2934 0.0102

BXD5 0.1350 0.0483 0.1628 0.0145 0.0456 0.0090 0.2978 0.0628 0.3435 0.0718

BXD6 0.1081 0.0205 0.1892 0.0272 0.0236 0.0027 0.2974 0.0326 0.3210 0.0346

BXD9 0.1601 0.0357 0.1986 0.0417 0.0281 0.0035 0.3587 0.0740 0.3867 0.0774

BXD11 0.1181 0.0469 0.1106 0.0276 0.0208 0.0046 0.2287 0.0704 0.2495 0.0734

BXD12 0.0844 0.0066 0.1357 0.0065 0.0347 0.0008 0.2201 0.0127 0.2548 0.0127

BXD14 0.0889 0.0209 0.1616 0.0206 0.0214 0.0051 0.2505 0.0412 0.2719 0.0455

BXD15 0.0800 0.0115 0.1645 0.0244 0.0244 0.0040 0.2445 0.0345 0.2689 0.0384

BXD16 0.1330 0.0112 0.1903 0.0379 0.0380 0.0039 0.3233 0.0439 0.3613 0.0469

BXD18 0.1450 0.0234 0.1664 0.0041 0.0524 0.0118 0.3114 0.0275 0.3637 0.0393

BXD19 0.1323 0.0149 0.1968 0.0303 0.0285 0.0058 0.3291 0.0449 0.3576 0.0507

BXD21 0.0990 0.0070 0.1855 0.0019 0.0373 0.0009 0.2844 0.0089 0.3217 0.0080

BXD22 0.1051 0.0163 0.1850 0.0170 0.0253 0.0017 0.2901 0.0064 0.3155 0.0049

BXD24 0.0656 0.0171 0.1070 0.0256 0.0259 0.0053 0.1726 0.0426 0.1985 0.0476

BXD25 0.0642 0.0109 0.1500 0.0094 0.0214 0.0036 0.2142 0.0154 0.2356 0.0168

BXD27 0.0712 0.0161 0.1478 0.0190 0.0278 0.0038 0.2191 0.0334 0.2468 0.0365

BXD28 0.0652 0.0065 0.1116 0.0230 0.0223 0.0028 0.1768 0.0294 0.1991 0.0322

BXD29 0.0697 0.0114 0.1143 0.0063 0.0147 0.0026 0.1840 0.0062 0.1987 0.0088

BXD30 0.0842 0.0152 0.1181 0.0246 0.0284 0.0084 0.2023 0.0397 0.2307 0.0431

BXD31 0.0889 0.0027 0.1455 0.0194 0.0229 0.0042 0.2344 0.0195 0.2573 0.0217

BXD32 0.1004 0.0173 0.1302 0.0098 0.0214 0.0024 0.2306 0.0247 0.2520 0.0272

BXD33 0.0992 0.0231 0.1178 0.0223 0.0276 0.0055 0.2170 0.0454 0.2446 0.0509

BXD34 0.0865 0.0184 0.1136 0.0252 0.0364 0.0070 0.2000 0.0435 0.2364 0.0504

BXD35 0.1608 0.0200 0.1975 0.0022 0.0371 0.0006 0.3584 0.0221 0.3954 0.0227

BXD38 0.1144 0.0067 0.1585 0.0109 0.0363 0.0021 0.2730 0.0101 0.3093 0.0085

BXD39 0.1538 0.0294 0.1578 0.0146 0.0249 0.0019 0.3116 0.0161 0.3366 0.0142

BXD40 0.1289 0.0131 0.1558 0.0096 0.0296 0.0044 0.2847 0.0211 0.3143 0.0250

BXD42 0.1121 0.0125 0.1151 0.0039 0.0286 0.0018 0.2272 0.0099 0.2558 0.0094
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the variance of all measurements (the total phenotypic variance).
Calculation was performed with R.

RESULTS
MOUSE STRAINS C57BL/6J AND DBA/2J DIFFER IN FIELD SIZES OF THE
INFRAPYRAMIDAL MOSSY FIBER TRACT
Previous studies have shown that mouse strains C57BL/6J and
DBA/2J differ in the proliferation of precursor cells in the dentate
gyrus, the survival of newborn cells, and the net production of
new granule cells (Kempermann and Gage, 2002; Kempermann
et al., 2006). C57BL/6J mice have more adult hippocampal neu-
rogenesis than DBA/2J mice. Comparisons of the size of the MF
subfields, visualized by an immunohistochemical staining of the
synaptic vesicle protein synaptoporin (Singec et al., 2002), revealed
that in C57BL/6J the IMF was twice as big as in DBA/2J animals
and that C57BL/6J also had a larger hilus (Figure 2; Table 1).
Natural variation in the IMF is thought to be associated with differ-
ences in spatial learning (Crusio et al., 1987; Schopke et al., 1991).
We had previously tested the same strains of mice in the Mor-
ris water maze and had found a better performance of C57BL/6J
compared to DBA/2J mice in acquisition and retention of spatial
memory (Kempermann and Gage, 2002). In summary, the new
and previous data indicate that C57BL/6J and DBA/2J differed
significantly regarding adult hippocampal neurogenesis, learning
of a hippocampus dependent task, and MF distribution.

BXD STRAINS REVEAL LARGE NATURAL VARIATION IN THE MOSSY
FIBER TRACT
To extend the evidence of this relationship we used the set of RI
strains of mice BXD that is derived from inbred F2 progeny of
parental strains C57BL/6J and DBA/2J. The MF tract was visual-
ized in 31 BXD strains (including parentals), again using synap-
toporin immunohistochemistry (Figure 2; Singec et al., 2002).
The volume of the MF connection with its three subfields hilus,
SMF, and IMF was measured using the Cavalieri estimator on a
semi-automated analysis system. Table 1 summarizes the results
giving the mean and SE. Bar graphs in Figure 3 visualize the large
natural variation of the medians for the same traits by present-
ing them in ranked order. The variability suggests that these traits
are all truly quantitative and polygenic in that the values do not
show a bimodal distribution, as would be the case for Mendelian
traits. The rank orders are different for the subtraits. Note that the
parental strains C57BL/6 and DBA/2 are not the extremes.

We next explored the impression that the natural variation of
the different subtraits (SMF, IMF, etc.) differed between the strains
of the BXD panel. Based on our results so far, we expected that
IMF would show greater variability than the rest because it is
more plastic (Lipp et al., 1988; Schopke et al., 1991). The ques-
tion was, whether that greater plasticity would still take place on
a rather homogenous and narrowly defined genetic background.
We found that the size of the SMF correlated well with the total
mossy fiber volume (MF) and reasonably with the hilar volume
but poorly with the IMF (Table 2). Conversely, the IMF also had
low correlation with the hilus and MF.

When the values were correlated with adult hippocampal neu-
rogenesis traits [as deposited in the genenetwork.org database
(Kempermann et al., 2006) (accession numbers 10795, 10796, and

FIGURE 3 |Trait means. The means to the phenotypes, as listed inTable 1,
are displayed in this figure. These data are available in the BXD Published
Phenotypes repository at GeneNetwork (www.genenetwork.org) under the
following accession numbers or trait IDs; (A). (Total) 12591, (B). (Hilus)
12590, (C). (SMF) 12589, (D). (IMF) 12588, (E). (Hilus + SMF) 12587. Values
for the parental strains are colored red for C57BL/6J and blue for DBA/2J.
Error bars are SEM.
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Table 2 | Correlations between measured subtraits.

MF (total) Hilus IMF SMF Prolif. Survival New neurons

MOSSY FIBERS

MF (total) 0.851** 0.510 0.881** 0.122 0.266 0.213

Hilus 0.862** 0.520 0.560* 0.037 0.254 0.165

IMF 0.529 0.479 0.287 −0.208 0.098 0.216

SMF 0.863** 0.516 0.240 0.277 0.277 0.226

NEUROGENESIS

Proliferation 0.110 0.023 −0.231 0.243 0.719 0.630

Survival 0.241 0.192 0.046 0.244 0.761 0.933

New neurons 0.235 0.147 0.150 0.245 0.741 0.947

The upper diagonal half of the table gives Spearman Rank Correlations, the lower half Pearson’s R. Associations greater than 0.75 are highlighted in red, those between

0.5 and 0.75 in green.

Table 3 | Heritability of the mossy fiber traits.

Trait VG VP h2

MF (total) 3.242 × 10−3 6.202 × 10−3 0.52

Hilus 7.996 × 10−4 1.564 × 10−3 0.51

IMF 7.716 × 10−5 1.152 × 10−4 0.67

SMF 1.051 × 10−3 2.03 × 10−3 0.52

10797)], no cross-correlations between the two clusters emerged.
This implies that the two plastic systems are genetically to a large
degree independent.

IMF HAS A GREATER HERITABILITY THAN THE OTHER SUBFIELDS
We next calculated the heritability (h2) of the MF traits. Heritabil-
ity is the amount of variation of the phenotype in a population
that is explained by genetic variation. Heritability of 1 would indi-
cate a completely predictable trait. We have previously published
heritability of the“new neurons”trait with h2 = 0.70 ± 0.05 (Kem-
permann et al., 2006). We now calculated the heritability of our
new traits (Table 3). We found that heritability of IMF was greater
than for SMF and hilus but lower than for adult neurogenesis.

Broad-sense heritability of the traits was calculated as the vari-
ance of the strain means (the genetic variance) divided by the
variance of all measurements (the total phenotypic variance). VG
is the variance of strain means and VP is the variance of pheno-
type. This shows that the IMF trait has in fact a greater heritability
(h2) than the others.

COMPARING QTL MAPPING FOR ADULT HIPPOCAMPAL
NEUROGENESIS AND MOSSY FIBER TRAITS
We next used the mapping tools at www.genenetwork.org to com-
pare the distribution and patterns of potential quantitative trait
loci (QTL) for the MF traits compared to adult neurogenesis. As
the underlying genomic database was updated since our first study
had been published we remapped the published “new neurons”
phenotype (Trait ID 10797) for this purpose. The distribution of
peaks was unaffected but the calculated LRS scores are slightly
lower now. Figure 4 aligns the resulting maps. Reference lines are
drawn through the main peaks in the adult neurogenesis trait.

Despite the lack of an overt correlation between adult neuroge-
nesis traits and MF parameters we saw an apparent alignment
between some of the peaks in IMF (but not the other traits) and
net neurogenesis. Upon closer inspection, the loci for both traits
on Chr1 and ChrX were slightly adjacent to each other and thus
independent.

We remapped the candidate region on Chromosome 5 at greater
resolution and found the overlapping region to lie between 118.3
and 119.2 Mb (Figure 5). This region contains 7 known genes:
Nos1, Fbxo21, Tesc, Fbxw8, Hrk, 2410131K14Rik, and Med13l. Of
note, the same region is also highlighted in the comparison of
IMF with the proliferation phenotype (Trait ID 10795). We now
made use of our previously assembled database of hippocampal
transcriptome data from the BXD panel (Overall et al., 2009).
We mapped the expression QTLs (eQTL) for the candidate genes,
except for Med13l (Mediator complex subunit 13-like), which is
not present in the gene expression data base, and found that Nos1
(probe set 1438483_at) had a highly significant cis-QTL at the very
same location. A cis-QTL means that the expression of the gene
maps to its own physical location on the genome. Cis-acting genes
are thought to exert strong influences on the traits they are asso-
ciated with because they are largely autoregulatory and thus less
dependent on the activity of other genes.

Knockout mice for Nos1 were reported to show a striking loss
in IMF projections (Keilhoff et al., 2001) but have increased cell
proliferation and neurogenesis (Zhu et al., 2006; Fritzen et al.,
2007).

RIKEN cDNA 2410131K14 gene also was also cis-acting, but
with lower LRS score (23.0 vs. 36.5) and a lower expression in the
hippocampus than Nos1. There is no further information on this
gene.

DISCUSSION
In this study we show that the two types of structural plasticity in
the hippocampal dentate gyrus, the generation of newborn neu-
rons and the IMF, show a largely independent genetic control. As
demonstrated in part 1 of this study, the axons of newborn neu-
rons also contribute to the most plastic part of the MF tract the
IMF but not exclusively so.

We reasoned that a straightforward way to explore any par-
tial causative link would be through potentially shared genetics.
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FIGURE 4 | Quantitative trait loci maps. Alignment of the QTL maps for the
traits analyzed in this study as well as remapping of two adult neurogenesis
phenotypes from Ref. (Kempermann et al., 2006). On the y axis is the
likelihood ratio statistics (LRS, equivalent to the LOD score multiplied by
4.61). On the x axis are the physical loci of the mouse genome, beginning
with the first locus of Chr 1 on the left and ending with the last locus of Chr X
on the right. The horizontal gray line highlights the conventional level of
“suggestiveness” (p = 0.67), the red line genome-wide significance at

p = 0.05. The blue curve is the LRS score. The orange vertical auxiliary lines
mark the positions of the highest peak of the “new neurons” trait (F)

reflecting the total number of BrdU/NeuN-double positive cells 28 days after
last BrdU injection. At first sight, IMF (D) shows an overlap at three of these
sites, whereas the other mossy fiber traits (A), (B), (C) and (E) do not. As
depicted in Figure 5, however, only the peak on Chr 5 is truly overlapping. All
mappings were generated with the QTLReaper software as implemented by
www.genenetwork.org.
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FIGURE 5 | Finemapping on Chr 5. The highest overlapping peak for both
the New Neurons (from Ref. Kempermann et al., 2006) and the IMF trait is on
distal Chr 5 (marked by the dashed box). The interval spans between 118.3
and 119.2 Megabases. The map was generated with WebQTL

(www.genenetwork.org) but redrawn for better graphic resolution. We used
2000 bootstraps for both maps to calculate confidence limits for the QTL and
saw sharp peaks in the bootstrap samples, confirming the statistical
robustness of the association (details not shown).

FIGURE 6 | Expression QTL (eQTL) for Nos1. The physical locus of Nos1 is within the interval identified in Figure 5. Nos1 is the only cis-QTLs (i.e., a gene that
maps to its own physical location, highlighted by the orange triangle) within this interval.

The underlying rationale was that a shared genetic component
explaining a notable part of the variance of both traits would
establish a meaningful link in the sense of a common genetic
causality.

Our hypothesis was thus that the genetic determinants under-
lying IMF plasticity might be closely linked to the genetic network
controlling adult neurogenesis (Kempermann et al., 2006). But
when we assessed adult hippocampal neurogenesis and the size
of the IMF in RI mice of the BXD panel – derived by inbreed-
ing of F2 progeny from the inbred mouse strains C57BL/6J and
DBA/2J – we found little indication of a genetic link. Interestingly,
IMF also showed little genetic similarity to the other MF subfields.
The size of the MF tract was found to exhibit a relatively moder-
ate variance across the strains of the panel, but this variance was
shown to be highly heritable. The high heritability demonstrates a
strong genetic source of the variability and suggests that the genetic
causes underlying this trait are amenible to mapping in the BXD
panel.

We identified the highest QTL peak that was shared by adult
neurogenesis and any of the MF traits. This common QTL between
“new neurons” and IMF lies between 118.3 and 119.2 Mb on distal
Chr 5 and has an LRS score of approximately 5. By all standards

this is a very low value, indicating that this locus contributes to
only a small fraction of the multigenic regulation of IMF volume.
Within this locus, we discovered that the most promising candidate
gene, Nos1 (Figure 6), according to the literature should decrease
adult neurogenesis but increase IMF size. In concordance with
this, we found that, for both Nos1 and IMF volume, the DBA/2J
allele increases the trait value, whereas for adult neurogenesis the
C57BL/6J allele increases the trait value. According to the litera-
ture, Nos1 has opposite effects on both traits (Keilhoff et al., 2001;
Packer et al., 2003; Zhu et al., 2006; Fritzen et al., 2007). A role
of Nos1 in network refinement through axonal pruning is well-
described for the visual system (Mize and Lo, 2000) and might be
applicable here, too. Nitric oxide was also shown to decrease neu-
rogenesis from cortical progenitor cells in the fetal rodent brain
(Cheng et al., 2003). In summary, Nos1 expression is associated
positively with levels of adult neurogenesis and negatively with
IMF volume, and suggests a potential functional link between the
genetic regulation of the two traits.

Our mapping study yielded different results than a previ-
ous study from Lassalle et al. (1999), who had also used BXD
mice to explore the genetic determinants of the size of the
MF fields. In their study N was 28 strains, in ours 31 strains
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with an overlap of was 24. These trait values are also available
at www.genenetwork.org. Both studies agree on the conclusion,
however, that the MF connectivity is under strong genetic con-
trol. We estimated heritability for the total MF volume to be 0.44,
Lassalle et al. (1999) (for the corresponding area) 0.36. Values for
the infrapyramidal projection were even higher. Despite the very
limited mapping power at the time, Lassalle et al. (1999) proposed
a number of preliminary QTL, mostly for derivative, relative traits
(e.g., hilar area as percentage of the total area). The study might
be challenged on the ground of the methods used to assess the
size of the MF projection, which treated the fiber tract essentially
as two-dimensional structure and not as volume. Consequently,
there is otherwise little consistency between the two studies.

In a large di-allelic F1 study between five commonly used lab-
oratory strains of mice, Crusio et al. (2007) had found that the
only hippocampal subregion for whose size additive genetic effects
and a directional dominance for high values was found, was the
suprapyramidal mossy fiber projection. They argue that this obser-
vation would speak in favor of an evolutionary pressure toward
larger suprapyramidal projections.

Genetic variation in the MF projection with relatively stable
contribution of the SMF is also found in other species, as shown in
a study on two vole species that also showed a correlation between

maze performance and plasticity of the IMF (Pleskacheva et al.,
2000).

In summary, we identified interesting but not fully conclusive
links between adult hippocampal neurogenesis and the plastic-
ity of the IMF. The previously reported, highly suggestive co-
regulation was not matched by a shared genetic control. Neverthe-
less, we found both traits to be highly heritable and could pinpoint
one shared candidate locus that, however, might exert only a very
small overall effect on both traits, and which contains a very inter-
esting cis-QTL and candidate gene, Nos1. Besides the fact that the
genetic independence between IMF and the other MF traits and
adult neurogenesis is remarkable in its own right, our study also
cautions how deceiving phenotypic correlations might be in terms
of the supposedly underlying genetics.
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